CN103819432A - Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2 - Google Patents

Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2 Download PDF

Info

Publication number
CN103819432A
CN103819432A CN201410047394.6A CN201410047394A CN103819432A CN 103819432 A CN103819432 A CN 103819432A CN 201410047394 A CN201410047394 A CN 201410047394A CN 103819432 A CN103819432 A CN 103819432A
Authority
CN
China
Prior art keywords
molecular oxygen
reaction
hmf
oxygen
diformylfuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410047394.6A
Other languages
Chinese (zh)
Inventor
孙勇
林鹿
张盛强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201410047394.6A priority Critical patent/CN103819432A/en
Publication of CN103819432A publication Critical patent/CN103819432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

The invention discloses a method for preparing 2,5-diformyl furan through catalysis of molecular oxygen auxiliary activity MnO2, and relates to 2,5-diformyl furan. An important platform compound 5-hydroxymethyl furfural derived from a biomass carbohydrate is used as an oligomer, molecular oxygen as a clean oxidizing agent and an organic solvent as a solvent system, and under the action of the MnO2, HMF (Hydroxymethyl Furfural) is subjected to oxidation reaction so as to generate 2,5-diformyl furan. The used catalyst is simple in synthesis route, the used raw materials are cheap and easy to obtain, the reaction condition is gentle, the oxidation process is easy to control, the efficiency is high, a small amount of byproducts are generated after the reaction, the DFF (Dispersion Flattened Fiber) selectivity of a product is good, and the oxygen is used as a clean oxygen source, so that properties of both economy and environment-friendliness are achieved; the catalyst and a reaction liquid are easily separated; the catalyst is good in reuse property and economic and environment-friendly; certain guidance significance is achieved for industrial application of 2,5-diformyl furan produced by using a clean catalytic oxidation method.

Description

分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2

技术领域technical field

本发明涉及2,5-二甲酰基呋喃,尤其是涉及一种分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法。The invention relates to 2,5-diformyl furan, in particular to a method for catalytically preparing 2,5-diformyl furan with molecular oxygen assisted active MnO2 .

背景技术Background technique

随着化石资源的日渐枯竭和人类生存环境的不断恶化,寻求可替代化石能源的燃料和基础化学品已迫在眉睫。生物质是唯一可替代化石能源生产化学品的可再生能源。以资源丰富、可再生的生物质为原料生产化学品和燃料及其衍生产品能为缓解全世界对逐渐枯竭的化石能源的强大依赖提供一条可行的路线[1-3]。由生物质碳水化合物制备的5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)由于能通过不同催化反应进一步形成许多基础化学品和能源分子,被称为是连接石油化工和生物质化工的桥梁[3-11]。作为HMF重要衍生产品之一的2,5-二甲酰基呋喃(2,5-diformylfuran,DFF),是一种未来具有广泛应用前景的高附加值生物质基化学品。DFF常温下以固体粉末形态存在,具有晶体外观,其分子式为C6H4O3。DFF具有多种用途[12-16],如能合成聚合型席夫碱、高端药物、大环配体以及抗真菌剂等,此外,它还可作为单体用于各种新型聚合物材料如2,5-二甲酰基呋喃-尿素树脂等的合成。然而目前工业上DFF产品价高量少,其制备工艺不成熟,仍处于不断探索和完善中。With the depletion of fossil resources and the continuous deterioration of the human living environment, it is imminent to seek fuels and basic chemicals that can replace fossil energy. Biomass is the only renewable energy source that can replace fossil energy sources to produce chemicals. The production of chemicals, fuels and their derivatives from resource-rich and renewable biomass can provide a feasible route to alleviate the world's strong dependence on fossil energy that is gradually depleting [1-3] . 5-hydroxymethylfurfural (5-hydroxymethylfurfural, HMF) prepared from biomass carbohydrates is known as a bridge connecting petrochemical and biomass chemical industries because it can further form many basic chemicals and energy molecules through different catalytic reactions [ 3-11] . As one of the important derivative products of HMF, 2,5-diformylfuran (2,5-diformylfuran, DFF) is a high value-added biomass-based chemical with broad application prospects in the future. DFF exists in the form of solid powder at room temperature, with a crystal appearance, and its molecular formula is C 6 H 4 O 3 . DFF has a variety of uses [12-16] , such as the synthesis of polymeric Schiff bases, high-end drugs, macrocyclic ligands and antifungal agents, etc. In addition, it can also be used as a monomer for various new polymer materials such as Synthesis of 2,5-diformylfuran-urea resin, etc. However, at present, the price of DFF products in the industry is high and the quantity is low, and its preparation technology is immature, and it is still in the process of continuous exploration and improvement.

由于HMF分子中含有呋喃环、羟甲基和甲酰基,对HMF的氧化反应往往伴随着很多副反应。由HMF生成DFF的反应主要是对HMF分子中的羟甲基进行选择性氧化,而不进攻更具活性的不饱和甲酰基,否则将形成其他氧化产物[17,18],如5-羟甲基-2-糠酸(5-hydroxymethyl-2-furancarboxylicacid,HMFCA)、5-甲酰基-2-糠酸(5-formyl-2-furancarboxylic acid,FFCA)、2,5-呋喃二甲酸(2,5-furandicarboxylic acid,FDCA)等。因此,高收率和高选择性获得DFF的研究仍具有挑战性。为此,各种采用均相、非均相催化剂以及辅以更为绿色的分子氧进行氧化的催化方法得到了广泛的研究[19-26]Since the HMF molecule contains furan ring, hydroxymethyl group and formyl group, the oxidation reaction of HMF is often accompanied by many side reactions. The reaction of generating DFF from HMF is mainly to selectively oxidize the hydroxymethyl group in the HMF molecule without attacking the more active unsaturated formyl group, otherwise other oxidation products will be formed [17,18] , such as 5-hydroxymethyl Base-2-furoic acid (5-hydroxymethyl-2-furancarboxylic acid, HMFCA), 5-formyl-2-furoic acid (5-formyl-2-furancarboxylic acid, FFCA), 2,5-furandicarboxylic acid (2, 5-furandicarboxylic acid, FDCA), etc. Therefore, the study of obtaining DFF with high yield and high selectivity is still challenging. For this reason, various catalytic methods using homogeneous and heterogeneous catalysts and supplemented with greener molecular oxygen for oxidation have been extensively studied [19-26] .

传统上DFF是以NaClO、BaMnO4等化学计量试剂氧化HMF来制备,污染严重。Yadav等在专利WO2012/073251A1中提及一种氧化锰负载Ag催化剂,分子氧为氧源,异丙醇为溶剂,在一定条件下获得了较高收率的DFF,但该方法需设计较高贵金属Ag负载量,最高50%(以质量为基),成本高。就钒基催化剂而言,Carlini等以氧钒-磷酸盐为催化剂,150℃下,HMF转化率为84%,DFF选择性为97%。Corma等以固定化氧钒-嘧啶复合物为催化剂,130℃下,HMF转化率为82%,DFF选择性为99%。Jiping Ma等采用均相Cu(NO32/VOSO4催化体系,分子氧为氧源,80℃下,HMF转化率和DFF选择性均达到99%。而以Cu(NO32/VOCl3为催化体系时,一定条件下HMF转化率和DFF选择性也分别达到85%和97%。该反应条件温和,DFF收率高,但催化剂不易于回收复用。Moreau等在以V2O5/TiO2为催化剂,甲苯为溶剂,温度90℃,1.6MPa空气压力下,DFF收率高达90%,但存在负载型催化剂一般制备流程复杂耗时,而且V2O5也是一种极毒试剂。Navarro等以钒氧基-乙酰丙酮化物/PVP为催化剂,三氟甲苯为溶剂,温度130℃,压力1MPa条件下,分子氧为氧源,DFF收率为77%,催化剂制备繁琐,收率不高。由以上可见,分子氧辅助催化转化HMF为DFF的方法已成为一种主流,在某些方面存在优势。对于该系反应,研究较多的有钒系催化剂,负载型贵金属催化剂等,前者经研究表明催化剂活性较好,但此类催化剂多是极毒性试剂,不符合绿色化学发展理念。此外,往往存在低转换数等问题。而贵金属催化剂成本高,不符合将来DFF大规模工业化生产的要求。因此,继续寻找并研发出更富高效性和经济性的催化体系特别是能在温和反应条件下应用的催化剂仍具有十分重要的意义。Traditionally, DFF is prepared by oxidizing HMF with stoichiometric reagents such as NaClO and BaMnO 4 , which causes serious pollution. Yadav et al mentioned a manganese oxide supported Ag catalyst in patent WO2012/073251A1. Molecular oxygen is the oxygen source and isopropanol is the solvent. Under certain conditions, a higher yield of DFF has been obtained, but the method needs to be designed higher. Precious metal Ag loading, up to 50% (based on mass), high cost. As far as vanadium-based catalysts are concerned, Carlini et al. used vanadyl-phosphate as the catalyst. At 150 °C, the HMF conversion rate was 84%, and the DFF selectivity was 97%. Corma et al. used immobilized vanadyl-pyrimidine complexes as catalysts. At 130 °C, the HMF conversion rate was 82%, and the DFF selectivity was 99%. Jiping Ma et al. adopted a homogeneous Cu(NO 3 ) 2 /VOSO 4 catalytic system with molecular oxygen as the oxygen source. At 80°C, the HMF conversion rate and DFF selectivity both reached 99%. When Cu(NO 3 ) 2 /VOCl 3 is used as the catalytic system, the HMF conversion rate and DFF selectivity can reach 85% and 97% respectively under certain conditions. The reaction conditions are mild and the yield of DFF is high, but the catalyst is not easy to recover and reuse. Moreau et al. used V 2 O 5 /TiO 2 as a catalyst, toluene as a solvent, a temperature of 90°C, and an air pressure of 1.6 MPa, and the DFF yield was as high as 90 %. O 5 is also an extremely toxic reagent. Navarro et al. used vanadium oxy-acetylacetonate/PVP as a catalyst, benzotrifluoride as a solvent, and under the conditions of temperature 130 °C and pressure 1 MPa, molecular oxygen was the oxygen source, and the DFF yield was 77%. The preparation of the catalyst was cumbersome and the yield was low. high. It can be seen from the above that molecular oxygen assisted catalytic conversion of HMF to DFF has become a mainstream method, and has advantages in some aspects. For this series of reactions, there are more studies on vanadium-based catalysts and supported noble metal catalysts. Studies have shown that the former has better catalyst activity, but these catalysts are mostly extremely toxic reagents, which do not conform to the concept of green chemistry development. In addition, there are often issues such as low conversion numbers. The high cost of noble metal catalysts does not meet the requirements of large-scale industrial production of DFF in the future. Therefore, it is still of great significance to continue to search for and develop more efficient and economical catalytic systems, especially catalysts that can be applied under mild reaction conditions.

活性MnO2多是以高品位天然MnO2为原料,经过还原、歧化、重质化等工艺制成。它实际是活化MnO2与化学MnO2的结合体。具有γ型晶体结构,比表面积大,吸液性能好等优点。该产品具有良好的电化学活性,原是一种广泛应用于电池制造的材料,可部分或全部替代传统电解MnO2,具有较好的性价比。活性MnO2除了在电池制造中的应用外,还广泛应用于氧化带α,β-不饱和基团的醇类物质,对其进行选择性氧化[27]。通过不同方法制得的MnO2中,咖啡色的MnO2很活泼,具有良好的反应活性。用其氧化不饱和醇类物质时,氧化条件温和,对反应物中的不饱和键没有任何影响,不会引起不饱和基团的异构化[28]。如活性MnO2能选择性氧化紫苏醇合成紫苏醛,转化率高达99%[29];还可以很好地转化其他多种不饱和醇,包括稀苯基醇、炔苯基醇、节基醇等[30],如能够较好地转化苯甲醇,转化率能达到93%,而产品苯甲醛选择性几乎为100%。此外,活性MnO2还能氧化苯酚及其衍生物、苯胺及其芳香胺[31~40]等。但活性MnO2应用最多的还是选择性氧化不饱和醇类物质生成相应的不饱和醛或酮[30],且很难发生进一步氧化反应,表现出极好的选择性。其原因在于锰是一种多价态的金属,价态分布为+2到+7。自然界中的锰元素主要以+2、+3或+4价的形式存在。通过不同方法制得的活性MnO2由于其结构上的不同(其化学式可写成MnO2-x·nH2O,其中x介于0~0.5之间,n可大于0)其氧化活性也会存在差异。活性MnO2中的锰由于处于中间价态,使其兼具氧化与还原的双重性能,且其氧化性温和,在很多有机反应中表现出极佳的选择性。受此启发,本发明将借鉴现有制备MnO2的方法[41],合成活性MnO2并将其应用于HMF到DFF的选择性氧化反应中。Active MnO 2 is mostly made from high-grade natural MnO 2 through reduction, disproportionation, heavy-duty and other processes. It is actually a combination of activated MnO 2 and chemical MnO 2 . It has the advantages of γ-type crystal structure, large specific surface area, and good liquid absorption performance. This product has good electrochemical activity and is originally a material widely used in battery manufacturing. It can partially or completely replace traditional electrolytic MnO 2 , and has a good cost performance. In addition to the application of active MnO 2 in battery manufacturing, it is also widely used in the oxidation of alcohols with α, β-unsaturated groups for selective oxidation [27] . Among the MnO 2 prepared by different methods, the brown MnO 2 is very lively and has good reactivity. When it is used to oxidize unsaturated alcohols, the oxidation conditions are mild, and it has no effect on the unsaturated bonds in the reactants, and will not cause isomerization of unsaturated groups [28] . For example, active MnO 2 can selectively oxidize perillyl alcohol to synthesize perillaldehyde with a conversion rate as high as 99% [29] ; it can also convert other unsaturated alcohols, including dilute phenyl alcohol, alkyne phenyl alcohol, benzyl alcohol, Alcohol, etc. [30] , if benzyl alcohol can be converted well, the conversion rate can reach 93%, and the selectivity of the product benzaldehyde is almost 100%. In addition, active MnO 2 can also oxidize phenol and its derivatives, aniline and its aromatic amines [31-40] , etc. However, the most widely used active MnO 2 is the selective oxidation of unsaturated alcohols to generate corresponding unsaturated aldehydes or ketones [30] , and it is difficult to undergo further oxidation reactions, showing excellent selectivity. The reason for this is that manganese is a multivalent metal with a valence distribution of +2 to +7. Manganese in nature mainly exists in the form of +2, +3 or +4 valence. The active MnO 2 prepared by different methods is different in its structure (its chemical formula can be written as MnO 2-x ·nH 2 O, where x is between 0 and 0.5, and n can be greater than 0), and its oxidation activity will also exist difference. Because the manganese in the active MnO 2 is in the intermediate valence state, it has dual properties of oxidation and reduction, and its oxidation is mild, showing excellent selectivity in many organic reactions. Inspired by this, the present invention will learn from the existing method for preparing MnO 2 [41] , synthesize active MnO 2 and apply it in the selective oxidation reaction of HMF to DFF.

参考文献references

[1]Corma A,Iborra S,Velty A.Chemical Routes for the Transformation of Biomass into Chemicals[J].Chemical Reviews,2007,107:2411-2502.[1]Corma A, Iborra S, Velty A.Chemical Routes for the Transformation of Biomass into Chemicals[J].Chemical Reviews,2007,107:2411-2502.

[2]Alonso D M,Bond J Q,Dumesic J A.Catalytic conversion of biomass to biofuels[J].GreenChemistry,2010,12(9):1493.[2]Alonso D M,Bond J Q,Dumesic J A.Catalytic conversion of biomass to biofuels[J].GreenChemistry,2010,12(9):1493.

[3]Gallezot P.Conversion of biomass to selected chemical products[J].Chem Soc Rev,2012,41(4):1538-1558.[3]Gallezot P.Conversion of biomass to selected chemical products[J].Chem Soc Rev,2012,41(4):1538-1558.

[4]Roman-Leshkov Y,Chheda J N,Dumesic J A.Phase modifiers promote efficient production ofhydroxymethylfurfural from fructose[J].Science,2006,312(5782):1933-1937.[4]Roman-Leshkov Y, Chheda J N, Dumesic J A.Phase modifiers promote efficient production ofhydroxymethylfurfural from fructose[J].Science,2006,312(5782):1933-1937.

[5]Zhao H,Holladay J E,Brown H,et al.Metal chlorides in ionic liquid solvents convert sugars to5-hydroxymethylfurfural[J].Science,2007,316(5831):1597-1600.[5] Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural [J]. Science, 2007, 316 (5831): 1597-1600.

[6]Stahlberg T,Fu W J,Woodley J M,et al.Synthesis of5-(hydroxymethyl)furfural in ionic liquids:paving the way to renewable chemicals[J].ChemSusChem,2011,4(4):451-458.[6] Stahlberg T, Fu W J, Woodley J M, et al. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: paving the way to renewable chemicals [J]. ChemSusChem, 2011, 4 (4): 451-458 .

[7]Rosatella A A,Simeonov S P,Frade R F M,et al.5-Hydroxymethylfurfural(HMF)as a buildingblock platform:Biological properties,synthesis and synthetic applications[J].Green Chemistry,2011,13(4):754.[7] Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications [J]. Green Chemistry, 2011, 13 (4) :754.

[8]Tong X L,Ma Y,Li Y D.Biomass into chemicals:Conversion of sugars to furan derivatives bycatalytic processes[J].Applied Catalysis A:General,2010,385(1-2):1-13.[8]Tong X L, Ma Y, Li Y D. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes [J]. Applied Catalysis A: General, 2010, 385 (1-2): 1-13.

[9]Koopman F,Wierckx N,de Wind J H,et al.Efficient whole-cell biotransformation of5-(hydroxymethyl)furfural into FDCA,2,5-furandicarboxylic acid[J].Bioresour Technol,2010,101(16):6291-6296.[9] Koopman F, Wierckx N, de Wind J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2,5-furandicarboxylic acid[J]. Bioresour Technol, 2010, 101 (16) :6291-6296.

[10]Zhao Q,Wang L,Zhao S,et al.High selective production of5-hydroymethylfurfural from fructoseby a solid heteropolyacid catalyst[J].Fuel,2011,90(6):2289-2293.[10] Zhao Q, Wang L, Zhao S, et al. High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst[J]. Fuel, 2011, 90 (6): 2289-2293.

[11]Yang Y,Hu C W,Abu-Omar M M.Conversion of carbohydrates and lignocellulosic biomass into5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J].Green Chemistry,2012,14(2):509-513.[11]Yang Y, Hu C W, Abu-Omar M M.Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 6H2O catalyst in a biphasic solvent system[J].Green Chemistry,2012,14(2):509 -513.

[12]Hui Z,Gandini A.Polymeric schiff bases bearing furan moieties[J].European Polymer Journal,1992,28(12):1461-1469.[12] Hui Z, Gandini A. Polymeric schiff bases bearing furan moieties [J]. European Polymer Journal, 1992, 28 (12): 1461-1469.

[13]Hopkins K T,Wilson W D,Bender B C,et al.Extended Aromatic Furan Amidino Derivatives asAnti-Pneumocystis carinii Agents[J].Journal of Medicinal Chemistry,1998,41(20):3872-3878.[13]Hopkins K T, Wilson W D, Bender B C, et al. Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis carinii Agents [J]. Journal of Medicinal Chemistry, 1998, 41 (20): 3872-3878.

[14]Richter D T,Lash T D.Oxidation with dilute aqueous ferric chloride solutions greatly improvesyields in the‘4+1’synthesis of sapphyrins[J].Tetrahedron Letters,1999,40(37):6735-6738.[14]Richter D T,Lash T D.Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the'4+1'synthesis of sapphyrins[J].Tetrahedron Letters,1999,40(37):6735-6738.

[15]Del Poeta M,Schell W A,Dykstra C C,et al.In Vitro Antifungal Activities of a Series ofDication-Substituted Carbazoles,Furans,and Benzimidazoles[J].Antimicrobial Agents and Chemotherapy,1998,42(10):2503-2510.[15]Del Poeta M, Schell W A, Dykstra C C, et al.In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzmidazoles[J].Antimicrobial Agents and Chemotherapy,1998,42(10): 2503-2510.

[16]Amarasekara A S,Green D,Williams L D.Renewable resources based polymers:Synthesis andcharacterization of2,5-diformylfuran–urea resin[J].European Polymer Journal,2009,45(2):595-598.[16] Amarasekara A S, Green D, Williams L D. Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin [J]. European Polymer Journal, 2009, 45 (2): 595-598.

[17]Gupta N K,Nishimura S,Takagaki A,et al.Hydrotalcite-supported gold-nanoparticle-catalyzedhighly efficient base-free aqueous oxidation of5-hydroxymethylfurfural into2,5-furandicarboxylic acid underatmospheric oxygen pressure[J].Green Chemistry,2011,13(4):824.[17]Gupta N K, Nishimura S, Takagaki A, et al.Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of5-hydroxymethylfurfural into2,5-furandicarboxylic acid underatmospheric[oxy]1Chrygen2 , 13(4):824.

[18]Lilga M A,Hallen R T,Gray M.Production of Oxidized Derivatives of5-Hydroxymethylfurfural(HMF)[J].Topics in Catalysis,2010,53(15-18):1264-1269.[18] Lilga M A, Hallen R T, Gray M. Production of Oxidized Derivatives of 5-Hydroxymethylfurfural (HMF) [J]. Topics in Catalysis, 2010, 53 (15-18): 1264-1269.

[19]Navarro O,Canós A,Chornet S.Chemicals from Biomass:Aerobic Oxidation of5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-PyridineComplexes on Polymeric and Organofunctionalized Mesoporous Supports[J].Topics in Catalysis,2009,52(3):304-314.[19]Navarro O,Canós A,Chornet S.Chemicals from Biomass:Aerobic Oxidation of5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-PyridineComplexes on Polymeric and Organofunctionalized Mesoporous Supports[J].Topics in Catalysis,2009,52 (3): 304-314.

[20]Carlini C,Patrono P,Galletti A M R,et al.Selective oxidation of5-hydroxymethyl-2-furaldehyde tofuran-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J].Applied Catalysis A:General,2005,289(2):197-204.[20]Carlini C, Patrono P, Galletti A M R, et al.Selective oxidation of 5-hydroxymethyl-2-furaldehyde tofuran-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J].Applied Catalysis A:General, 2005, 289(2):197-204.

[21]Moreau C,Durand R,Pourcheron C,et al.Selective oxidation of5-hydroxymethylfurfural to2,5-furan-dicarboxaldehyde in the presence of Titania supported vanadia catalysts[J].Studies in SurfaceScience and Catalysis,1997,108):399-406.[21]Moreau C, Durand R, Pourcheron C, et al.Selective oxidation of5-hydroxymethylfurfural to2,5-furan-dicarboxaldehyde in the presence of Titania supported vanadia catalysts[J].Studies in SurfaceScience and Catalysis, 1997,1 399-406.

[22]Ma J P,Du Z T,Xu J,et al.Efficient aerobic oxidation of5-hydroxymethylfurfural to2,5-diformylfuran,and synthesis of a fluorescent material[J].ChemSusChem,2011,4(1):51-54.[22]Ma J P, Du Z T, Xu J, et al.Efficient aerobic oxidation of 5-hydroxymethylfurfural to2,5-diformylfuran, and synthesis of a fluorescent material[J].ChemSusChem,2011,4(1):51- 54.

[23]Takagaki A,Takahashi M,Nishimura S,et al.One-Pot Synthesis of2,5-Diformylfuran fromCarbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts[J].ACSCatalysis,2011,1(11):1562-1565.[23]Takagaki A, Takahashi M, Nishimura S, et al.One-Pot Synthesis of2,5-Diformylfuran fromCarbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts[J].ACSCatalysis,2011,1(11-):1562 1565.

[24]Yang Z Z,Deng J,Pan T,et al.A one-pot approach for conversion of fructose to2,5-diformylfuranby combination of Fe3O4-SBA-SO3H and K-OMS-2[J].Green Chemistry,2012,14(11):2986-2989.[24]Yang Z Z, Deng J, Pan T, et al.A one-pot approach for conversion of fructose to2,5-diformylfuranby combination of Fe3O4-SBA-SO3H and K-OMS-2[J].Green Chemistry, 2012,14(11):2986-2989.

[25]Xiang X,He L,Yang Y,et al.A One-Pot Two-Step Approach for the Catalytic Conversion ofGlucose into2,5-Diformylfuran[J].Catalysis Letters,2011,141(5):735-741.[25]Xiang X, He L, Yang Y, et al.A One-Pot Two-Step Approach for the Catalytic Conversion of Glucose into 2,5-Diformylfuran[J].Catalysis Letters,2011,141(5):735-741 .

[26]Saha B,Dutta S,Abu-Omar M M.Aerobic oxidation of5-hydroxylmethylfurfural withhomogeneous and nanoparticulate catalysts[J].Catalysis Science&Technology,2012,2(1):79.[26]Saha B, Dutta S, Abu-Omar M M.Aerobic oxidation of 5-hydroxymethylfurfural with homogeneous and nanoparticulate catalysts[J].Catalysis Science&Technology,2012,2(1):79.

[27]S.Ball,T.W.Goodwin,R.A.Morton.Studies on vitamin A5.The preparation ofretinene1—vitamin A aldehyde[J].Biochem J.1948,42(4):516–523.[27]S.Ball,T.W.Goodwin,R.A.Morton.Studies on vitamin A5.The preparation ofretinene1—vitamin A aldehyde[J].Biochem J.1948,42(4):516–523.

[28]Ernest F.Pratt,John F.Oxidation by Solids.I.Oxidation of Selected Alcohols by ManganeseDioxide[J].The Journal of Organic Chemistry,1961,26(8),2973-2975.[28]Ernest F.Pratt,John F.Oxidation by Solids.I.Oxidation of Selected Alcohols by Manganese Dioxide[J].The Journal of Organic Chemistry,1961,26(8),2973-2975.

[29]王小梅,李谦和.活性MnO2选择氧化紫苏醇合成紫苏醛[J].合成化学.2004,12(04):408-410.[29] Wang Xiaomei, Li Qianhe. Selective oxidation of perillyl alcohol by active MnO 2 to synthesize perillaldehyde [J]. Synthetic Chemistry. 2004,12(04):408-410.

[30]Richard J.K.Taylor,Mark Reid,Jonathan Foot,Steven A.Raw.Tandem Oxidation ProcessesUsing Manganese Dioxide:Discovery,Applications,and Current Studies[J].Acc.Chem.Res.2005,38:851-869.[30]Richard J.K.Taylor, Mark Reid, Jonathan Foot, Steven A.Raw.Tandem Oxidation Processes Using Manganese Dioxide: Discovery, Applications, and Current Studies[J].Acc.Chem.Res.2005,38:851-869.

[31]Alan T.Stone.Reductive Dissolution of Manganese(Ⅲ/Ⅳ)Oxides by Substituted Phenols[J].Environ.Sci.Technol.1987,21,979-988.[31]Alan T.Stone.Reductive Dissolution of Manganese(Ⅲ/Ⅳ)Oxides by Substituted Phenols[J].Environ.Sci.Technol.1987,21,979-988.

[32]Ukrainczyk,L.,McBride,M.B.Oxidation and dechlorination of chlorophenols in dilute aqueoussuspensions of manganese oxides:Reaction products[J].Environmental Toxicology and Chemistry,1993,12:2015–2022.[32]Ukrainczyk,L.,McBride,M.B.Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides:Reaction products[J].Environmental Toxicology and Chemistry,1993,12:2015–2022.

[33]Ukrainczyk,L.,McBride,M.B.The oxidative dechlorination reaction of2,4,6-trichlorophenol indilute aqueous suspensions of manganese oxides[J].Environmental Toxicology and Chemistry,1993,12(11):2005–2014.[33]Ukrainczyk,L.,McBride,M.B.The oxidative dechlorination reaction of2,4,6-trichlorophenol indilute aqueous suspensions of manganese oxides[J].Environmental Toxicology and Chemistry,1993,12(11):2005–2014.

[34]K.-H.Kung,M.B.Mcbrtde.Electron Transfer Processes Between Hydroquinone and Hausmannite(Mn3O4)[J].Clays and Clay Minerals,1988,36(4),297-302.[34] K.-H.Kung, MB Mcbrtde. Electron Transfer Processes Between Hydroquinone and Hausmannite (Mn 3 O 4 ) [J]. Clays and Clay Minerals, 1988, 36 (4), 297-302.

[35]Shonali Laha,Richard G.Luthy.Oxidation of aniline and other primary aromatic amines bymanganese dioxide[J].Environ.Sci.Technol.,1990,24(3):363–373.[35]Shonali Laha,Richard G.Luthy.Oxidation of aniline and other primary aromatic amines by manganese dioxide[J].Environ.Sci.Technol.,1990,24(3):363-373.

[36]Maria D.R.Pizzigallo,Pacifico Ruggiero,Carmine Crecchio,Giuseppe Mascolo.Oxidation ofChloroanilines at Metal Oxide Surfaces[J].J.Agric.Food Chem.1998,46:2049-2054.[36] Maria D.R.Pizzigallo, Pacifico Ruggiero, Carmine Crecchio, Giuseppe Mascolo.Oxidation of Chloroanilines at Metal Oxide Surfaces[J].J.Agric.Food Chem.1998,46:2049-2054.

[37]Weerasooriya,S.V.R.,et al.Chemical decontamination of aniline by redox sensitive mineralsurfaces part I:Kinetic Aspects[J].Toxicological&Environmental Chemistry,1993,38(1-2):101-108.[37] Weerasooriya, S.V.R., et al. Chemical decontamination of aniline by redox sensitive mineral surfaces part I: Kinetic Aspects [J]. Toxicological & Environmental Chemistry, 1993, 38 (1-2): 101-108.

[38]Huichun Zhang,Chinghua Huang.Oxidative Transformation of Fluoroquinolone AntibacterialAgents and Structurally Related Amines by Manganese Oxide[J].Environ.Sci.Technol.2005,39:4474-4483.[38] Huichun Zhang, Chinghua Huang. Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide[J].Environ.Sci.Technol.2005,39:4474-4483.

[39]Huichun Zhang,Ching-Hua Huang.Reactivity and Transformation of Antibacterial N-Oxides inthe Presence of Manganese Oxide[J].Environ.Sci.Technol.,2005,39(2):593–601.[39] Huichun Zhang, Ching-Hua Huang. Reactivity and Transformation of Antibacterial N-Oxides in the Presence of Manganese Oxide [J]. Environ. Sci. Technol., 2005, 39 (2): 593-601.

[40]Li,H.,et al.Role of Soil Manganese in the Oxidation of Aromatic Amines[J].EnvironmentalScience&Technology,2003,37(12):2686-2693.[40]Li,H.,et al.Role of Soil Manganese in the Oxidation of Aromatic Amines[J].EnvironmentalScience&Technology,2003,37(12):2686-2693.

[41]覃忠富,郭仁庭,傅长明,吴睿,黄科林,慕朝师.活性二氧化锰制备技术研究进展[J].企业科技与发展,2011,6:19-21.[41]Qin Zhongfu,Guo Renting,Fu Changming,Wu Rui,Huang Kelin,Mu Chaoshi.Research Progress of Active Manganese Dioxide Preparation Technology[J].Enterprise Science and Technology and Development,2011,6:19-21.

发明内容Contents of the invention

本发明的目的在于提供一种分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法。The object of the present invention is to provide a method for the catalytic preparation of 2,5-diformyl furan by molecular oxygen assisting active MnO2 .

本发明的具体步骤如下:Concrete steps of the present invention are as follows:

以生物质碳水化合物衍生的重要平台化合物5-羟甲基糠醛(HMF)为反应底物,分子氧为清洁氧化剂,以有机溶剂为溶剂体系,在活性MnO2的催化作用下使HMF发生氧化反应生成2,5-二甲酰基呋喃。Using 5-hydroxymethylfurfural (HMF), an important platform compound derived from biomass carbohydrates, as the reaction substrate, molecular oxygen as a clean oxidant, and an organic solvent as a solvent system, the oxidation reaction of HMF occurs under the catalysis of active MnO2 This produces 2,5-diformylfuran.

所述HMF与有机溶剂的质量百分比可为1%~5%;所述活性MnO2的用量按质量百分比可为HMF的10%~200%,优选40%~100%。The mass percentage of the HMF and the organic solvent may be 1%-5%; the amount of the active MnO 2 may be 10%-200% of the HMF in mass percentage, preferably 40%-100%.

所述有机溶剂可选自甲苯、四氢呋喃等芳香性试剂、丙酮、乙腈、四氯化碳、二氯甲烷、环己烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、甲基异丁基酮、N-甲基吡咯烷酮,酯类等中的一种,优选N,N-二甲基甲酰胺。The organic solvent can be selected from aromatic reagents such as toluene and tetrahydrofuran, acetone, acetonitrile, carbon tetrachloride, dichloromethane, cyclohexane, N,N-dimethylformamide, N,N-dimethylethane One of amides, dimethyl sulfoxide, methyl isobutyl ketone, N-methylpyrrolidone, esters, etc., preferably N,N-dimethylformamide.

所述分子氧可采用空气或氧气等,优选氧气。The molecular oxygen can be air or oxygen, preferably oxygen.

所述氧化反应过程中的氧气气压可为1~16bar,优选氧气气压为5~10bar;氧化反应的温度可为50~130℃,优选100~120℃,最佳为110℃;所述氧化反应的时间可为0.5~48h,优选2~20h。The oxygen pressure in the oxidation reaction process can be 1-16bar, preferably the oxygen pressure is 5-10bar; the temperature of the oxidation reaction can be 50-130°C, preferably 100-120°C, and the best is 110°C; the oxidation reaction The time can be 0.5 ~ 48h, preferably 2 ~ 20h.

所述活性MnO2非工业电解MnO2或普通市售的化学MnO2试剂;所述活性MnO2的制备方法如下:Described active MnO Non-industrial electrolytic MnO Or common commercially available chemical MnO Reagent ; Described active MnO The preparation method is as follows:

(1)在KMnO4中加入蒸馏水,搅拌溶解配成KMnO4溶液;(1) Add distilled water into KMnO 4 , stir and dissolve to make KMnO 4 solution;

(2)将Mn2+盐加入蒸馏水配成溶液A;(2) Add Mn 2+ salt to distilled water to make solution A;

(3)将KMnO4溶液转入哈氏合金反应釜(GCF-0.4L)中,再加入溶液A,然后加入蒸馏水定容,密闭反应釜,升温反应后,冷却至室温,取样后进行抽滤,滤出物质洗涤,将过滤后的样品烘干后研磨,即得6mm以下的活性MnO2黑色粉末。(3) Transfer the KMnO 4 solution into a Hastelloy reactor (GCF-0.4L), then add solution A, then add distilled water to constant volume, seal the reactor, heat up and react, cool to room temperature, and perform suction filtration after sampling , The filtered material is washed, and the filtered sample is dried and ground to obtain active MnO 2 black powder below 6mm.

在步骤(2)中,所述Mn2+盐可采用硫酸锰;所述Mn2+盐的用量按质量比可为KMnO4的1.5倍;In step (2), the Mn 2+ salt can be manganese sulfate; the amount of the Mn 2+ salt can be 1.5 times that of KMnO 4 by mass ratio;

在步骤(3)中,蒸馏水的加入量可按哈氏合金反应釜体积的80%填充率;所述升温反应的温度可为150℃,升温反应的时间可为8h;所述洗涤可用蒸馏水洗涤5~10次;所述烘干的条件可为将过滤后的样品置于鼓风干燥箱中110℃±5℃下烘干3~4h。In step (3), the amount of distilled water can be added according to the filling rate of 80% of the Hastelloy reactor volume; the temperature of the heating reaction can be 150°C, and the time of the heating reaction can be 8h; the washing can be done with distilled water 5-10 times; the drying condition may be to place the filtered sample in a blast drying oven at 110°C±5°C for 3-4h.

本发明将活性MnO2催化剂用于分子氧辅助选择性催化氧化HMF生成DFF的反应中,具体步骤如下:将催化剂、HMF和一种有机溶剂称重定量加至烧杯等容器混合均匀,然后加入到高压反应釜中,密闭反应釜,通入一定压力氧气,通氧气时可先用该气体先对反应釜进行排气处理5次左右,后充满一定压力氧气后关闭气瓶。反应体系在搅拌下升温至预定温度,反应一定时间后,迅速将反应釜冷却至室温,取样并离心分离催化剂,进行样品检测。分离得到的催化剂以丙酮洗涤后置于65℃烘箱干燥以备后续重复使用。In the present invention, the active MnO2 catalyst is used in the reaction of molecular oxygen-assisted selective catalytic oxidation of HMF to generate DFF, and the specific steps are as follows: the catalyst, HMF and an organic solvent are weighed and quantitatively added to a beaker and other containers to mix evenly, and then added to In the high-pressure reaction kettle, the reaction kettle is closed, and a certain pressure of oxygen is introduced. When the oxygen is passed, the gas can be used to exhaust the reaction kettle for about 5 times, and then the gas cylinder is closed after being filled with a certain pressure of oxygen. The reaction system is heated up to a predetermined temperature under stirring, and after a certain period of reaction, the reaction kettle is quickly cooled to room temperature, and samples are taken and centrifuged to separate the catalyst for sample detection. The separated catalyst was washed with acetone and dried in an oven at 65 °C for subsequent reuse.

本发明提供了一种基于分子氧辅助活性MnO2选择性催化氧化5-羟甲基糠醛(HMF)生成2,5-二甲酰基呋喃的制备方法。该方法能够在较为温和的反应条件下,以分子氧为氧化剂,在活性MnO2催化剂作用下使HMF发生氧化反应生成2,5-二甲酰基呋喃(DFF)。本发明所用催化剂合成路线简单;所用原料廉价易得;反应条件温和,氧化过程易于控制,效率高;反应后副产物极少,产品DFF选择性较好;以氧气为清洁氧源,兼具经济性和环保特性;催化剂和反应液易于分离,催化剂复用性能好,经济环保。本发明对以清洁催化氧化法生产2,5-二甲酰基呋喃的工业化应用具有十分重要指导意义。The invention provides a preparation method for selectively catalytically oxidizing 5-hydroxymethylfurfural (HMF) to generate 2,5-diformylfuran based on molecular oxygen assisted active MnO2 . This method can oxidize HMF to generate 2,5-diformylfuran (DFF) under relatively mild reaction conditions, using molecular oxygen as an oxidant, under the action of an active MnO 2 catalyst. The synthesis route of the catalyst used in the present invention is simple; the raw materials used are cheap and easy to obtain; the reaction conditions are mild, the oxidation process is easy to control, and the efficiency is high; The catalyst and the reaction solution are easy to separate, the catalyst has good reusability, and it is economical and environmentally friendly. The invention has very important guiding significance for the industrial application of producing 2,5-diformyl furan by a clean catalytic oxidation method.

附图说明Description of drawings

图1是本发明一次基于分子氧辅助活性MnO2选择性催化氧化HMF生成DFF实验前底物HMF的气相色谱图(17.332min对应HMF峰)。Figure 1 is a gas chromatogram of the substrate HMF before the DFF experiment based on the selective catalytic oxidation of HMF by molecular oxygen assisted active MnO 2 in the present invention (17.332min corresponds to the peak of HMF).

图2是本发明中一次基于分子氧辅助活性MnO2选择性催化氧化HMF生成DFF实验后产物的气相色谱图(17.182min对应HMF峰;12.692min对应DFF峰)。Figure 2 is a gas chromatogram of the product after a selective catalytic oxidation of HMF based on molecular oxygen assisted active MnO 2 to generate DFF in the present invention (17.182min corresponds to the HMF peak; 12.692min corresponds to the DFF peak).

具体实施方式Detailed ways

下面结合附图并通过实施例对本发明作进一步说明,但需要说明的是实施例并不构成对本发明要求保护范围的限定。The present invention will be further described below in conjunction with the accompanying drawings and examples, but it should be noted that the examples do not constitute a limitation to the protection scope of the present invention.

实施例1Example 1

将0.5103g HMF、0.2569g活性MnO2和27mL N,N-二甲基甲酰胺(DMF)一并加入到100ml高压反应釜中,密闭后通入氧气9bar开始反应,搅拌转速为600rpm,待温度升高到110℃时开始计时,保持该温度反应6h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为85.7%;DFF收率为55.7%;DFF选择性为65%。其反应液气相结果图谱如图1和2所示,实施例1具体出峰强度略有差别。Add 0.5103g of HMF, 0.2569g of active MnO 2 and 27mL of N,N-dimethylformamide (DMF) into a 100ml autoclave, seal it and inject oxygen at 9bar to start the reaction. The stirring speed is 600rpm. Start timing when the temperature rises to 110°C, keep the temperature for 6 hours, and immediately immerse the reaction vessel in cold water to cool down to room temperature after the reaction is completed. The reaction liquid was centrifugally filtered, and the conversion rate of HMF was 85.7% according to gas chromatography; the yield of DFF was 55.7%; the selectivity of DFF was 65%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 1 is slightly different.

实施例2Example 2

将0.5075g HMF、0.2577g活性MnO2和27mL N,N-二甲基乙酰胺(DMA)一并加入到100ml高压反应釜中,密闭后通入氧气7bar开始反应,搅拌转速为550rpm,待温度升高到115℃时开始计时,保持该温度反应20h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为85.8%;DFF收率为68.3%;DFF选择性为79.7%。其反应液气相结果图谱如图1和2所示,实施例2具体出峰强度略有差别。Add 0.5075g of HMF, 0.2577g of active MnO 2 and 27mL of N,N-dimethylacetamide (DMA) into a 100ml autoclave, seal it and inject oxygen at 7bar to start the reaction. The stirring speed is 550rpm. Start timing when the temperature rises to 115°C, keep the temperature for 20 hours, and immediately immerse the reaction vessel in cold water to cool down to room temperature after the reaction is completed. The reaction solution was centrifuged and filtered, and the conversion rate of HMF was 85.8% according to gas chromatography; the yield of DFF was 68.3%; the selectivity of DFF was 79.7%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 2 is slightly different.

实施例3Example 3

将0.5061g HMF、0.2559g活性MnO2和27mL N,N-二甲基甲酰胺(DMF)一并加入到100ml高压反应釜中,密闭后通入氧气9bar开始反应,搅拌转速为800rpm,待温度升高到100℃时开始计时,保持该温度反应8h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为83.3%;DFF收率为74.9%;DFF选择性为89.9%。其反应液气相结果图谱如图1和2所示,实施例3具体出峰强度略有差别。Add 0.5061g of HMF, 0.2559g of active MnO 2 and 27mL of N,N-dimethylformamide (DMF) into a 100ml autoclave, seal it and inject oxygen at 9bar to start the reaction. The stirring speed is 800rpm. Start timing when the temperature rises to 100°C, keep the temperature for 8 hours, and immediately immerse the reaction vessel in cold water to cool down to room temperature after the reaction is completed. The reaction solution was centrifugally filtered, and the conversion rate of HMF was 83.3% according to gas chromatography; the yield of DFF was 74.9%; the selectivity of DFF was 89.9%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 3 is slightly different.

实施例4Example 4

将0.5036g HMF、0.2522g活性MnO2和29mL甲苯一并加入到100ml高压反应釜中,密闭后通入氧气8.5bar开始反应,搅拌转速为700rpm,待温度升高到120℃时开始计时,保持该温度反应2h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为71.8%;DFF收率为56.9%;DFF选择性为79.2%。其反应液气相结果图谱如图1和2所示,实施例4具体出峰强度略有差别。Add 0.5036g of HMF, 0.2522g of active MnO 2 and 29mL of toluene into a 100ml autoclave, seal it and feed it with oxygen at 8.5bar to start the reaction. React at this temperature for 2 hours. After the reaction is over, immediately immerse the reactor in cold water to cool down to room temperature. The reaction liquid was centrifugally filtered, and the conversion rate of HMF was 71.8% according to gas chromatography; the yield of DFF was 56.9%; the selectivity of DFF was 79.2%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 4 is slightly different.

实施例5Example 5

将0.5092g HMF、0.2558g活性MnO2和24mL N-甲基吡咯烷酮(NMP)一并加入到100ml高压反应釜中,密闭后通入氧气10bar开始反应,搅拌转速为600rpm,待温度升高到90℃时开始计时,保持该温度反应3.5h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为74.1%;DFF收率为58.9%;DFF选择性为79.4%。其反应液气相结果图谱如图1和2所示,实施例5具体出峰强度略有差别。Add 0.5092g of HMF, 0.2558g of active MnO 2 and 24mL of N-methylpyrrolidone (NMP) into a 100ml autoclave, seal it and feed oxygen at 10bar to start the reaction. The stirring speed is 600rpm, and the temperature rises to 90 Start timing at ℃, and keep the temperature for 3.5 hours. After the reaction, immediately immerse the reaction kettle in cold water to cool down to room temperature. The reaction liquid was centrifugally filtered, and the conversion rate of HMF was 74.1% according to gas chromatography; the yield of DFF was 58.9%; the selectivity of DFF was 79.4%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 5 is slightly different.

实施例6Example 6

将0.5106g HMF、0.2548g活性MnO2和32mL乙腈一并加入到100ml高压反应釜中,密闭后通入氧气8bar开始反应,搅拌转速为650rpm,待温度升高到100℃时开始计时,保持该温度反应4.5h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为85.9%;DFF收率为49.99%;DFF选择性为58.2%。其反应液气相结果图谱如图1和2所示,实施例6具体出峰强度略有差别。Add 0.5106g of HMF, 0.2548g of active MnO 2 and 32mL of acetonitrile into a 100ml autoclave, seal it and feed it with 8bar of oxygen to start the reaction. The reaction temperature was 4.5h. After the reaction was completed, the reaction kettle was immediately immersed in cold water to cool down to room temperature. The reaction solution was centrifugally filtered, and the conversion rate of HMF was 85.9% according to gas chromatography; the yield of DFF was 49.99%; the selectivity of DFF was 58.2%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 6 is slightly different.

实施例7Example 7

将0.5215g HMF、0.2612g活性MnO2和23mL二甲基亚砜(DMSO)一并加入到100ml高压反应釜中,密闭后通入氧气10bar开始反应,搅拌转速为800rpm,待温度升高到110℃时开始计时,保持该温度反应12h,待反应结束后,立即将反应釜浸入冷水中降温至室温。将反应液离心过滤,气相色谱分析HMF转化率为91.0%;DFF收率为68.5%;DFF选择性为75.2%。其反应液气相结果图谱如图1和2所示,实施例7具体出峰强度略有差别。Add 0.5215g of HMF, 0.2612g of active MnO 2 and 23mL of dimethyl sulfoxide (DMSO) into a 100ml autoclave, seal it and feed oxygen at 10bar to start the reaction. The stirring speed is 800rpm, and the temperature rises to 110 Start timing at ℃, and keep the temperature for 12 hours. After the reaction is completed, immediately immerse the reaction kettle in cold water to cool down to room temperature. The reaction solution was centrifugally filtered, and the conversion rate of HMF was 91.0% according to gas chromatography; the yield of DFF was 68.5%; the selectivity of DFF was 75.2%. The gas phase result spectrum of the reaction liquid is shown in Figures 1 and 2, and the specific peak intensity of Example 7 is slightly different.

Claims (10)

1.分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于其具体步骤如下:1. Molecular oxygen assists active MnO Catalytic preparation 2 , the method for 5-diformyl furan, it is characterized in that its concrete steps are as follows: 以生物质碳水化合物衍生的重要平台化合物5-羟甲基糠醛(HMF)为反应底物,分子氧为清洁氧化剂,以有机溶剂为溶剂体系,在活性MnO2的催化作用下使HMF发生氧化反应生成2,5-二甲酰基呋喃。Using 5-hydroxymethylfurfural (HMF), an important platform compound derived from biomass carbohydrates, as the reaction substrate, molecular oxygen as a clean oxidant, and an organic solvent as a solvent system, the oxidation reaction of HMF occurs under the catalysis of active MnO2 This produces 2,5-diformylfuran. 2.如权利要求1所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述HMF与有机溶剂的质量百分比为1%~5%;所述活性MnO2的用量按质量百分比为HMF的10%~200%,优选40%~100%。2. as claimed in claim 1, molecular oxygen assisted active MnO catalyzes the method for preparing 2,5-diformyl furan, it is characterized in that the mass percent of described HMF and organic solvent is 1%~5%; The active MnO The amount of 2 is 10% to 200% of HMF by mass percentage, preferably 40% to 100%. 3.如权利要求1所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述有机溶剂选自甲苯、四氢呋喃等芳香性试剂、丙酮、乙腈、四氯化碳、二氯甲烷、环己烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、甲基异丁基酮、N-甲基吡咯烷酮,酯类中的一种,优选N,N-二甲基甲酰胺。3. as claimed in claim 1, molecular oxygen assists active MnO Catalytic preparation of 2,5-diformyl furan, it is characterized in that said organic solvent is selected from aromatic reagents such as toluene, tetrahydrofuran, acetone, acetonitrile, tetrachloromethane Carbon dioxide, methylene chloride, cyclohexane, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, methyl isobutyl ketone, N-methylpyrrolidone, One of the esters, preferably N,N-dimethylformamide. 4.如权利要求1所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述分子氧采用空气或氧气,优选氧气。4. The method for preparing 2,5-diformylfuran by molecular oxygen assisted by active MnO 2 as claimed in claim 1, wherein said molecular oxygen adopts air or oxygen, preferably oxygen. 5.如权利要求1所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述氧化反应过程中的氧气气压为1~16bar,氧化反应的温度为50~130℃,氧化反应的时间为0.5~48h。5. as claimed in claim 1, molecular oxygen assists active MnO Catalytic preparation of 2,5-diformyl furan, it is characterized in that the oxygen pressure in the oxidation reaction process is 1~16bar, and the temperature of oxidation reaction is 50 ~130°C, the oxidation reaction time is 0.5~48h. 6.如权利要求5所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述氧化反应过程中的氧气气压为5~10bar;氧化反应的温度为100~120℃,最佳为110℃;氧化反应的时间为2~20h。6. as claimed in claim 5, molecular oxygen assists active MnO Catalytic preparation of 2,5-diformyl furan, it is characterized in that the oxygen pressure in the oxidation reaction process is 5~10bar; the temperature of oxidation reaction is 100 ~120°C, the best is 110°C; the oxidation reaction time is 2~20h. 7.如权利要求1所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于所述活性MnO2的制备方法如下:7. as claimed in claim 1, molecular oxygen assists active MnO catalyzes the method for preparing 2,5-diformyl furan, is characterized in that described active MnO The preparation method is as follows: (1)在KMnO4中加入蒸馏水,搅拌溶解配成KMnO4溶液;(1) Add distilled water into KMnO 4 , stir and dissolve to make KMnO 4 solution; (2)将Mn2+盐加入蒸馏水配成溶液A;(2) Add Mn 2+ salt to distilled water to make solution A; (3)将KMnO4溶液转入哈氏合金反应釜中,再加入溶液A,然后加入蒸馏水定容,密闭反应釜,升温反应后,冷却至室温,取样后进行抽滤,滤出物质洗涤,将过滤后的样品烘干后研磨,即得6mm以下的活性MnO2黑色粉末。(3) Transfer the KMnO 4 solution into a Hastelloy reactor, then add solution A, then add distilled water to constant volume, seal the reactor, heat up and react, cool to room temperature, take a sample and perform suction filtration, and filter out the substance for washing. The filtered sample is dried and then ground to obtain active MnO 2 black powder with a thickness of less than 6mm. 8.如权利要求7所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于在步骤(2)中,所述Mn2+盐采用硫酸锰;所述Mn2+盐的用量按质量比可为KMnO4的1.5倍。8. The method for preparing 2,5- diformylfuran catalyzed by molecular oxygen as claimed in claim 7, characterized in that in step (2), the Mn 2+ salt is manganese sulfate; the Mn The consumption of 2+ salt can be 1.5 times of KMnO 4 by mass ratio. 9.如权利要求7所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于在步骤(3)中,所述蒸馏水的加入量按哈氏合金反应釜体积的80%填充率;所述升温反应的温度可为150℃,升温反应的时间可为8h;所述洗涤可用蒸馏水洗涤5~10次。9. The method for preparing 2,5- diformylfuran by catalyzing molecular oxygen as claimed in claim 7, characterized in that in step (3), the amount of distilled water added is based on the volume of the Hastelloy reactor The filling rate is 80%; the temperature of the heating reaction can be 150°C, and the time of the heating reaction can be 8h; the washing can be washed 5 to 10 times with distilled water. 10.如权利要求7所述分子氧辅助活性MnO2催化制备2,5-二甲酰基呋喃的方法,其特征在于在步骤(3)中,所述烘干的条件为将过滤后的样品置于鼓风干燥箱中110℃±5℃下烘干3~4h。10. The method for preparing 2,5- diformylfuran catalyzed by molecular oxygen as claimed in claim 7, characterized in that in step (3), the drying condition is to place the filtered sample Dry in a blast drying oven at 110°C±5°C for 3-4 hours.
CN201410047394.6A 2014-02-11 2014-02-11 Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2 Pending CN103819432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410047394.6A CN103819432A (en) 2014-02-11 2014-02-11 Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410047394.6A CN103819432A (en) 2014-02-11 2014-02-11 Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2

Publications (1)

Publication Number Publication Date
CN103819432A true CN103819432A (en) 2014-05-28

Family

ID=50754764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410047394.6A Pending CN103819432A (en) 2014-02-11 2014-02-11 Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2

Country Status (1)

Country Link
CN (1) CN103819432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668000A (en) * 2021-08-18 2021-11-19 广州大学 Gamma-MnO2Preparation method and application thereof
CN118904375A (en) * 2024-07-17 2024-11-08 南京工业大学 Application of composite manganese-based multi-phase catalyst in catalyzing selective oxidation of HMF to prepare DFF or FDCA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103318A1 (en) * 2006-10-31 2008-05-01 Lilga Michael A Hydroxymethyl Furfural Oxidation Methods
CN102731448A (en) * 2012-06-27 2012-10-17 北京大学 Preparation method for furan-2,5-dicarbaldehyde

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103318A1 (en) * 2006-10-31 2008-05-01 Lilga Michael A Hydroxymethyl Furfural Oxidation Methods
CN102731448A (en) * 2012-06-27 2012-10-17 北京大学 Preparation method for furan-2,5-dicarbaldehyde

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李东艳等: "氧化锰八面体分子筛的合成及其对苯催化氧化性能", 《环境科学》, vol. 32, no. 12, 31 December 2011 (2011-12-31), pages 3657 - 3661 *
肖利民: "活性二氧化锰的制备及其选择性氧化性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 01, 15 January 2013 (2013-01-15), pages 014 - 23 *
覃忠富等: "活性二氧化锰制备技术研究进展", 《企业研究与发展》, no. 6, 31 December 2011 (2011-12-31), pages 19 - 21 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668000A (en) * 2021-08-18 2021-11-19 广州大学 Gamma-MnO2Preparation method and application thereof
CN113668000B (en) * 2021-08-18 2022-10-04 广州大学 Gamma-MnO 2 Preparation method and application thereof
CN118904375A (en) * 2024-07-17 2024-11-08 南京工业大学 Application of composite manganese-based multi-phase catalyst in catalyzing selective oxidation of HMF to prepare DFF or FDCA

Similar Documents

Publication Publication Date Title
Yi et al. Purification of biomass‐derived 5‐hydroxymethylfurfural and its catalytic conversion to 2, 5‐furandicarboxylic acid
Chen et al. One‐step approach to 2, 5‐diformylfuran from fructose by proton‐and vanadium‐containing graphitic carbon nitride
Ren et al. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose
CN102731448B (en) Preparation method for furan-2,5-dicarbaldehyde
Yang et al. 3D flower-like micro/nano Ce–Mo composite oxides as effective bifunctional catalysts for one-pot conversion of fructose to 2, 5-diformylfuran
Xu et al. Biomimetic oxygen activation and electron transfer for aerobic oxidative 5-hydroxymethylfurfural to 2, 5-diformylfuran
Zhang et al. Acid–chromic chloride functionalized natural clay-particles for enhanced conversion of one-pot cellulose to 5-hydroxymethylfurfural in ionic liquids
Delbecq et al. Microwave assisted efficient furfural production using nano-sized surface-sulfonated diamond powder
CN105968075B (en) A kind of method that photochemical catalytic oxidation HMF prepares DFF
Guo et al. Bicomponent Assembly of VO2 and Polyaniline‐Functionalized Carbon Nanotubes for the Selective Oxidation of Biomass‐Based 5‐Hydroxymethylfurfural to 2, 5‐Diformylfuran
Lan et al. Synthesis of 5-hydroxymethylfurfural from fructose over chromium-exchanged hydroxyapatite encapsulated γ-Fe2O3
Wu et al. Catalytic dehydration of carbohydrates on in situ exfoliatable layered niobic acid in an aqueous system under microwave irradiation
CN104844543A (en) Method for preparing 5-hydroxymethylfurfural from fructose
Zhou et al. One-step approach to 2, 5-diformylfuran from fructose over molybdenum oxides supported on carbon spheres
CN108440463B (en) Method for preparing 5-hydroxymethylfurfural by catalysis of supported metal molecular sieve catalyst
Wang et al. Simply Assembly of Acidic Nanospheres for Efficient Production of 5‐Ethoxymethylfurfural from 5‐Hydromethylfurfural and Fructose
CN106279080A (en) A kind of method for preparing 2,5-furandicarboxylic acid by photocatalysis of 5-hydroxymethylfurfural
Kargar et al. Heterogeneous photocatalytic conversion of biomass-derived sugars into 5-hydroxymethylfurfural over AgFe2O4/TiO2–SO3H nanocomposite
CN112044450A (en) Acid-base bifunctional biomass carbon-based catalyst and preparation method thereof
CN107486238A (en) A kind of porous solid acid catalyst and its application in sorbierite dehydration
Cai et al. Selective HMF synthesis from glucose via microwave-assisted metal chloride catalysis
Karnjanakom et al. Direct conversion of sugar into ethyl levulinate catalyzed by selective heterogeneous acid under co-solvent system
CN101613331B (en) Method for preparing 5-acetoxymethyl furfural with carbohydrate
CN106475145A (en) A kind of immobilized ionic-liquid catalyst for preparing 5 hydroxymethylfurfurals and its preparation
CN103819432A (en) Catalyzed Preparation of 2,5-Diformylfuran by Molecular Oxygen Assisted Active MnO2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140528