CN103822635A - Visual information based real-time calculation method of spatial position of flying unmanned aircraft - Google Patents
Visual information based real-time calculation method of spatial position of flying unmanned aircraft Download PDFInfo
- Publication number
- CN103822635A CN103822635A CN201410078669.2A CN201410078669A CN103822635A CN 103822635 A CN103822635 A CN 103822635A CN 201410078669 A CN201410078669 A CN 201410078669A CN 103822635 A CN103822635 A CN 103822635A
- Authority
- CN
- China
- Prior art keywords
- destination
- unmanned plane
- feature
- information
- uav
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 15
- 230000000007 visual effect Effects 0.000 title claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 206010047571 Visual impairment Diseases 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000000605 extraction Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 5
- 238000013480 data collection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于视觉信息的无人机飞行中空间位置实时计算方法,属于数字视频图像处理技术领域。该方法主要依据航拍图像信息、高程信息,融合无人机飞行参数信息,对无人机空中位置给出分析和识别。利用无人机航拍图像,结合无人机高程信息等飞行参数,对图像进行校正,与先验信息对比分析,由航拍图像反算出无人机当前位置信息。本发明针对无人机特点,充分利用视觉信息,提高无人机自主性。
The invention discloses a visual information-based real-time calculation method for a spatial position in flight of an unmanned aerial vehicle, belonging to the technical field of digital video image processing. This method is mainly based on the aerial image information and elevation information, and integrates the flight parameter information of the UAV to analyze and identify the aerial position of the UAV. Using the aerial image of the UAV, combined with the flight parameters such as the elevation information of the UAV, the image is corrected, compared with the prior information, and the current position information of the UAV is calculated from the aerial image. The invention aims at the characteristics of the unmanned aerial vehicle, fully utilizes the visual information, and improves the autonomy of the unmanned aerial vehicle.
Description
技术领域technical field
本发明属于数字视频图像处理技术领域,具体涉及一种基于视觉信息的无人机飞行中空间位置实时计算方法。The invention belongs to the technical field of digital video image processing, and in particular relates to a method for real-time calculation of the spatial position of an unmanned aerial vehicle based on visual information.
背景技术Background technique
近年来,随着无人机技术的不断发展,无人机不仅在军事上得到了广泛的应用,而且逐渐延伸到民用场合。在军事上,它可用于空中侦察、电子干扰、通信中继、目标定位、战场监视和边境巡逻等,民用上可用于航空摄影、灾情监测、地球物理探矿、航空摄影等。In recent years, with the continuous development of drone technology, drones have not only been widely used in the military, but also gradually extended to civilian applications. In the military, it can be used for aerial reconnaissance, electronic jamming, communication relay, target positioning, battlefield surveillance and border patrol, etc. In civilian use, it can be used for aerial photography, disaster monitoring, geophysical prospecting, aerial photography, etc.
以往,无人机主要依靠惯性导航系统(Inertial Navigation System,INS)和全球定位系统(Global Position System,GPS)进行导航,然而,导航过程中惯性器件具有累积误差,对初始值过于敏感,而GPS并不是总是可获取的,并且即使是可以获取,其精度往往满足不了无人机导航的需要。In the past, drones mainly relied on inertial navigation system (Inertial Navigation System, INS) and global positioning system (Global Position System, GPS) for navigation. It is not always available, and even when it is available, it is often not accurate enough for drone navigation.
另外,无线电信号和GPS信号传输易受阻塞,抗干扰能力不强,在军事隐蔽侦察上优势并不明显。据报道,伊朗宣称其破解了美军GPS信号,控制了通信链路,并成功诱骗、捕获了美军的一架在伊朗境内执行任务的RQ-170“哨兵”无人侦察机。2009年9月13日,美军一架MQ-9“收割者”无人机在阿富汗北部山区执行任务时失去控制,美军无奈之下派战斗机将其击落,以防止其飞入塔吉克斯坦或中国领空。这些事故的发生都是由于无人机通信链路受阻或被敌方破译并接管,接收虚假导航位置信息,降低了自身可靠性。In addition, the transmission of radio signals and GPS signals is easily blocked, and the anti-interference ability is not strong, so the advantages in military covert reconnaissance are not obvious. According to reports, Iran claimed that it had cracked the GPS signal of the US military, controlled the communication link, and successfully tricked and captured an RQ-170 "Sentinel" unmanned reconnaissance aircraft of the US military performing missions in Iran. On September 13, 2009, a U.S. military MQ-9 "Reaper" drone lost control while performing a mission in the mountains of northern Afghanistan. The U.S. military had no choice but to send fighter jets to shoot it down to prevent it from flying into the airspace of Tajikistan or China. . These accidents occurred because the UAV communication link was blocked or was deciphered and taken over by the enemy, receiving false navigation position information, which reduced its own reliability.
GPS信号容易受干扰,容易受他国控制,惯导/GPS组合导航精度有限。也正是由于这些原因,为了提高无人机自主飞行和防欺骗能力,人们对无人机自主导航产生了很大的研究兴趣,并形成了近期无人机研究领域里的一个热点,而视觉导航自主性强,导航参数的获得不依赖外部设备,获得信息量大,完全由飞机自身提供,抗干扰能力强,位置定位和识别更加准确,对实现飞机的自主导航非常有利。GPS signals are susceptible to interference and control by other countries, and the accuracy of inertial navigation/GPS integrated navigation is limited. It is precisely for these reasons that, in order to improve the autonomous flight and anti-spoofing capabilities of UAVs, people have a great research interest in UAV autonomous navigation, and it has become a hot spot in the recent research field of UAVs. The navigation autonomy is strong, the acquisition of navigation parameters does not depend on external equipment, the amount of information obtained is large, and it is completely provided by the aircraft itself. The anti-interference ability is strong, and the position positioning and identification are more accurate, which is very beneficial to the realization of the autonomous navigation of the aircraft.
目前视觉导航以相对位置定位为主,例如飞机在着陆过程中,以地标如跑道边线为参考,对飞机姿态不断做出调整,以达到安全着陆的目的。导航绝对位置定位的方法比较少,在无人机飞行过程中,利用GPS/INS组合导航,并基于视觉的辅助导航实现了更为准确的导航定位,但在通信链路失效的情况下,利用视觉导航进行绝对位置定位显得更加重要。At present, visual navigation is mainly based on relative position positioning. For example, when an aircraft is landing, it uses landmarks such as the runway sideline as a reference to continuously adjust the attitude of the aircraft to achieve the purpose of landing safely. There are relatively few methods for navigation absolute position positioning. During the flight of UAVs, GPS/INS integrated navigation is used, and vision-based auxiliary navigation is used to achieve more accurate navigation and positioning. However, in the case of communication link failure, the use of Visual navigation is more important for absolute position positioning.
发明内容Contents of the invention
本发明的目的是为了解决上述问题,针对无人机自身特点,提出了基于视觉信息的无人机飞行中空间位置实时计算方法,结合图像处理技术,利用图像特征,对比先验信息,获得无人机空中位置信息,提高无人机自主性。The purpose of the present invention is to solve the above problems, aiming at the characteristics of the UAV itself, a real-time calculation method for the spatial position of the UAV in flight based on visual information is proposed, combined with image processing technology, using image features, comparing prior information, and obtaining no Air position information of man and machine to improve the autonomy of drones.
基于视觉信息的无人机飞行中空间位置实时计算方法,包括以下几个步骤:A method for real-time calculation of spatial position in UAV flight based on visual information, including the following steps:
步骤一,建立无人机飞行航线地貌数据库;Step 1, establishing the UAV flight route topography database;
步骤二,航点检测;Step 2, waypoint detection;
步骤三,数据采集;Step three, data collection;
步骤四,数据匹配;Step 4, data matching;
步骤五,获取位置信息。Step five, obtain location information.
本发明的优点在于:The advantages of the present invention are:
(1)利用无人机机载资源及设备,进行无人机空间位置的绝对定位;(1) Utilize the onboard resources and equipment of the UAV to perform absolute positioning of the UAV's spatial position;
(2)利用可见光、红外等自然信息,隐蔽性好;(2) Using natural information such as visible light and infrared, it has good concealment;
附图说明Description of drawings
图1是本发明的方法流程图;Fig. 1 is method flowchart of the present invention;
图2是本发明的图像信息匹配流程图;Fig. 2 is the flow chart of image information matching of the present invention;
图3是本发明的无人机拍摄点和地貌中心点几何关系图。Fig. 3 is a diagram of the geometric relationship between the shooting point of the drone and the central point of the landform according to the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明的具体实施方式进行详细说明。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明的基于视觉信息的无人机飞行中空间位置实时计算方法,流程如图1所示,包括以下几个步骤:The real-time calculation method of the spatial position in the flight of the unmanned aerial vehicle based on visual information of the present invention, as shown in Figure 1, includes the following steps:
步骤一,建立无人机飞行航线的地貌数据库;Step 1, establishing a geomorphological database of the flight route of the UAV;
根据无人机预先规划好的航线,在无人机连续可观察到的视野范围内,提取多种地貌环境诸如居民区、植被、公路、水域等图像和位置信息,并计算地貌图像的颜色、纹理、直线、角点、SIFT等多种特征,存储入库;According to the pre-planned route of the UAV, within the continuously observable field of view of the UAV, images and location information of various landform environments such as residential areas, vegetation, roads, waters, etc. are extracted, and the color, color, and location information of the landform image are calculated. Various features such as texture, straight line, corner point, SIFT, etc. are stored in the database;
具体为:首先对规划好的航线采集航点,即信号灯塔、立交桥或者摩天大楼等建筑物地标,然后计算航点的点线特征并存储,其步骤如下:Specifically: first collect waypoints for the planned route, that is, building landmarks such as signal lighthouses, overpasses or skyscrapers, and then calculate and store the point-line features of the waypoints. The steps are as follows:
(1)获取无人机航线的航点;(1) Obtain the waypoint of the UAV route;
根据无人机预先设定的规划航线,选取无人机航线上的航点,利用多载荷设备采集航点的信息;According to the pre-set planning route of the UAV, select the waypoint on the UAV route, and use multi-load equipment to collect the information of the waypoint;
无人机飞行航线航点类型包括如下几种:信号灯塔、立交桥或者摩天大楼等建筑物地标,建筑物地标具有特征明显且难以复制的特点,选取建筑物地标作为航点,有利于提高本发明方法的可靠性。The waypoint types of UAV flight routes include the following: building landmarks such as signal lighthouses, overpasses or skyscrapers, and building landmarks have obvious characteristics and are difficult to replicate. reliability of the method.
根据规划航线,利用多载荷设备采集航点的多种信息,包括地标图像信息、对应高程信息及导航位置信息等;According to the planned route, use multi-load equipment to collect various information of waypoints, including landmark image information, corresponding elevation information and navigation position information, etc.;
(2)计算特征;(2) Calculation features;
根据步骤(1)得到航点的地标图像信息,计算航点的SIFT点特征、Harris角点特征、纹理特征等;According to step (1), the landmark image information of the waypoint is obtained, and the SIFT point feature, Harris corner feature, texture feature, etc. of the waypoint are calculated;
(3)获取地貌数据库;(3) Obtain the geomorphic database;
将步骤(1)、(2)采集计算得到SIFT点特征、Harris角点特征、纹理特征、Hough直线特征以及地标图像的位置信息,存入到地貌数据库,完成地貌数据库的建立。Steps (1) and (2) are collected and calculated to obtain SIFT point features, Harris corner features, texture features, Hough line features, and location information of landmark images, and store them in the geomorphic database to complete the establishment of the geomorphic database.
地标图像的位置信息包括航点图名称、图像尺寸、中心坐标。The location information of the landmark image includes the waypoint map name, image size, and center coordinates.
按照表1所示的结构,将信息存储到地貌数据库,完成地貌数据库的建立。According to the structure shown in Table 1, the information is stored in the geomorphic database to complete the establishment of the geomorphic database.
表1地貌数据库结构Table 1 Geomorphic database structure
步骤二,无人机在航线飞行中,进行航点检测。Step 2: The UAV performs waypoint detection during the route flight.
无人机飞行中,实时检测航线的航点,即检测诸如信号灯塔、建筑物等地标,由于Harris角点检测方法具有准确度高、实时性好等特点,利用该检测方法对航点地标进行检测,将检测到的航点与地貌数据库中已存航点进行匹配,若匹配成功则进行步骤三,否则继续进行下一个航点检测,执行步骤二;During the flight of the UAV, the waypoints of the route are detected in real time, that is, landmarks such as signal lighthouses and buildings are detected. Since the Harris corner point detection method has the characteristics of high accuracy and good real-time performance, this detection method is used to detect the waypoint landmarks. Detection, matching the detected waypoint with the existing waypoint in the terrain database, if the match is successful, go to step 3, otherwise continue to the next waypoint detection, go to step 2;
具体包括以下几个步骤:Specifically include the following steps:
(1)航点检测(1) Waypoint detection
当无人机飞行到一个航点时,采用Harris角点检测方法,获取该航点的Harris特征,Harris角点检测方法具有准确度高、实时性好等特点,兼顾了效率和精度两方面的要求,误检测率低。When the UAV flies to a waypoint, the Harris corner detection method is used to obtain the Harris feature of the waypoint. The Harris corner detection method has the characteristics of high accuracy and good real-time performance, taking into account both efficiency and precision. Requirements, false detection rate is low.
(2)航点匹配(2) Waypoint matching
将获取的航点的Harris特征,与地貌数据库中存储的航点的Harris特征进行匹配,若匹配成功则进行步骤三,否则继续进行下一个航点检测,执行步骤二;Match the Harris feature of the acquired waypoint with the Harris feature of the waypoint stored in the landform database. If the match is successful, proceed to step 3, otherwise proceed to the next waypoint detection and perform step 2;
步骤三,航点数据采集。Step 3, waypoint data collection.
对匹配成功的航点,利用机载CCD摄像机采集数据,数据包括高清航拍图像及无人机航拍参数,无人机航拍参数包括无人机高度H,航向角α,俯仰角β,横滚角γ以及CCD摄像机平台角η,方位角λ;For the successfully matched waypoints, the airborne CCD camera is used to collect data. The data includes high-definition aerial images and UAV aerial photography parameters. UAV aerial photography parameters include UAV height H, heading angle α, pitch angle β, roll angle γ and CCD camera platform angle η, azimuth λ;
步骤四,数据匹配。Step four, data matching.
对采集到的数据与地貌数据库分别进行库匹配,访问地貌数据库,提取当前位置的地貌图像数据,利用图像特征进行特征点检测与匹配,计算得到匹配特征点数N。Match the collected data with the geomorphic database, access the geomorphic database, extract the geomorphic image data at the current location, use image features to detect and match feature points, and calculate the number of matching feature points N.
如图2所示,数据匹配包括以下几个步骤:As shown in Figure 2, data matching includes the following steps:
(1)航拍图像预处理;(1) Aerial image preprocessing;
首先,由于无人机飞行中受天气,温度,湿度等因素的影响,当前航拍图像与机载地貌数据库存在一定差异,因此首先对航拍图像进行预处理,包括中值滤波去噪、灰度增强方法,并计算航拍图像数据的SIFT点特征、Harris角点特征、Hough直线特征;First of all, due to the influence of weather, temperature, humidity and other factors during the flight of the UAV, there are certain differences between the current aerial image and the airborne landform database. Therefore, the aerial image is first preprocessed, including median filter denoising, grayscale enhancement method, and calculate the SIFT point feature, Harris corner feature, and Hough line feature of the aerial image data;
(2)访问地貌数据库;(2) Access to the geomorphic database;
访问地貌数据库,根据航点匹配结果,提取当前航点位置的地貌图像数据,包括SIFT点特征、Harris角点特征及Hough直线特征;Access the geomorphic database, and extract the geomorphic image data of the current waypoint position according to the waypoint matching results, including SIFT point features, Harris corner point features and Hough line features;
(3)图像信息匹配;(3) Image information matching;
通过上述两个步骤,得到航点的航拍图像与地貌数据库中地标图像(先验图像信息)的特征,选取更为突出的特征进行匹配,得到匹配特征点数N,如果N大于预设阈值,则匹配成功,进入步骤五,否则匹配失败,返回步骤三;Through the above two steps, the features of the aerial image of the waypoint and the landmark image (prior image information) in the landform database are obtained, and more prominent features are selected for matching, and the number of matching feature points N is obtained. If N is greater than the preset threshold, then If the matching is successful, go to step five; otherwise, if the matching fails, go back to step three;
针对突出的特征进行举例说明,例如,如果Harris角点特征较多较密集,则表示可能出现了居民区,又或者又较长平行直线出现,则下方可能有公路,在这样的情况下,Harris角点特征或者Hough直线特征就显得更为突出。在一般特征不突出的情况下,采用SIFT点特征计算匹配特征点数N,若N超过10,则认为匹配成功,否则不成功。Give examples of prominent features. For example, if Harris corner features are more dense, it means that there may be a residential area, or if a long parallel line appears, there may be a road below. In this case, Harris Corner features or Hough line features are more prominent. In the case that the general features are not outstanding, the SIFT point feature is used to calculate the number of matching feature points N. If N exceeds 10, the matching is considered successful, otherwise it is unsuccessful.
步骤五,获取无人机位置信息。Step five, obtain the location information of the drone.
完成图像匹配后,根据航拍图像先验信息,反算无人机经纬度信息,完成工作。After the image matching is completed, according to the prior information of the aerial image, the latitude and longitude information of the UAV is reversely calculated to complete the work.
图像匹配成功后,说明无人机已达到地貌数据库中该地标图像(先验信息中)所示位置,地貌图像处在航拍图像中心位置,读取当前无人机中心点A经纬度坐标(X,Y)。无人机拍摄点P与航拍图像中心点几何关系,如图3所示,P'为P点在地面投影,反算无人机经纬度公式如下:After the image matching is successful, it means that the UAV has reached the position shown in the landmark image (in the prior information) in the geomorphological database, and the geomorphic image is at the center of the aerial image. Read the latitude and longitude coordinates of the center point A of the current UAV (X, Y). The geometric relationship between the UAV shooting point P and the center point of the aerial image, as shown in Figure 3, P' is the projection of P point on the ground, and the formula for back-calculating the UAV latitude and longitude is as follows:
如公式1和公式2所示,θ角为CCD摄像机与无人机重心指向夹角,角为CCD摄像机相对于机体坐标系(北天东坐标系)的偏航角。则点A到点P'的x,y距离为:As shown in Formula 1 and Formula 2, the θ angle is the angle between the CCD camera and the center of gravity of the UAV. Angle is the yaw angle of the CCD camera relative to the body coordinate system (North East coordinate system). Then the x, y distance from point A to point P' is:
无人机经纬度坐标表示为:The latitude and longitude coordinates of the UAV are expressed as:
公式4中,P(x,y)代表无人机经纬度坐标,地貌中心A点为坐标原点,无人机地面投影P'点可能位于以A点为中心坐标系的四个象限中的任何一个,所以公式4是对应四个象限的计算方法。表示了在四个不同象限内坐标计算公式。In Formula 4, P(x,y) represents the latitude and longitude coordinates of the UAV, point A in the center of the landform is the origin of the coordinates, and the point P' of the ground projection of the UAV may be located in any of the four quadrants of the coordinate system centered on point A , so Formula 4 is the calculation method corresponding to the four quadrants. Indicates the coordinate calculation formula in four different quadrants.
本发明针对无人机的实际应用需求,提出了一种不依赖数据通信链路,基于视觉信息的无人机飞行中空间位置实时计算技术方案,根据机载设备测量数据和自身携带的先验数据,进行自主位置识别,提高无人机自主性。Aiming at the actual application requirements of UAVs, the present invention proposes a technical solution for real-time calculation of the spatial position of UAVs in flight based on visual information, which does not rely on data communication links. data, autonomous location recognition, and improved drone autonomy.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410078669.2A CN103822635B (en) | 2014-03-05 | 2014-03-05 | The unmanned plane during flying spatial location real-time computing technique of view-based access control model information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410078669.2A CN103822635B (en) | 2014-03-05 | 2014-03-05 | The unmanned plane during flying spatial location real-time computing technique of view-based access control model information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103822635A true CN103822635A (en) | 2014-05-28 |
CN103822635B CN103822635B (en) | 2016-12-07 |
Family
ID=50757810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410078669.2A Active CN103822635B (en) | 2014-03-05 | 2014-03-05 | The unmanned plane during flying spatial location real-time computing technique of view-based access control model information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103822635B (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104035446A (en) * | 2014-05-30 | 2014-09-10 | 深圳市大疆创新科技有限公司 | Unmanned aerial vehicle course generation method and system |
CN104469155A (en) * | 2014-12-04 | 2015-03-25 | 中国航空工业集团公司第六三一研究所 | On-board figure and image virtual-real superposition method |
CN104615146A (en) * | 2015-02-05 | 2015-05-13 | 广州快飞计算机科技有限公司 | Unmanned aerial vehicle spraying operation automatic navigation method without need of external navigation signal |
CN104713548A (en) * | 2015-03-30 | 2015-06-17 | 成都好飞机器人科技有限公司 | Automatic positioning method for air vehicle |
CN104808680A (en) * | 2015-03-02 | 2015-07-29 | 杨珊珊 | Multi-rotor flight shooting device |
CN105004337A (en) * | 2015-08-19 | 2015-10-28 | 青岛科技大学 | Straight line matching based autonomous navigation method for agricultural unmanned aerial vehicle |
CN105466430A (en) * | 2015-12-31 | 2016-04-06 | 零度智控(北京)智能科技有限公司 | Unmanned aerial vehicle positioning method and device |
CN105865454A (en) * | 2016-05-31 | 2016-08-17 | 西北工业大学 | Unmanned aerial vehicle navigation method based on real-time online map generation |
WO2016154945A1 (en) * | 2015-03-31 | 2016-10-06 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for detecting unauthorized uav activity |
CN106097304A (en) * | 2016-05-31 | 2016-11-09 | 西北工业大学 | A kind of unmanned plane real-time online ground drawing generating method |
CN106408964A (en) * | 2016-12-05 | 2017-02-15 | 山东大学 | Method for acquiring air-ground cooperative bus signal priority precise lane-level control area |
CN107077113A (en) * | 2014-10-27 | 2017-08-18 | 深圳市大疆创新科技有限公司 | Unmanned vehicle flight display |
US9792613B2 (en) | 2015-03-31 | 2017-10-17 | SZ DJI Technology Co., Ltd | Authentication systems and methods for generating flight regulations |
WO2018053861A1 (en) * | 2016-09-26 | 2018-03-29 | SZ DJI Technology Co., Ltd. | Methods and system for vision-based landing |
CN108168522A (en) * | 2017-12-11 | 2018-06-15 | 宁波亿拍客网络科技有限公司 | A kind of unmanned plane observed object method for searching and correlation technique again |
CN108292140A (en) * | 2015-12-09 | 2018-07-17 | 深圳市大疆创新科技有限公司 | System and method for making a return voyage automatically |
CN108921896A (en) * | 2018-06-15 | 2018-11-30 | 浙江大学 | A kind of lower view vision compass merging dotted line feature |
CN109194952A (en) * | 2018-10-31 | 2019-01-11 | 清华大学 | Wear-type eye movement tracing equipment and its eye movement method for tracing |
CN109840285A (en) * | 2019-03-12 | 2019-06-04 | 广东电网有限责任公司 | The image automatic naming method of longitude and latitude based on target |
CN109974713A (en) * | 2019-04-26 | 2019-07-05 | 安阳全丰航空植保科技股份有限公司 | A kind of navigation methods and systems based on topographical features group |
CN110388939A (en) * | 2018-04-23 | 2019-10-29 | 湖南海迅自动化技术有限公司 | One kind being based on the matched vehicle-mounted inertial navigation position error modification method of Aerial Images |
CN110926474A (en) * | 2019-11-28 | 2020-03-27 | 南京航空航天大学 | UAV positioning and navigation method in urban canyon environment based on satellite/vision/laser combination |
CN111951178A (en) * | 2020-07-07 | 2020-11-17 | 中国人民解放军93114部队 | Image processing method and device for remarkably improving image quality and electronic equipment |
US11094202B2 (en) | 2015-03-31 | 2021-08-17 | SZ DJI Technology Co., Ltd. | Systems and methods for geo-fencing device communications |
US11217112B2 (en) | 2014-09-30 | 2022-01-04 | SZ DJI Technology Co., Ltd. | System and method for supporting simulated movement |
CN114202583A (en) * | 2021-12-10 | 2022-03-18 | 中国科学院空间应用工程与技术中心 | A visual positioning method and system for unmanned aerial vehicles |
CN116503768A (en) * | 2023-06-29 | 2023-07-28 | 中国科学院心理研究所 | Air docking method and device for flight equipment |
CN117470199A (en) * | 2023-12-27 | 2024-01-30 | 天津云圣智能科技有限责任公司 | Swing photography control method and device, storage medium and electronic equipment |
TWI835320B (en) * | 2022-09-29 | 2024-03-11 | 國立政治大學 | UAV visual navigation system and method for ground feature image positioning and correction |
CN118050007A (en) * | 2024-04-16 | 2024-05-17 | 南昌航空大学 | A UAV navigation system and method based on image recognition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101000243A (en) * | 2007-01-16 | 2007-07-18 | 北京航空航天大学 | Pilotless plane landing navigation method and its device |
CN102426019A (en) * | 2011-08-25 | 2012-04-25 | 航天恒星科技有限公司 | Unmanned aerial vehicle scene matching auxiliary navigation method and system |
CN102853835A (en) * | 2012-08-15 | 2013-01-02 | 西北工业大学 | Scale invariant feature transform-based unmanned aerial vehicle scene matching positioning method |
CN103175524A (en) * | 2013-02-20 | 2013-06-26 | 清华大学 | Visual-sense-based aircraft position and attitude determination method under mark-free environment |
-
2014
- 2014-03-05 CN CN201410078669.2A patent/CN103822635B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101000243A (en) * | 2007-01-16 | 2007-07-18 | 北京航空航天大学 | Pilotless plane landing navigation method and its device |
CN102426019A (en) * | 2011-08-25 | 2012-04-25 | 航天恒星科技有限公司 | Unmanned aerial vehicle scene matching auxiliary navigation method and system |
CN102853835A (en) * | 2012-08-15 | 2013-01-02 | 西北工业大学 | Scale invariant feature transform-based unmanned aerial vehicle scene matching positioning method |
CN103175524A (en) * | 2013-02-20 | 2013-06-26 | 清华大学 | Visual-sense-based aircraft position and attitude determination method under mark-free environment |
Non-Patent Citations (3)
Title |
---|
李耀军等: "基于动态关键帧的自然地标景象匹配视觉导航", 《光电工程》 * |
王民钢等: "基于图像匹配的飞行器导航定位算法及仿真", 《计算机仿真》 * |
肖靖: "基于图像处理的飞行器姿态测量", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104035446A (en) * | 2014-05-30 | 2014-09-10 | 深圳市大疆创新科技有限公司 | Unmanned aerial vehicle course generation method and system |
US11217112B2 (en) | 2014-09-30 | 2022-01-04 | SZ DJI Technology Co., Ltd. | System and method for supporting simulated movement |
CN107077113A (en) * | 2014-10-27 | 2017-08-18 | 深圳市大疆创新科技有限公司 | Unmanned vehicle flight display |
CN104469155A (en) * | 2014-12-04 | 2015-03-25 | 中国航空工业集团公司第六三一研究所 | On-board figure and image virtual-real superposition method |
CN104469155B (en) * | 2014-12-04 | 2017-10-20 | 中国航空工业集团公司第六三一研究所 | A kind of airborne graph image actual situation stacking method |
CN104615146A (en) * | 2015-02-05 | 2015-05-13 | 广州快飞计算机科技有限公司 | Unmanned aerial vehicle spraying operation automatic navigation method without need of external navigation signal |
CN104808680A (en) * | 2015-03-02 | 2015-07-29 | 杨珊珊 | Multi-rotor flight shooting device |
CN104713548A (en) * | 2015-03-30 | 2015-06-17 | 成都好飞机器人科技有限公司 | Automatic positioning method for air vehicle |
US9805372B2 (en) | 2015-03-31 | 2017-10-31 | SZ DJI Technology Co., Ltd | Authentication systems and methods for generating flight regulations |
US11367081B2 (en) | 2015-03-31 | 2022-06-21 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for generating flight regulations |
WO2016154945A1 (en) * | 2015-03-31 | 2016-10-06 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for detecting unauthorized uav activity |
US11961093B2 (en) | 2015-03-31 | 2024-04-16 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for generating flight regulations |
US9792613B2 (en) | 2015-03-31 | 2017-10-17 | SZ DJI Technology Co., Ltd | Authentication systems and methods for generating flight regulations |
US12067885B2 (en) | 2015-03-31 | 2024-08-20 | SZ DJI Technology Co., Ltd. | Systems and methods for geo-fencing device communications |
US9805607B2 (en) | 2015-03-31 | 2017-10-31 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for generating flight regulations |
US11094202B2 (en) | 2015-03-31 | 2021-08-17 | SZ DJI Technology Co., Ltd. | Systems and methods for geo-fencing device communications |
US9870566B2 (en) | 2015-03-31 | 2018-01-16 | SZ DJI Technology Co., Ltd | Authentication systems and methods for generating flight regulations |
US11120456B2 (en) | 2015-03-31 | 2021-09-14 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for generating flight regulations |
CN105004337B (en) * | 2015-08-19 | 2017-12-08 | 青岛科技大学 | Agricultural unmanned plane autonomous navigation method based on matching line segments |
CN105004337A (en) * | 2015-08-19 | 2015-10-28 | 青岛科技大学 | Straight line matching based autonomous navigation method for agricultural unmanned aerial vehicle |
US11300413B2 (en) | 2015-12-09 | 2022-04-12 | SZ DJI Technology Co., Ltd. | Systems and methods for auto-return |
US11879737B2 (en) | 2015-12-09 | 2024-01-23 | SZ DJI Technology Co., Ltd. | Systems and methods for auto-return |
CN108292140B (en) * | 2015-12-09 | 2022-03-15 | 深圳市大疆创新科技有限公司 | System and method for automatic return voyage |
CN108292140A (en) * | 2015-12-09 | 2018-07-17 | 深圳市大疆创新科技有限公司 | System and method for making a return voyage automatically |
CN105466430B (en) * | 2015-12-31 | 2018-11-06 | 天津远翥科技有限公司 | A kind of localization method and device of unmanned plane |
CN105466430A (en) * | 2015-12-31 | 2016-04-06 | 零度智控(北京)智能科技有限公司 | Unmanned aerial vehicle positioning method and device |
CN106097304B (en) * | 2016-05-31 | 2019-04-23 | 西北工业大学 | A real-time online map generation method for unmanned aerial vehicles |
CN106097304A (en) * | 2016-05-31 | 2016-11-09 | 西北工业大学 | A kind of unmanned plane real-time online ground drawing generating method |
CN105865454A (en) * | 2016-05-31 | 2016-08-17 | 西北工业大学 | Unmanned aerial vehicle navigation method based on real-time online map generation |
CN105865454B (en) * | 2016-05-31 | 2019-09-24 | 西北工业大学 | A kind of Navigation of Pilotless Aircraft method generated based on real-time online map |
US11604479B2 (en) | 2016-09-26 | 2023-03-14 | SZ DJI Technology Co., Ltd. | Methods and system for vision-based landing |
CN109791414A (en) * | 2016-09-26 | 2019-05-21 | 深圳市大疆创新科技有限公司 | The method and system that view-based access control model lands |
WO2018053861A1 (en) * | 2016-09-26 | 2018-03-29 | SZ DJI Technology Co., Ltd. | Methods and system for vision-based landing |
CN106408964B (en) * | 2016-12-05 | 2019-01-29 | 山东大学 | The acquisition methods of the preferential accurate lane grade control area of air-ground coordination bus signals |
CN106408964A (en) * | 2016-12-05 | 2017-02-15 | 山东大学 | Method for acquiring air-ground cooperative bus signal priority precise lane-level control area |
CN108168522A (en) * | 2017-12-11 | 2018-06-15 | 宁波亿拍客网络科技有限公司 | A kind of unmanned plane observed object method for searching and correlation technique again |
CN110388939A (en) * | 2018-04-23 | 2019-10-29 | 湖南海迅自动化技术有限公司 | One kind being based on the matched vehicle-mounted inertial navigation position error modification method of Aerial Images |
CN108921896A (en) * | 2018-06-15 | 2018-11-30 | 浙江大学 | A kind of lower view vision compass merging dotted line feature |
CN108921896B (en) * | 2018-06-15 | 2021-04-30 | 浙江大学 | Downward vision compass integrating dotted line characteristics |
CN109194952B (en) * | 2018-10-31 | 2020-09-22 | 清华大学 | Head-mounted eye movement tracking device and eye movement tracking method thereof |
CN109194952A (en) * | 2018-10-31 | 2019-01-11 | 清华大学 | Wear-type eye movement tracing equipment and its eye movement method for tracing |
CN109840285A (en) * | 2019-03-12 | 2019-06-04 | 广东电网有限责任公司 | The image automatic naming method of longitude and latitude based on target |
CN109840285B (en) * | 2019-03-12 | 2023-01-10 | 广东电网有限责任公司 | Automatic image naming method based on latitude and longitude of target |
CN109974713B (en) * | 2019-04-26 | 2023-04-28 | 安阳全丰航空植保科技股份有限公司 | Navigation method and system based on surface feature group |
CN109974713A (en) * | 2019-04-26 | 2019-07-05 | 安阳全丰航空植保科技股份有限公司 | A kind of navigation methods and systems based on topographical features group |
CN110926474A (en) * | 2019-11-28 | 2020-03-27 | 南京航空航天大学 | UAV positioning and navigation method in urban canyon environment based on satellite/vision/laser combination |
CN110926474B (en) * | 2019-11-28 | 2021-09-03 | 南京航空航天大学 | Satellite/vision/laser combined urban canyon environment UAV positioning and navigation method |
CN111951178A (en) * | 2020-07-07 | 2020-11-17 | 中国人民解放军93114部队 | Image processing method and device for remarkably improving image quality and electronic equipment |
CN111951178B (en) * | 2020-07-07 | 2024-04-30 | 中国人民解放军93114部队 | Image processing method and device for remarkably improving image quality and electronic equipment |
CN114202583A (en) * | 2021-12-10 | 2022-03-18 | 中国科学院空间应用工程与技术中心 | A visual positioning method and system for unmanned aerial vehicles |
TWI835320B (en) * | 2022-09-29 | 2024-03-11 | 國立政治大學 | UAV visual navigation system and method for ground feature image positioning and correction |
CN116503768A (en) * | 2023-06-29 | 2023-07-28 | 中国科学院心理研究所 | Air docking method and device for flight equipment |
CN116503768B (en) * | 2023-06-29 | 2023-11-07 | 中国科学院心理研究所 | Aerial docking method and device for flight equipment |
CN117470199A (en) * | 2023-12-27 | 2024-01-30 | 天津云圣智能科技有限责任公司 | Swing photography control method and device, storage medium and electronic equipment |
CN117470199B (en) * | 2023-12-27 | 2024-03-15 | 天津云圣智能科技有限责任公司 | Swing photography control method and device, storage medium and electronic equipment |
CN118050007A (en) * | 2024-04-16 | 2024-05-17 | 南昌航空大学 | A UAV navigation system and method based on image recognition |
CN118050007B (en) * | 2024-04-16 | 2024-10-15 | 南昌航空大学 | Unmanned aerial vehicle navigation system and method based on image recognition |
Also Published As
Publication number | Publication date |
---|---|
CN103822635B (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103822635B (en) | The unmanned plane during flying spatial location real-time computing technique of view-based access control model information | |
CN103852077B (en) | Automatic anti-cheating judgment method for unmanned aerial vehicle positioning information in link failure process | |
AU2021202509B2 (en) | Image based localization for unmanned aerial vehicles, and associated systems and methods | |
Nex et al. | UAV for 3D mapping applications: a review | |
CN105865454B (en) | A kind of Navigation of Pilotless Aircraft method generated based on real-time online map | |
CN101532841B (en) | Aircraft Navigation and Positioning Method Based on Landmark Acquisition and Tracking | |
US20230358537A1 (en) | Control Point Identification System | |
CN102353377B (en) | High altitude long endurance unmanned aerial vehicle integrated navigation system and navigating and positioning method thereof | |
Cesetti et al. | A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications | |
Quist et al. | Radar odometry on fixed-wing small unmanned aircraft | |
CN103809598A (en) | Rotor unmanned aircraft independent take-off and landing system based on three-layer triangle multi-color landing ground | |
CN109460046B (en) | A method for unmanned aerial vehicle natural landmark recognition and autonomous landing | |
KR102289752B1 (en) | A drone for performring route flight in gps blocked area and methed therefor | |
CN102788580A (en) | Flight path synthetic method in unmanned aerial vehicle visual navigation | |
CN110058604A (en) | A kind of accurate landing system of unmanned plane based on computer vision | |
Gurgu et al. | Vision-based gnss-free localization for uavs in the wild | |
Schleiss | Translating aerial images into street-map-like representations for visual self-localization of UAVs | |
CN109764864B (en) | A method and system for indoor UAV pose acquisition based on color recognition | |
Remondino | 3.2 UAV: PLATFORMS, REGULATIONS, DATA ACQUISITION AND PROCESSING | |
CN110160503A (en) | A kind of unmanned plane landscape matching locating method for taking elevation into account | |
Starek et al. | Application of unmanned aircraft systems for coastal mapping and resiliency | |
Kamat et al. | A survey on autonomous navigation techniques | |
CN110968112B (en) | Unmanned aerial vehicle autonomous landing method based on monocular vision | |
Al-Kaff | Vision-based navigation system for unmanned aerial vehicles | |
Pritt et al. | Aircraft navigation by means of image registration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170417 Address after: 100191 Beijing, Xueyuan Road, No. 37, inside the Patentee after: Beijing northern sky long hawk UAV Technology Co. Ltd. Address before: 100191 Haidian District, Xueyuan Road, No. 37, Patentee before: Beihang University |