CN103847968A - Novel wing icing prevention system using airborne waste heat - Google Patents
Novel wing icing prevention system using airborne waste heat Download PDFInfo
- Publication number
- CN103847968A CN103847968A CN201410077431.8A CN201410077431A CN103847968A CN 103847968 A CN103847968 A CN 103847968A CN 201410077431 A CN201410077431 A CN 201410077431A CN 103847968 A CN103847968 A CN 103847968A
- Authority
- CN
- China
- Prior art keywords
- heat
- pipeline
- steam
- icing
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Other Air-Conditioning Systems (AREA)
Abstract
本发明公开了一种利用机载废热的新型机翼防冰系统,该系统通过管道实现蒙皮换热器、转子式压缩机、蒸发器和电子膨胀阀的连接。在机翼防冰腔中增设了储液器,改变了双蒙皮的结构。本发明系统在无人机上采用蒸发式循环的防冰方式,利用蒸发换热器部件充分吸收机载电子设备的热源热量,并且通过笛形管冲击射流的方式将热量传递给蒙皮跟外界过冷湿空气进行换热,提高蒙皮温度至防冰最低温度,以达到防冰效果。
The invention discloses a novel wing anti-icing system utilizing airborne waste heat. The system realizes the connection of a skin heat exchanger, a rotor compressor, an evaporator and an electronic expansion valve through pipelines. A liquid reservoir was added in the wing anti-icing cavity, and the structure of the double skin was changed. The system of the present invention adopts the evaporative cycle anti-icing method on the UAV, uses the evaporative heat exchanger components to fully absorb the heat source heat of the airborne electronic equipment, and transfers the heat to the skin and the outside world through the impact of the flute tube. The cold and humid air conducts heat exchange to increase the skin temperature to the lowest anti-icing temperature to achieve the anti-icing effect.
Description
技术领域technical field
本发明涉及一种飞机防冰系统,更特别地说,是指一种利用机载废热的新型机翼防冰系统。The present invention relates to an anti-icing system of an aircraft, more particularly, refers to a novel wing anti-icing system utilizing airborne waste heat.
背景技术Background technique
现代飞机,特别是无人驾驶飞机,由于大量使用了各种电子元器件和电子设备,导致局部发热量大,如不进行有效散热,会严重降低电子设备的工作性能,必须进行散热处理。而飞机在穿过含过冷水滴的云层时,许多部件都可能出现结冰,如机翼、尾翼的前缘、螺旋桨、直升机旋翼叶片、发动机进气口、空速管、挡风玻璃等。无人机大型化是目前的发展趋势,大型无人机飞行高度、速度和飞行航时都得到大幅度提高,从而进入结冰包线中产生结冰现象。Modern aircraft, especially unmanned aircraft, use a large number of various electronic components and electronic equipment, resulting in high local heat generation. If effective heat dissipation is not carried out, the performance of electronic equipment will be seriously reduced, and heat dissipation treatment must be carried out. When an aircraft passes through clouds containing supercooled water droplets, many components may freeze, such as wings, leading edges of the empennage, propellers, helicopter rotor blades, engine air intakes, pitot tubes, windshields, etc. The large-scale UAV is the current development trend. The flying height, speed and flight time of large-scale UAVs have been greatly improved, thus entering the icing envelope to generate icing.
发明内容Contents of the invention
为了解决目前机翼热气防冰系统中出现的大量引用发动机引气,造成发动机推力不足的缺陷,本发明提出一种利用机载废热的新型机翼防冰系统。本发明系统在无人机上使用进行防冰具有先天的优势,采用蒸发式循环的防冰方式,利用蒸发换热器部件充分吸收机载电子设备的热源热量,并且通过笛形管冲击射流的方式将热量传递给蒙皮跟外界过冷湿空气进行换热,提高蒙皮温度至防冰最低温度,以达到防冰效果。机翼防冰过程中,本发明系统充分利用了机上应当散热的电子设备、滑油、液压油的余热废热,不需要另外携带冷源、也不需要从发动机引气或电加热,节省了大量引气,提高了发动机推力。In order to solve the defect that a large number of engine bleed air is used in the current wing hot air anti-icing system, resulting in insufficient engine thrust, the present invention proposes a new wing anti-icing system utilizing airborne waste heat. The system of the present invention has inherent advantages in anti-icing on unmanned aerial vehicles. It adopts the anti-icing method of evaporative circulation, uses the evaporative heat exchanger components to fully absorb the heat source heat of the airborne electronic equipment, and impacts the jet flow through the flute tube. The heat is transferred to the skin to exchange heat with the supercooled and humid air outside, and the temperature of the skin is increased to the lowest anti-icing temperature to achieve the anti-icing effect. During the wing anti-icing process, the system of the present invention makes full use of the waste heat of electronic equipment, lubricating oil, and hydraulic oil that should be dissipated on the aircraft, and does not need to carry a cold source, nor does it need to bleed air or electric heating from the engine, saving a lot of energy. Bleed air, which increases engine thrust.
本发明是一种利用机载废热的新型机翼防冰系统,该系统包括有蒙皮换热器(1)、转子式压缩机(2)、蒸发器(3)和电子膨胀阀(4);The present invention is a novel wing anti-icing system utilizing airborne waste heat, the system includes a skin heat exchanger (1), a rotor compressor (2), an evaporator (3) and an electronic expansion valve (4) ;
蒙皮换热器(1)与转子式压缩机(2)之间采用第二管道(5B)连通;The skin heat exchanger (1) is communicated with the rotary compressor (2) through a second pipeline (5B);
蒙皮换热器(1)与电子膨胀阀(4)之间采用第三管道(5C)连通;The third pipe (5C) is used to communicate between the skin heat exchanger (1) and the electronic expansion valve (4);
蒸发器(3)与转子式压缩机(2)之间采用第一管道(5A)连通;The evaporator (3) is communicated with the rotary compressor (2) through a first pipeline (5A);
蒸发器(3)与电子膨胀阀(4)之间采用第四管道(5D)连通。The evaporator (3) communicates with the electronic expansion valve (4) through a fourth pipe (5D).
本发明是一种利用机载废热的新型机翼防冰系统,该系统中的第一管道(5A)内流动的是干饱和蒸汽;第二管道(5B)内流动的是温度不低于100℃的高温热蒸汽;第三管道(5C)内流动的是温度不高于20℃的冷却饱和液体;第四管道(5D)内流动的是降温后的液体。The present invention is a novel wing anti-icing system utilizing airborne waste heat. In the system, the first pipe (5A) flows dry saturated steam; the second pipe (5B) flows with a temperature not lower than 100 ℃ high-temperature hot steam; the third pipeline (5C) flows a cooled saturated liquid whose temperature is not higher than 20℃; the fourth pipeline (5D) flows a cooled liquid.
本发明利用机载废热的新型机翼防冰系统的优点在于:The present invention utilizes the advantage of the novel wing anti-icing system of airborne waste heat to be:
①采用四个通道与蒙皮换热器1、转子式压缩机2、蒸发器3和电子膨胀阀4组成本发明的闭式循环系统,其运用灵活,热源发热量大时,可充分使用热源热量用于防冰;热源热量较少时,可增加压缩机做功,补充防冰所需热流。①A closed circulation system of the present invention is composed of four passages, a
②本发明系统所需部件结构简单,在现有机翼结构中添加储液器,改进了双蒙皮结构;在第三管道5C上设置电子膨胀阀4来进行膨胀降温;利用转子式压缩机2提供的压力使得系统通道具有可循环性。2. The required parts of the system of the present invention are simple in structure, and a liquid reservoir is added to the existing wing structure to improve the double-skin structure; an electronic expansion valve 4 is set on the third pipeline 5C to expand and cool down; the rotor compressor 2 is used The pressure provided makes the system channels circulatory.
③本发明系统利用四个通道形成闭式循环,有效地降低了现有防冰系统的复杂度。③ The system of the present invention utilizes four channels to form a closed cycle, which effectively reduces the complexity of the existing anti-icing system.
④本发明系统无需从发动机引气,减少发动机耗气,提高发动机推力。④The system of the present invention does not need to bleed air from the engine, which reduces engine gas consumption and improves engine thrust.
⑤本发明系统利用机载设备和发热元器件作为蒸发端冷源,有效利用机上余热废热,节省能量,从而实现了蒸发式循环过程。⑤ The system of the present invention utilizes on-board equipment and heating components as the cold source of the evaporation end, effectively utilizes the waste heat on the machine, saves energy, and thus realizes the evaporative cycle process.
附图说明Description of drawings
图1是本发明利用机载废热的新型机翼防冰系统的结构框图。Fig. 1 is a structural block diagram of a novel wing anti-icing system utilizing airborne waste heat according to the present invention.
图2是本发明机翼蒙皮换热器的防冰结构图。Fig. 2 is the anti-icing structural diagram of the wing skin heat exchanger of the present invention.
图2A是本发明机翼蒙皮换热器的另一视角防冰结构的图。Fig. 2A is another view of the anti-icing structure of the wing skin heat exchanger of the present invention.
图2B是本发明机翼蒙皮换热器的防冰结构的分解图。Fig. 2B is an exploded view of the anti-icing structure of the wing skin heat exchanger of the present invention.
图2C是图2的A-A剖面图。FIG. 2C is a sectional view along line A-A of FIG. 2 .
图2D是图2C中的局部放大图。Fig. 2D is a partially enlarged view of Fig. 2C.
图3是本发明机翼蒙皮换热器中的双蒙皮结构体的结构图。Fig. 3 is a structural diagram of the double skin structure in the wing skin heat exchanger of the present invention.
图4是本发明机翼蒙皮换热器中的储液器的结构图。Fig. 4 is a structural diagram of the liquid reservoir in the wing skin heat exchanger of the present invention.
图4A是本发明机翼蒙皮换热器中的储液器的另一视角结构图。Fig. 4A is another structural view of the liquid reservoir in the wing skin heat exchanger of the present invention.
图4B是图4的A-A剖面图。FIG. 4B is a cross-sectional view along line A-A of FIG. 4 .
具体实施方式Detailed ways
下面将结合附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1所示,本发明提供一种利用机载废热的新型机翼防冰系统,该系统包括四大部分,分别是蒙皮换热器1、转子式压缩机2、蒸发器3和电子膨胀阀4;Referring to shown in Fig. 1, the present invention provides a kind of novel airfoil anti-icing system utilizing airborne waste heat, and this system comprises four parts, is
蒙皮换热器1与转子式压缩机2之间采用第二管道5B连通;所述第二管道5B内流动的是高温热蒸汽;温度不低于100℃;The
蒙皮换热器1与电子膨胀阀4之间采用第三管道5C连通;所述第三管道5C内流动的是冷却的饱和液体;温度不高于20℃;A third pipe 5C is used to communicate between the
蒸发器3与转子式压缩机2之间采用第一管道5A连通;所述第一管道5A内流动的是干饱和蒸汽;The evaporator 3 communicates with the rotary compressor 2 through a first pipeline 5A; what flows in the first pipeline 5A is dry saturated steam;
蒸发器3与电子膨胀阀4之间采用第四管道5D连通;所述第四管道5D内流动的是降温后的液体。The evaporator 3 communicates with the electronic expansion valve 4 through a fourth pipeline 5D; the cooled liquid flows in the fourth pipeline 5D.
在本发明中,第一管道5A、第二管道5B、第三管道5C和第四管道5D为纯铜管,直径为5~15mm。In the present invention, the first pipe 5A, the second pipe 5B, the third pipe 5C and the fourth pipe 5D are pure copper pipes with a diameter of 5-15 mm.
在本发明中,所述蒙皮换热器1可以采用笛形管防冰形式。In the present invention, the
在本发明中,转子式压缩机2选用松下公司生产的转子式R222V44W3853P冷暖型压缩机,制冷量为8000W。蒸发器3选用TRANE特灵公司生产的CB77板式蒸发器。电子膨胀阀4选用丹佛斯公司生产的ETS12.5电子膨胀阀,功率为57KW。In the present invention, the rotor-type compressor 2 is a rotor-type R222V44W3853P cooling and heating type compressor produced by Panasonic Corporation, with a cooling capacity of 8000W. The evaporator 3 selects the CB77 plate evaporator produced by TRANE Trane Company. The electronic expansion valve 4 selects the ETS12.5 electronic expansion valve produced by Danfoss, with a power of 57KW.
本发明设计的新型机翼防冰系统对无人机中电子设备产生的废热利用原理为:The novel wing anti-icing system designed by the present invention utilizes the waste heat generated by the electronic equipment in the drone according to the following principles:
(A)无人机中电子设备及元器件作为产生的热量称为本发明系统的热源,该热源产生的热量记为Qs;(A) The heat generated by the electronic equipment and components in the UAV is called the heat source of the system of the present invention, and the heat generated by the heat source is recorded as Q s ;
(B)所述热量Qs传递给蒸发器3后,经由蒸发器3内的制冷剂吸收所述热量Qs后发生相变,使得所述热量Qs成为干饱和蒸气steam3,该干饱和蒸气steam3经第一管道5A传输给转子式压缩机2;(B) After the heat Q s is transferred to the evaporator 3, the refrigerant in the evaporator 3 absorbs the heat Q s and undergoes a phase change, so that the heat Q s becomes dry saturated steam steam 3 . The vapor steam 3 is transmitted to the rotary compressor 2 through the first pipeline 5A;
(C)所述干饱和蒸气steam3在负压下被吸入转子压缩机2中,经转子压缩机2后压缩成高温高压的过热气体steam2,该steam2经第二管道5B传输给蒙皮换热器1;(C) The dry saturated steam steam 3 is sucked into the rotor compressor 2 under negative pressure, compressed into a high-temperature and high-pressure superheated gas steam 2 after passing through the rotor compressor 2, and the steam 2 is transmitted to the skin through the second pipeline
(D)蒙皮换热器1充分与外界交换热量达到机翼防冰目的,所述steam2经过蒙皮换热器1冷却后,冷凝成饱和液体surface1,该surface1经第三管道5C传输给电子膨胀阀4;(D) The
(E)所述surface1经电子膨胀阀4后,通过膨胀后降温降压成为低干度的湿蒸气steam4,该steam4经第四管道5D传输给蒸发器3,从而完成一个无人机机翼的废热利用闭式循环的防冰系统。(E) After the surface 1 passes through the electronic expansion valve 4, it becomes steam 4 with low dryness after cooling down and depressurizing after expansion, and the steam 4 is transmitted to the evaporator 3 through the fourth pipeline 5D, thus completing an unmanned aerial vehicle The waste heat from the wings utilizes a closed-loop anti-icing system.
本发明设计的新型机翼防冰系统为蒸发式循环设计,其能量守恒关系为:The novel wing anti-icing system designed by the present invention is an evaporative cycle design, and its energy conservation relationship is:
由于本发明系统是一个闭环系统,与外界没有物质交换,传递能量只有热量和功量两种形式,故能量守恒关系表征为Q1=P2+Q3-QL。Since the system of the present invention is a closed-loop system, there is no material exchange with the outside world, and there are only two forms of energy transfer: heat and work, so the energy conservation relationship is expressed as Q 1 =P 2 +Q 3 -Q L .
Q1为蒙皮换热器能够实现的换热量,且Qn为防冰热负荷,单位kW,η1为蒙皮换热器的换热效率;Q 1 is the heat transfer capacity that the skin heat exchanger can achieve, and Q n is the anti-icing heat load, unit kW, and η 1 is the heat transfer efficiency of skin heat exchanger;
Q3为蒸发器能够实现的换热量;Q 3 is the heat exchange that the evaporator can achieve;
P2为压缩机的有效功率,且P2=P×η2,P为压缩机额定功率,单位kW,η2为压缩机工作的有效率;转子压缩机型号的选取是根据蒸发器蒸发温度Teva,蒙皮防冰腔冷凝温度Tcon以及系统冷负荷Qs来确定。P 2 is the effective power of the compressor, and P 2 =P×η 2 , P is the rated power of the compressor, the unit is kW, and η 2 is the effective efficiency of the compressor; the selection of the rotary compressor model is based on the evaporation of the evaporator The temperature T eva , the skin anti-icing cavity condensation temperature T con and the system cooling load Q s are determined.
QL为系统管路热损失,即第一管道5A、第二管道5B、第三管道5C和第四管道5D上的热损失,单位为kW。Q L is the heat loss of the system pipeline, that is, the heat loss on the first pipeline 5A, the second pipeline 5B, the third pipeline 5C and the fourth pipeline 5D, and the unit is kW.
在本发明中,蒸发器的换热量为Q2=Qs×η3,Qs=∑Qi,η3为蒸发器的换热效率,Qs为系统热源热量,Qi为机上需要散热的发热热流,如发热电子设备、滑油等。In the present invention, the heat exchange capacity of the evaporator is Q 2 =Q s ×η 3 , Q s =∑Q i , η 3 is the heat exchange efficiency of the evaporator, Q s is the heat source heat of the system, and Q i is the on-board demand Heat flow for heat dissipation, such as heat-generating electronic equipment, lubricating oil, etc.
根据外部结冰环境各项热流计算防冰所需热负荷Qn为:According to the various heat flows in the external icing environment, the heat load Qn required for anti-icing is calculated as:
Qn=∑(qa+qv+qe+qw+qwv)×AQ n =∑(q a +q v +q e +q w +q wv )×A
其中A为换热面积;qa对流换热比热流;qv由于附面层摩擦引起的气流对表面的加热比热流;qe表面上水蒸发所需的比热流;qw加热所收集水滴的比热流;qwv水滴动能转变成的比热流,单位均为kW/m2。where A is the heat transfer area; q a specific heat flow for convective heat transfer; q v the specific heat flow for heating the surface due to the air flow caused by the friction of the boundary layer; q e the specific heat flow required for water evaporation on the surface; q w heats the collected water droplets specific heat flow; q wv water droplet kinetic energy converted into specific heat flow, the unit is kW/m 2 .
在本发明中,蒙皮换热器1包括有机翼蒙皮1A、笛形管6B、双蒙皮结构体7、A支撑板6A、B支撑板6C、储液器8。In the present invention, the
机翼蒙皮1A
参见图2、图2A、图2B、图2C、图2D所示,机翼蒙皮1A为铝合金材料加工翼型结构。机翼蒙皮1A的内壁与双蒙皮结构体7、储液器8形成防冰腔9。从笛形管6B的喷孔6B1中喷射出的热蒸气冲射到机翼蒙皮1A的前缘内壁,然后沿箭头方向进行扩散,扩散在防冰腔9中的热蒸气经冷却后进入储液器8中。从笛形管6B的喷孔6B1中喷射出的热蒸气温度一般不低于100℃。热蒸气经防冰腔9后的温度一般不高于20℃。Referring to Fig. 2, Fig. 2A, Fig. 2B, Fig. 2C, and Fig. 2D, the
笛形管6B
参见图2、图2B、图2C、图2D所示,笛形管6B的一端与蒸气分配管6B2的一端连接,蒸气分配管6B2的另一端与第二管道5B的一端连接,第二管道5B的另一端与转子压缩机2的出口端连接。笛形管6B上设有喷孔6B1。在本发明中,笛形管6B上的喷孔6B1为陈列分布,可以在笛形管6B的圆周上按照顺排或者叉排设置多个陈列。Referring to Fig. 2, Fig. 2B, Fig. 2C, and Fig. 2D, one end of the
双蒙皮结构体7
参见图2B、图2C、图2D、图3所示,双蒙皮结构体7的中部为通腔7D,该通腔7D用于减轻双蒙皮结构体7的重量。双蒙皮结构体7的基体7A上设有弧形限位7B、凸起7E,该弧形限位7B与笛形管6B匹配,实现从笛形管6B的喷孔6B1中喷射出的热蒸气沿弧形壁流动。该凸起7E安装在储液器8的限位槽8A中。双蒙皮结构体7的两端分别设有C支撑板7C、D支撑板7F。Referring to FIG. 2B , FIG. 2C , FIG. 2D , and FIG. 3 , the middle part of the double-
A支撑板6AA
参见图2、图2B所示,A支撑板6A设置在蒙皮换热器1的一端。Referring to FIG. 2 and FIG. 2B , the
B支撑板6C
参见图2A、图2B所示,B支撑板6C设置在蒙皮换热器1的另一端。Referring to FIG. 2A and FIG. 2B , the
储液器8
参见图2B、图2C、图2D、图4、图4A、图4B所示,储液器8为内部为T形空腔结构。储液器8的一侧板面上设有限位槽8A,该限位槽8A用于放置双蒙皮结构体7的凸起7E;储液器8的另一侧板面上设有抽液孔8B,抽液孔8B与第三管道5C的一端连接,第三管道5C的另一端与电子膨胀阀4的入口连接,抽液孔8B用于将T形空腔内的冷却后的冷凝成饱和液体排出,实现热量交换。储液器8的内部设有T型隔板8E,所述的T型隔板8E将储液器8内部的空腔分成第一腔8C和第二腔8D,T型隔板8E上设有连通孔8F(为了明显将连通孔放大后用虚线显示),第一腔8C中的冷凝成饱和液体经连通孔8F进入第二腔8D中,第二腔8D中的冷凝成饱和液体经抽液孔8B(为了明显将抽液孔放大后用虚线显示)进入第三管道5C中。Referring to FIG. 2B , FIG. 2C , FIG. 2D , FIG. 4 , FIG. 4A , and FIG. 4B, the
本发明设计的利用机载废热的新型机翼防冰系统,是采用四个通道分别与蒙皮换热器1、转子式压缩机2、蒸发器3和电子膨胀阀4连接,构成闭式循环防冰系统。其运用灵活,热源发热量大时,可充分使用热源热量用于防冰;热源热量较少时,可增加压缩机做功,补充防冰所需热流。The novel airfoil anti-icing system designed by the present invention using airborne waste heat uses four channels to connect with the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410077431.8A CN103847968B (en) | 2014-03-05 | 2014-03-05 | A kind of Novel aerofoil anti icing system utilizing airborne used heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410077431.8A CN103847968B (en) | 2014-03-05 | 2014-03-05 | A kind of Novel aerofoil anti icing system utilizing airborne used heat |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103847968A true CN103847968A (en) | 2014-06-11 |
CN103847968B CN103847968B (en) | 2015-11-11 |
Family
ID=50856185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410077431.8A Expired - Fee Related CN103847968B (en) | 2014-03-05 | 2014-03-05 | A kind of Novel aerofoil anti icing system utilizing airborne used heat |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103847968B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107135629A (en) * | 2016-02-29 | 2017-09-05 | 波音公司 | Heat management system for the structure assembly of the Aero-Space vehicles |
CN107985607A (en) * | 2017-11-02 | 2018-05-04 | 成都飞机工业(集团)有限责任公司 | A kind of unmanned plane icing protective device |
CN108100273A (en) * | 2017-11-29 | 2018-06-01 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of aircraft fuel oil cooling system |
CN108423182A (en) * | 2018-04-28 | 2018-08-21 | 南京航空航天大学 | Helicopter short limb with condenser assembly |
CN109353524A (en) * | 2018-09-29 | 2019-02-19 | 北京航空航天大学 | Airborne thermal management system and method |
CN109367801A (en) * | 2018-10-09 | 2019-02-22 | 北京航空航天大学 | A distributed aircraft thermal management system and method based on aircraft hydraulic system and micro-evaporative refrigeration cycle |
CN110316384A (en) * | 2018-03-30 | 2019-10-11 | 英西图公司 | System for dissipating heat and method of mitigating ice formation on aircraft wings |
CN112441237A (en) * | 2019-08-28 | 2021-03-05 | 株式会社斯巴鲁 | Electric aircraft |
CN113047960A (en) * | 2021-03-22 | 2021-06-29 | 南京航空航天大学 | Novel aeroengine backward flow formula lubricating oil anti-icing extension board inner chamber structure |
CN113636085A (en) * | 2020-04-27 | 2021-11-12 | 西安京东天鸿科技有限公司 | Unmanned aerial vehicle and control method of anti-icing and deicing system of unmanned aerial vehicle |
CN113844659A (en) * | 2021-09-30 | 2021-12-28 | 中航通飞华南飞机工业有限公司 | Double-skin anti-icing cavity structure of airplane and heat exchange method |
CN114162328A (en) * | 2022-02-10 | 2022-03-11 | 中国空气动力研究与发展中心低速空气动力研究所 | Airplane deicing method and deicing device |
CN114710922A (en) * | 2021-12-30 | 2022-07-05 | 中国航空工业集团公司西安飞机设计研究所 | A thermal energy management system with integrated liquid cooling and anti-icing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB546067A (en) * | 1941-05-26 | 1942-06-25 | Robert William Jameson | Improvements in and relating to apparatus for preventing ice formation on aircraft or for de-icing aircraft |
US20030150955A1 (en) * | 2002-02-13 | 2003-08-14 | Daggett David L. | Aircraft wing heat exchanger apparatus and method |
JP3529910B2 (en) * | 1995-09-05 | 2004-05-24 | 本田技研工業株式会社 | Aircraft leading edge structure and method of manufacturing the same |
CN101590913A (en) * | 2009-07-02 | 2009-12-02 | 北京航空航天大学 | Anti-icing and de-icing method of civil aircraft using loop heat pipe |
CN102007037A (en) * | 2008-04-16 | 2011-04-06 | 空中客车营运有限公司 | De-icing system for an airplane |
-
2014
- 2014-03-05 CN CN201410077431.8A patent/CN103847968B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB546067A (en) * | 1941-05-26 | 1942-06-25 | Robert William Jameson | Improvements in and relating to apparatus for preventing ice formation on aircraft or for de-icing aircraft |
JP3529910B2 (en) * | 1995-09-05 | 2004-05-24 | 本田技研工業株式会社 | Aircraft leading edge structure and method of manufacturing the same |
US20030150955A1 (en) * | 2002-02-13 | 2003-08-14 | Daggett David L. | Aircraft wing heat exchanger apparatus and method |
CN102007037A (en) * | 2008-04-16 | 2011-04-06 | 空中客车营运有限公司 | De-icing system for an airplane |
CN101590913A (en) * | 2009-07-02 | 2009-12-02 | 北京航空航天大学 | Anti-icing and de-icing method of civil aircraft using loop heat pipe |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2734123C2 (en) * | 2016-02-29 | 2020-10-13 | Зе Боинг Компани | Structural-integrated thermal control system for aerospace aircrafts |
CN107135629A (en) * | 2016-02-29 | 2017-09-05 | 波音公司 | Heat management system for the structure assembly of the Aero-Space vehicles |
CN107985607A (en) * | 2017-11-02 | 2018-05-04 | 成都飞机工业(集团)有限责任公司 | A kind of unmanned plane icing protective device |
CN108100273A (en) * | 2017-11-29 | 2018-06-01 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of aircraft fuel oil cooling system |
CN110316384B (en) * | 2018-03-30 | 2024-11-22 | 英西图公司 | System for dissipating heat and method for reducing ice formation on aircraft wings |
CN110316384A (en) * | 2018-03-30 | 2019-10-11 | 英西图公司 | System for dissipating heat and method of mitigating ice formation on aircraft wings |
CN108423182A (en) * | 2018-04-28 | 2018-08-21 | 南京航空航天大学 | Helicopter short limb with condenser assembly |
CN108423182B (en) * | 2018-04-28 | 2023-09-26 | 南京航空航天大学 | Helicopter winglet with condenser assembly |
CN109353524A (en) * | 2018-09-29 | 2019-02-19 | 北京航空航天大学 | Airborne thermal management system and method |
CN109367801B (en) * | 2018-10-09 | 2020-09-18 | 北京航空航天大学 | A distributed aircraft thermal management system and method based on aircraft hydraulic system and micro-evaporative refrigeration cycle |
CN109367801A (en) * | 2018-10-09 | 2019-02-22 | 北京航空航天大学 | A distributed aircraft thermal management system and method based on aircraft hydraulic system and micro-evaporative refrigeration cycle |
CN112441237A (en) * | 2019-08-28 | 2021-03-05 | 株式会社斯巴鲁 | Electric aircraft |
CN113636085A (en) * | 2020-04-27 | 2021-11-12 | 西安京东天鸿科技有限公司 | Unmanned aerial vehicle and control method of anti-icing and deicing system of unmanned aerial vehicle |
CN113047960A (en) * | 2021-03-22 | 2021-06-29 | 南京航空航天大学 | Novel aeroengine backward flow formula lubricating oil anti-icing extension board inner chamber structure |
CN113844659A (en) * | 2021-09-30 | 2021-12-28 | 中航通飞华南飞机工业有限公司 | Double-skin anti-icing cavity structure of airplane and heat exchange method |
CN114710922A (en) * | 2021-12-30 | 2022-07-05 | 中国航空工业集团公司西安飞机设计研究所 | A thermal energy management system with integrated liquid cooling and anti-icing |
CN114162328A (en) * | 2022-02-10 | 2022-03-11 | 中国空气动力研究与发展中心低速空气动力研究所 | Airplane deicing method and deicing device |
Also Published As
Publication number | Publication date |
---|---|
CN103847968B (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103847968B (en) | A kind of Novel aerofoil anti icing system utilizing airborne used heat | |
CN103786886B (en) | Ice preventing and removing system for aircraft wing | |
US10364043B2 (en) | Passive aircraft cooling systems and methods | |
CN101881490A (en) | High pressure dehumidification aircraft new environmental control system using membrane modules | |
CN103527267B (en) | Direct air-cooling unit system with plate-type evaporative condenser unit adopted | |
CN102381479B (en) | Comprehensive environmental control/liquid cold and heat energy management system for non-stamping air inlet duct | |
CN105599906A (en) | Aero-engine rectification cover hood anti-icing device adopting loop type heat pipe and anti-icing method of aero-engine rectification cover hood anti-icing device | |
CN103148644A (en) | Micro-channel falling film evaporation type condenser | |
CN101590913A (en) | Anti-icing and de-icing method of civil aircraft using loop heat pipe | |
CN102390538A (en) | Comprehensive environmental control/liquid cooling heat energy management system without ramjet inlet | |
CN102390536A (en) | Three-wheel pressure-boosting refrigerating and liquid cooling composite thermal energy managing system | |
CN105263294A (en) | Cooling system of divided composite heat pipe evaporative condenser for data machine room | |
CN103612760A (en) | Closed type air refrigeration circulation device for actively recycling cooling capacity | |
CN208931658U (en) | Aircraft dehumidification system | |
CN208205489U (en) | Airborne spray cooling system using phase-change material to cool spray medium and micro-channel heat exchanger to prevent failure | |
CN109367801A (en) | A distributed aircraft thermal management system and method based on aircraft hydraulic system and micro-evaporative refrigeration cycle | |
CN106910960A (en) | A kind of aviation fuel cell system radiator and aviation fuel cell system | |
CN209485094U (en) | A kind of dry and wet joint cooling tower | |
CN115230969B (en) | Aircraft environmental control system and method adopting vortex tube for preventing ice and cooling electronic equipment | |
WO2015068874A1 (en) | Refrigerator for district cooling system | |
TW201221280A (en) | A cooling device for cutting fluid | |
CN206656326U (en) | A kind of type jet impulse cooling device that goes with each other all the time applied to LED-baseplate | |
CN105080177A (en) | Efficient separation and vacuum condensation system for non-condensable gas | |
CN205536647U (en) | Novel two -wheeled high pressure dewatering air cycle refrigerating system | |
CN204214296U (en) | A kind of multi-joint cooling tower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151111 Termination date: 20170305 |