CN103849802B - A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method - Google Patents

A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method Download PDF

Info

Publication number
CN103849802B
CN103849802B CN201410066316.0A CN201410066316A CN103849802B CN 103849802 B CN103849802 B CN 103849802B CN 201410066316 A CN201410066316 A CN 201410066316A CN 103849802 B CN103849802 B CN 103849802B
Authority
CN
China
Prior art keywords
rare earth
magnesium
alloy
carbon tube
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410066316.0A
Other languages
Chinese (zh)
Other versions
CN103849802A (en
Inventor
彭秋明
付辉
李慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201410066316.0A priority Critical patent/CN103849802B/en
Publication of CN103849802A publication Critical patent/CN103849802A/en
Application granted granted Critical
Publication of CN103849802B publication Critical patent/CN103849802B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

A kind of high heat resistance magnesium rare earth-boron alloy, its chemical molecular formula is Mg-xRE-yB, and wherein RE represents one or more in 17 kinds of rare earth elements, and when multiple rare earth element coexists, each rare earth element massfraction is impartial.X, y are massfraction, 7%≤x≤12%, 0.05%≤y≤3%; Preparation method of the present invention is mainly to magnesium-rare earth alloy surface preparation, polishing, polishing, cleaning, with chilling press, magnesium-rare earth alloy boron nitride powder is wrapped up, be assembled into high-voltage samples, be placed on high pressure six-plane piercer and carry out high pressure boronising, obtain the magnesium rare earth-boron alloy containing boron rare earth compound.The inventive method is simple and easy to control, and cost is low, safety non-toxic in high pressure boronizing process, avoids the pollution of obnoxious flavour to environment, the magnesium rare earth-boron alloy of preparation can at 300 DEG C of temperature life-time service.

Description

A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method
Technical field
The present invention relates to a kind of Alloy And Preparation Method.
Background technology
Magnesium alloy, as the commercial metal structural timber of current most lightweight, is applied more and more wider in modern industry.Compared with other metallic substance, magnesium alloy has that density is little, high specific strength, high specific stiffness, excellent thermal conductivity and electroconductibility, good dimensional stability, electromagnetic wave shielding and be easy to the characteristics such as recovery.Although magnesium alloy has plurality of advantages, still there is thermo-labile, the shortcoming such as resistance to corrosion is poor and temperature-room type plasticity is low.The resistance to elevated temperatures of general magnesium alloy is poor, and working temperature can not more than 120-150 DEG C, and this just significantly limit its widespread use.
Present stage, be used for improving the high-temperature behavior of magnesium alloy by the comprehensive utilization of the multiple methods such as strain-hardening, grain refining, alloying, thermal treatment, magnesium alloy and ceramic phase meet or these methods, turn to the most basic, the most frequently used and the most effective enhanced processing method at these treatment process interalloies.The heat-resistant magnesium alloy (CN102171374B) of Toyota Jidoshokki KK, this alloy with the addition of Al, Ca and Mn element, these compounds define crystalline compounds at the grain boundaries of magnesium crystal grain, make this magnesium alloy at high temperature, bottom surface also not easily occurs and slides, at high temperature show higher mechanical property, but Addition ofelements is too single, the excessive impact causing other performance of alloy of easy element, high temperature creep property is poor simultaneously, and service temperature is no more than 230 DEG C.A kind of heat resistance magnesium alloy (CN101818293B) of Guangzhou Research Institute of Nonferrous Metals, this alloy with the addition of Al, Zn, Si, Ca and Sr element, Al and Zn element has reinforced alloys effect, form dystectic Mg2Si phase simultaneously, Ca and Sr element plays crystal grain thinning and metamorphism, this alloy has good Microstructure and properties, and the tensile strength of 150 DEG C and elongation are greater than 120MPa and 20%, but not satisfactory in the mechanical property of higher temperature.A kind of heat resisting magnesium-rare earth alloy of University Of Science and Technology Of He'nan and preparation method thereof (CN101532107B), this alloy with the addition of Gd, Y, Sm, Zr and Sb element, there is very high tensile strength, when 300 DEG C, tensile strength is still up to 309MPa, but the mass percent of rare earth element reaches 13-18%, cost of alloy is higher, and high temperature creep property is poor, at high temperature can not life-time service.In sum, the precipitation hardening effect under alloying action, due to precipitated phase poor heat stability, makes its phase alligatoring in pyroprocess, thus causes alloy intensity at high temperature and creep-resistant property to reduce.
Summary of the invention
The object of the present invention is to provide that a kind of technique is simple, with low cost, the high heat resistance magnesium rare earth-boron Alloy And Preparation Method of safety non-toxic.The present invention mainly with cheap boron nitride for boron source, obtain the magnesium rare earth-boron alloy containing boron rare earth compound by high pressure boronizing method.
The chemical molecular formula of high heat resistance magnesium rare earth-boron alloy of the present invention is Mg-xRE-yB, wherein RE represents one or more in 17 kinds of rare earth elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), when multiple rare earth element coexists, each rare earth element massfraction is impartial.X, y are massfraction, 7%≤x≤12%, 0.5%≤y≤3%.
Preparation method of the present invention is as follows:
1, magnesium-rare earth alloy surface preparation:
First, by clean for the polishing of magnesium-rare earth alloy sand for surface paper, 150#, 320#, 600#, 1200#, 2000# sand paper alloy surface is selected to polish successively, range estimation magnesium-rare earth alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing magnesium-rare earth alloy material surface to be polished to cut and disappear.Finally polished magnesium-rare earth alloy Ultrasonic Cleaners being carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, and cleaning temperature is 15 DEG C, and scavenging period is 10-15min.
2, high-voltage samples is assembled
First wrap up with the magnesium-rare earth alloy boron nitride powder that step 1 processes by chilling press, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium-rare earth alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, a same cylindrical pyrophyllite block is put into again at top, finally respectively its top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter, carbon tube after sealing is put into the middle circular hole mid-way of a cubes pyrophyllite block, and two conducting steel rings are put at carbon tube two ends again.
3, high pressure boronising
High-voltage samples step 2 assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising, pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1000-1400 DEG C, insulation 30-120min, then powered-down stops heating, and air cooling is to room temperature, take out high-voltage samples after release, obtain the magnesium rare earth-boron alloy containing boron rare earth compound.
The present invention compared with prior art tool has the following advantages:
1, using cheap boron nitride powder as single boron source, decrease the kind of boronizing agent, be easy to preparation, reduce production cost, avoid the pollution of obnoxious flavour to environment.
2, boriding process is simple, without the need to adding catalyzer and shielding gas, gets final product nitriding in atmosphere;
3, the ideal thickness of nitrided case, and the boron rare earth compound generated dissolves in magnesium matrix as precipitated phase, is combined closely with magnesium matrix;
4, generate boron rare earth compound there is good thermostability, effectively raise hot strength and the creep property of magnesium-rare earth alloy, can at 300 DEG C of temperature life-time service.
Embodiment:
Embodiment 1
Mg-8wt.%Gd magnesium gadolinium alloys is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium gadolinium alloys surface finish successively, range estimation magnesium gadolinium alloys surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing magnesium gadolinium alloys surface finish to be disappeared to cut.Finally polished magnesium gadolinium alloys Ultrasonic Cleaners being carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, and cleaning temperature is 15 DEG C, and scavenging period is 10min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium gadolinium alloys is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium gadolinium alloys after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure cubic apparatus, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1200 DEG C, at 1200 DEG C of insulation 30min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing GdB 12magnesium gadolinium boron (Mg-Gd-B) alloy of precipitated phase.This alloying constituent is Mg-7Gd-0.5B alloy after testing, and it is 314MPa the tensile strength of 300 DEG C, and unit elongation reaches 43.6%(in table 1).
Embodiment 2
Mg-5wt.%La-5wt.%Ce magnesium lanthanum cerium alloy is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium gadolinium alloys surface finish successively, range estimation magnesium lanthanum cerium alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing the surface finish of magnesium lanthanum cerium alloy to be disappeared to cut.Finally polished magnesium lanthanum cerium alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 15min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium lanthanum cerium alloy is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium lanthanum cerium alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1400 DEG C, at 1400 DEG C of temperature 50min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing LaB 6, CeB 6magnesium lanthanum cerium boron (Mg-LaCe-B) alloy of precipitated phase.This alloying constituent is Mg-4La4Ce-1.8B alloy after testing, and it is 300MPa the tensile strength of 300 DEG C, and unit elongation reaches 38.1%(in table 1).
Embodiment 3
Mg-5wt.%Nd-5wt.%Tb-5wt.%Tm magnesium neodymium terbium thulium alloy is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium neodymium terbium thulium alloy surface finish successively, range estimation magnesium neodymium terbium thulium alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing the surface finish of magnesium neodymium terbium thulium alloy to be disappeared to cut.Finally polished magnesium neodymium terbium thulium alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 12min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium neodymium terbium thulium alloy is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium neodymium terbium thulium alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1300 DEG C, at 1300 DEG C of insulation 100min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing NdB 6, TbB 12and TmB 12magnesium neodymium terbium thulium boron (Mg-NdTbTm-B) alloy of precipitated phase.This alloying constituent is Mg-4Nd4Tb4Tm-3B alloy after testing, and it is 310MPa the tensile strength of 300 DEG C, and unit elongation reaches 42.3%(in table 1).
Embodiment 4
Mg-4wt.%Y-4wt.%Eu-4wt.%Lu magnesium yttrium europium lutetium alloy is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium yttrium europium lutetium alloy surface finish successively, range estimation magnesium yttrium europium lutetium alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing the surface finish of magnesium yttrium europium lutetium alloy to be disappeared to cut.Finally polished magnesium yttrium europium lutetium alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 11min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium yttrium europium lutetium alloy is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium yttrium europium lutetium alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1400 DEG C, at 1400 DEG C of insulation 80min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing YB 12, EuB 6and LuB 12magnesium yttrium europium lutetium boron (Mg-YEuLu-B) alloy of precipitated phase.This alloying constituent is Mg-3Y3Eu3Lu-1.8B alloy after testing, and it is 304MPa the tensile strength of 300 DEG C, and unit elongation reaches 38.7%(in table 1).
Embodiment 5
Mg-4wt.%Yb-4wt.%Pr-4wt.%Ho-4wt.%Sc magnesium ytterbium praseodymium holmium scandium alloy is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium ytterbium praseodymium holmium scandium alloy surface finish successively, range estimation magnesium ytterbium praseodymium holmium scandium alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing the surface finish of magnesium ytterbium praseodymium holmium scandium alloy to be disappeared to cut.Finally polished magnesium ytterbium praseodymium holmium scandium alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 15min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium ytterbium praseodymium holmium scandium alloy is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium ytterbium praseodymium holmium scandium alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1000 DEG C, at 1000 DEG C of insulation 120min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing YbB 12, PrB 6, HoB 12and ScB 12magnesium ytterbium praseodymium holmium scandium boron (Mg-YbPrHoSc-B) alloy of precipitated phase.This alloying constituent is Mg-3Yb3Pr3Ho3Sc-2.4B alloy after testing, and it is 298MPa the tensile strength of 300 DEG C, and unit elongation reaches 40.1%(in table 1).
Embodiment 6
Mg-3wt.%Dy-3wt.%Pm-3wt.%Er-3wt.%Sm magnesium dysprosium praseodymium erbium samarium alloy is cut into the cylindrical specimens of Φ 6.5mm × 8mm, use 150#, 320#, 600#, 1200#, 2000# sand paper clean for magnesium dysprosium praseodymium erbium samarium alloy surface finish successively, range estimation magnesium dysprosium praseodymium erbium samarium alloy surface scratch direction unanimously, then use deionized water rinsing, utilize polishing cloth to adopt the mode of water throwing the surface finish of magnesium dysprosium praseodymium erbium samarium alloy to be disappeared to cut.Finally polished magnesium dysprosium praseodymium erbium samarium alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 14min.
First with chilling press, the cheap boron nitride powder of above-mentioned magnesium dysprosium praseodymium erbium samarium alloy is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium dysprosium praseodymium erbium samarium alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, put into a same cylindrical pyrophyllite block at carbon tube top again, finally respectively carbon tube top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter.The carbon tube sealed is put into the fast middle circular hole mid-way of a cubes agalmatolite, two conducting steel rings are put at carbon tube two ends again, complete the assembling of high-voltage samples.
The above-mentioned high-voltage samples assembled is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising and pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1400 DEG C, at 1400 DEG C of insulation 60min, then powered-down stops heating, air cooling, to room temperature, takes out sample after release, obtains containing DyB 12, PmB 6, ErB 12and SmB 12magnesium dysprosium praseodymium erbium samarium boron (Mg-DyPmErSm-B) alloy of precipitated phase.This alloying constituent is Mg-2Dy2Pm2Er2Sm-2.7B alloy after testing, and it is 307MPa the tensile strength of 300 DEG C, and unit elongation reaches 39.1%(in table 1).
Table 1: the tensile strength of the alloy obtained in each embodiment 300 DEG C time and unit elongation
Alloying constituent Tensile strength Unit elongation
Mg-7Gd-0.5B 314MPa 43.6%
Mg-4La4Ce-1.8B 300MPa 38.1%
Mg-4NdTb4Tm-3B 310MPa 42.3%
Mg-3Y3Eu3Lu-1.8B 304MPa 38.7%
Mg-3Yb3Pr3Ho3Sc-2.4B 298MPa 40.1%
Mg-2Dy2Pm2Er2Sm-2.7B 307MPa 39.1%

Claims (2)

1. a high heat resistance magnesium rare earth-boron alloy, it is characterized in that: its chemical molecular formula is Mg-xRE-yB, wherein RE represents one or more in 17 kinds of rare earth Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, when multiple rare earth element coexists, each rare earth element massfraction is impartial; X, y are massfraction, 7%≤x≤12%, 0.5%≤y≤3%.
2. the preparation method of a kind of high heat resistance magnesium rare earth-boron alloy according to claim 1, is characterized in that:
(1) magnesium-rare earth alloy surface preparation:
First, by clean for the polishing of magnesium-rare earth alloy sand for surface paper, 150#, 320#, 600#, 1200#, 2000# sand paper alloy surface is selected to polish successively, range estimation magnesium-rare earth alloy surface scratch direction unanimously, then deionized water rinsing is used, utilize polishing cloth to adopt the mode of water throwing magnesium-rare earth alloy material surface to be polished to cut to disappear, finally polished magnesium-rare earth alloy Ultrasonic Cleaners is carried out ultrasonic cleaning, take dehydrated alcohol as clean-out system, cleaning temperature is 15 DEG C, and scavenging period is 10-15min;
(2) high-voltage samples is assembled:
First with chilling press, the magnesium-rare earth alloy boron nitride powder that step (1) processes is wrapped up, then bottom carbon tube, first place a columniform pyrophyllite block identical with its internal diameter, magnesium-rare earth alloy after parcel is close to bottom pyrophyllite block and puts into carbon tube, a same cylindrical pyrophyllite block is put into again at top, finally respectively its top and bottom are sealed with the graphite flake that two panels diameter is identical with carbon tube external diameter, carbon tube after sealing is put into the middle circular hole mid-way of a cubes pyrophyllite block, two conducting steel rings are put at carbon tube two ends again,
(3) high pressure boronising:
The high-voltage samples that step (2) assembles is placed on the cavity position of high pressure six-plane piercer, tup aligns laggard horizontal high voltage boronising, pressure is increased to 6GPa, with the temperature rise rate of 10 DEG C/min, temperature is increased to 1000-1400 DEG C, insulation 30-120min, then powered-down stops heating, and air cooling is to room temperature, take out high-voltage samples after release, obtain the magnesium rare earth-boron alloy containing boron rare earth compound.
CN201410066316.0A 2014-02-26 2014-02-26 A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method Expired - Fee Related CN103849802B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410066316.0A CN103849802B (en) 2014-02-26 2014-02-26 A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410066316.0A CN103849802B (en) 2014-02-26 2014-02-26 A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method

Publications (2)

Publication Number Publication Date
CN103849802A CN103849802A (en) 2014-06-11
CN103849802B true CN103849802B (en) 2015-11-18

Family

ID=50857923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410066316.0A Expired - Fee Related CN103849802B (en) 2014-02-26 2014-02-26 A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method

Country Status (1)

Country Link
CN (1) CN103849802B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404331A (en) * 2014-12-15 2015-03-11 春兴精工(常熟)有限公司 Preparation method for magnesium alloy with high tensile strength
CN104388784A (en) * 2014-12-15 2015-03-04 春兴精工(常熟)有限公司 Method for preparing magnesium alloy with high tensile strength
CN104480363A (en) * 2014-12-15 2015-04-01 苏州昊卓新材料有限公司 Preparation method of high-ductility magnesium alloy
CN108359871A (en) * 2018-05-18 2018-08-03 燕山大学 Rare earth boron group compound aluminium alloy fining agent and preparation method thereof
CN110468318B (en) * 2019-07-29 2021-03-16 卜乐平 Hot-chamber die-casting-extrusion continuous production method of boron rare earth magnesium alloy
CN110885935B (en) * 2019-12-02 2021-10-26 中北大学 Casting method suitable for Mg-Al alloy grain refinement
CN111072041B (en) * 2019-12-24 2021-12-28 燕山大学 Method for rapidly preparing two-dimensional boron alkene
CN115627440A (en) * 2022-10-21 2023-01-20 中南大学 LaB6 enhanced aluminum-chromium-silicon solid powder aluminizing agent and aluminizing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421968A (en) * 2013-08-23 2013-12-04 内蒙古农业大学 Preparation method of high-strength boron rare-earth magnesium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421968A (en) * 2013-08-23 2013-12-04 内蒙古农业大学 Preparation method of high-strength boron rare-earth magnesium alloy

Also Published As

Publication number Publication date
CN103849802A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CN103849802B (en) A kind of high heat resistance magnesium rare earth-boron Alloy And Preparation Method
CN101244483A (en) Self-nano-structure diffusion welding technique for titanium alloy and stainless steel surface
CN102517529B (en) Vacuum heat treatment process of cold rolled titanium strip coil for plate heat exchanger
CN109967852B (en) Diffusion welding connection method for CoCrCuFeNi high-entropy alloy
AU2019422376B2 (en) Modified austenitic stainless steel having good high-temperature creep resistance performance and preparation method therefor
CN104911533B (en) A kind of anti-corrosion gas nitriding process of metal works low temperature and products thereof
CN101942632B (en) Gas nitriding process of 00Ni18Co8Mo5AlTi high-strength maraging steel
CN104630633A (en) Preparation method of anti-carburizing electrothermal alloy
CN101135018A (en) Nickel manganese cobalt gallium high-temperature shape memory alloy and method for making same
CN101886215A (en) Short-flow high-efficiency preparation method of thin high-silicon electrical steel strip
CN112375953A (en) Fe-Mn-Al-C-M multi-principal-element light high-strength alloy and preparation method thereof
CN110306139B (en) Continuous multi-step thermal hydrogen treatment process for improving room temperature plasticity of TC4 titanium alloy
CN103938009B (en) A kind of method preparing porous foam alloy removing pore-forming material sodium metaaluminate
CN102888613A (en) Pickling solution for removing oxide skins of surfaces of nickel and nickel alloy and pickling method
CN101880851A (en) Novel method for carrying out low-temperature surface catalysis and nitriding on alloy cast iron
CN103643098A (en) Rare earth alloying corrosion resistant wrought magnesium alloy and preparation method thereof
CN104630425B (en) A kind of eliminate the method for σ phase in Nuclear piping cast stainless steel
CN103741092A (en) Electric pulse-assisted nitriding method of austenitic stainless steel
CN107557705B (en) A kind of preprocess method improving wrought magnesium alloy mechanical property
CN105603339A (en) Electric pulse auxiliary aging treatment method for ZL114A aluminum alloy
CN105220096A (en) A kind of multistep cycle heat treatment method improving conventional cast gamma-TiAl alloy mechanical property
CN100513608C (en) Composite rear earth alterant used for thermal fatigue resisting steel
CN103757644B (en) A kind of raising nickel-based alloy pipe composite heat treating method
CN104630860A (en) Rare-earth-catalyzed titanizing melting salt pulse electrolysis boronizing method near phase transition temperature
CN103526217A (en) Method for carrying out cleaning treatment on high-temperature alloy cutting material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151118

Termination date: 20180226