CN103793559B - Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis - Google Patents
Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis Download PDFInfo
- Publication number
- CN103793559B CN103793559B CN201410020935.6A CN201410020935A CN103793559B CN 103793559 B CN103793559 B CN 103793559B CN 201410020935 A CN201410020935 A CN 201410020935A CN 103793559 B CN103793559 B CN 103793559B
- Authority
- CN
- China
- Prior art keywords
- motor
- function
- optimization
- electromagnetic
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 64
- 238000013461 design Methods 0.000 title claims abstract description 44
- 238000004458 analytical method Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004364 calculation method Methods 0.000 claims abstract description 38
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 31
- 230000008646 thermal stress Effects 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims abstract description 18
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 11
- 230000001052 transient effect Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 230000005672 electromagnetic field Effects 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 5
- 230000035772 mutation Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 241000388002 Agonus cataphractus Species 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 230000008602 contraction Effects 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000005012 migration Effects 0.000 claims description 3
- 238000013508 migration Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 230000036314 physical performance Effects 0.000 claims description 3
- 239000002096 quantum dot Substances 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000009795 derivation Methods 0.000 claims description 2
- 238000004080 punching Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
Landscapes
- Manufacture Of Motors, Generators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
本发明属于电气技术领域,具体涉及数值计算与解析分析相结合参数协同优化电机设计方法,采用数值计算研究电机内电磁、温度、流体、热应力、振动、噪声等物理参量变化,归纳出以结构件尺寸为变量的电磁性能解析表达函数簇,不同组件最高工作温度和最大温差解析函数,最大热应力解析表达函数,电机电磁噪声变化函数,组件不同方向最大振动模态值和固有频率的解析表达函数,进而统筹综合考虑电机各方面性能开展结构件尺寸的精细化设计,大幅度提高各项性能指标计算准确性;采用非均衡相对双向加权方法改造目标函数,消除了不同性能指标本身数值大小对结算结果的影响;在智能优化算法中引入了量子计算,使算法具有更好的种群多样性,全局寻优能力和更快的收敛速度。
The invention belongs to the field of electrical technology, and specifically relates to a method for synergistically optimizing motor design by combining numerical calculation and analytical analysis. Numerical calculation is used to study the changes in physical parameters such as electromagnetic, temperature, fluid, thermal stress, vibration, and noise in the motor, and the structure is summarized. Analytical expression function clusters of electromagnetic performance with component size as a variable, analytical expression functions of maximum operating temperature and maximum temperature difference of different components, analytical expression function of maximum thermal stress, change function of electromagnetic noise of motor, analytical expression of maximum vibration mode value and natural frequency of components in different directions function, and then comprehensively consider the performance of all aspects of the motor to carry out the refined design of the size of the structural parts, which greatly improves the calculation accuracy of various performance indicators; the non-balanced relative two-way weighting method is used to transform the objective function, eliminating the differences in the values of different performance indicators. The impact of settlement results; Quantum computing is introduced into the intelligent optimization algorithm, so that the algorithm has better population diversity, global optimization ability and faster convergence speed.
Description
技术领域technical field
本发明属于电气技术领域,具体涉及数值计算与解析分析相结合参数协同优化电机设计方法。The invention belongs to the field of electrical technology, and in particular relates to a method for designing a motor by combining numerical calculation and analytical analysis to optimize parameters collaboratively.
背景技术Background technique
电机的气隙大小、齿槽形状等结构不仅影响到电机的磁路结构和输出性能参数,同时关系到流经电机内冷却空气的风路和热导路径,进而影响温度分布;另一方面,电机齿槽、铁心和磁极等结构尺寸变化会引起气隙磁场的谐波成分改变,从而对电机运行时电磁噪声和振动产生影响。电机结构件直接关系到尺寸磁路、热导路径和冷却介质流体路径,在电机基础设计和优化设计中应该统筹考虑结构尺寸对电磁、温度、振动和噪声各方面性能影响。The size of the air gap and the shape of the slots of the motor not only affect the magnetic circuit structure and output performance parameters of the motor, but also affect the air path and heat conduction path of the cooling air flowing through the motor, thereby affecting the temperature distribution; on the other hand, Changes in the structural dimensions of the motor cogging, iron core and magnetic poles will cause changes in the harmonic components of the air-gap magnetic field, thereby affecting the electromagnetic noise and vibration of the motor during operation. The structure of the motor is directly related to the size of the magnetic circuit, the heat conduction path and the fluid path of the cooling medium. In the basic design and optimization design of the motor, the influence of the structural size on the performance of electromagnetic, temperature, vibration and noise should be considered as a whole.
现有电机优化设计方法较少考虑上述问题,存在的缺陷有:1)现有电机优化设计多针对提高电磁、温度、振动和噪声等某一方面性能开展,未考虑优化方案对电机其他方面性能影响;2)现有电机优化设计方法多基于“磁路”“热路”等解析计算程序开展,没有考虑磁场、温度场、振动模态等具体分情况,无法考虑结构件尺寸变化引起各物理参量细微分布变化;3)针对多目标多变量大数据计算量的电机优化设计,现有优化算法在全局收敛性和迭代速度方面存在不足。The existing motor optimization design methods seldom consider the above-mentioned problems, and the existing defects are as follows: 1) The existing motor optimization design is mostly carried out to improve the performance of a certain aspect such as electromagnetic, temperature, vibration and noise, and does not consider the impact of the optimization scheme on other aspects of the motor performance. 2) Existing motor optimization design methods are mostly carried out based on analytical calculation programs such as "magnetic circuit" and "thermal circuit", without considering specific conditions such as magnetic field, temperature field, vibration mode, etc. The subtle distribution of parameters changes; 3) For the motor optimization design with multi-objective, multi-variable and large data calculations, the existing optimization algorithms have shortcomings in terms of global convergence and iteration speed.
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有技术的不足,提供数值计算与解析分析相结合参数协同优化电机设计方法。The technical problem to be solved by the invention is to provide a motor design method for synergistic optimization of parameters by combining numerical calculation and analytical analysis in view of the deficiencies of the prior art.
为了实现上述发明目的,本发明提出了数值计算与解析分析相结合参数协同优化电机设计方法,包括以下步骤:In order to achieve the purpose of the above invention, the present invention proposes a numerical calculation and analytical analysis combined parameter collaborative optimization motor design method, including the following steps:
步骤1)非线性电磁场计算分析:通过电机内非线性电磁场数值计算,得到电机磁场分布和电磁性能参数随电机结构件尺寸变规律,归纳出以结构件尺寸为变量的电磁性能解析表达函数簇;Step 1) Calculation and analysis of nonlinear electromagnetic field: Through the numerical calculation of the nonlinear electromagnetic field in the motor, the distribution of the motor magnetic field and the electromagnetic performance parameters change with the size of the motor structural parts, and the electromagnetic performance analysis expression function cluster with the size of the structural parts as a variable is summarized;
步骤2)电磁、流体、温度多重收敛迭代物理场耦合分析:通过电机内电磁、流体、温度多重收敛迭代物理场耦合计算,确定电机全域瞬态温度分布规律,找出电机不同组件最高工作温度和最大温差随结构尺寸变化规律,归纳总结出以结构件尺寸为变量的不同组件最高工作温度变化函数和最大温差变化解析函数;Step 2) Electromagnetic, fluid, and temperature multiple convergent iterative physical field coupling analysis: Through multiple convergent iterative physical field coupling calculations of electromagnetic, fluid, and temperature in the motor, determine the transient temperature distribution law of the entire motor, and find out the maximum operating temperature and temperature of different components of the motor. The maximum temperature difference varies with the structure size, and the maximum working temperature change function and the maximum temperature difference change analysis function of different components with the structure size as a variable are summarized;
步骤3)全域瞬态热应力场分析:考虑不同组件材料的导热系数和膨胀系数,基于电机全域瞬态温度场得到工作时电机内其膨胀或收缩受阻的热应力分布,归纳总结出以结构件尺寸为变量的不同组件最大热应力解析表达函数;Step 3) Global transient thermal stress field analysis: Considering the thermal conductivity and expansion coefficient of different component materials, based on the global transient temperature field of the motor, the thermal stress distribution in the motor whose expansion or contraction is hindered during operation is obtained. Analytical expression function of maximum thermal stress of different components with variable size;
步骤4)工作频率下多阶振动模态数值计算:数值计算不同结构件尺寸下电机气隙谐波分量大小变化规律,计算推导出以结构件尺寸为变量的电机电磁噪声变化函数;Step 4) Numerical calculation of multi-order vibration modes at working frequency: Numerical calculation of the variation law of the harmonic component of the air gap of the motor under different structural parts sizes, calculation and derivation of the motor electromagnetic noise variation function with the structural part size as a variable;
步骤5)电机气隙谐波磁场与磁密波分量数值计算分析:计及不同组件材料的弹性模量和泊格比,电机工作频率下多阶振动模态数值计算,得到定子铁心,绕组,转子等主要组件不同方向最大振动模态值和固有频率的解析表达函数,随电机尺寸的变化;Step 5) Numerical calculation and analysis of the air-gap harmonic magnetic field and magnetic density wave components of the motor: taking into account the elastic modulus and Pogge ratio of different component materials, numerical calculation of multi-order vibration modes at the operating frequency of the motor to obtain the stator core, winding, and rotor Analytical expression functions of the maximum vibration mode value and natural frequency of the main components in different directions, as the size of the motor changes;
步骤6)确定函数基本约束条件,确定变量变化范围;Step 6) Determine the basic constraints of the function and determine the variable range;
步骤7)加权;Step 7) weighting;
步骤8)通过计算找出最优解;Step 8) Find the optimal solution through calculation;
步骤9)按照得到最优解的结构件尺寸变量完善电机整体设计方案;Step 9) Improve the overall design scheme of the motor according to the size variables of the structural parts obtained from the optimal solution;
步骤10)绘制电机各组件加工图纸,线切割模具,冲模、叠压、绕线、嵌线、浸漆、装配,试验测定电机实际电磁、温升、振动和噪声等指标合格后,方案定型并批量生产。Step 10) Draw the processing drawings of each component of the motor, wire cutting mold, die, lamination, winding, embedding, dipping, assembly, test and measure the actual electromagnetic, temperature rise, vibration and noise of the motor after passing the test, the plan is finalized and finalized Mass production.
结构件尺寸变量:X=(x1,x2,x3,......,xk)T;Structural part size variable: X=(x 1 ,x 2 ,x 3 ,...,x k ) T ;
电磁性能解析表达函数簇:Fe=(fe1,fe2,fe3,……,fen);Electromagnetic performance analytical expression function cluster: F e =(f e1 ,f e2 ,f e3 ,……,f en );
最高工作温度变化函数:Ftmax=(ftmax1,ftmax2,ftmax3,……,ftmaxm);Maximum working temperature change function: F tmax =(f tmax1 ,f tmax2 ,f tmax3 ,……,f tmaxm );
最大温差变化解析函数:Ftdet=(ftdet1,ftdet2,ftdet3,……,ftdetm);Analytical function of maximum temperature difference change: F tdet =(f tdet1 ,f tdet2 ,f tdet3 ,……,f tdetm );
最大热应力解析表达函数:Fsmax=(fsmax1,fsmax2,fsmax3,…,fsmaxo);Analytical expression function of maximum thermal stress: F smax =(f smax1 ,f smax2 ,f smax3 ,…,f smaxo );
电机电磁噪声变化函数:Fen=(fen);Motor electromagnetic noise variation function: F en =(f en );
最大振动模态值:Fmmax=(fmmax1,fmmax2,fmmax3,……,fmmaxp);Maximum vibration mode value: F mmax =(f mmax1 , f mmax2 ,f mmax3 ,……,f mmaxp );
固有频率的解析表达函数:Fif=(fif1,fif2,fif3,……,fifp)。The analytical expression function of the natural frequency: F if =(f if1 ,f if2 ,f if3 ,...,f ifp ).
所述步骤6)还包括:确定函数基本约束条为:电磁性能高于原设计Feod<Fe,温度、振动和噪声性能低于设计性能极限要求Ftmax,Ftdet,Fsmax,Fen,Fmmax<For。The step 6) also includes: determining the basic constraints of the function as follows: the electromagnetic performance is higher than the original design F eod <F e , and the temperature, vibration and noise performance is lower than the design performance limit requirements F tmax , F tdet , F smax , F en , F mmax < F or .
所述步骤7)还包括:经过加权集合,使得上述电磁输出性能参数函数,温度分布函数,热应力函数,电磁噪声函数,振动固有频率函数集成为单一综合优化目标优化函数,加权因子ωi满足 The step 7) also includes: through the weighted set, the above-mentioned electromagnetic output performance parameter function, temperature distribution function, thermal stress function, electromagnetic noise function, and vibration natural frequency function are integrated into a single comprehensive optimization objective optimization function, and the weighting factor ω i satisfies
所述步骤7)还包括:子目标函数加权运算采用非均衡相对双向加权方法改造目标函数,根据优化目标主次轻重分配不同的加权系数ωi≠ωc(0<i≤j,0<c≤j),凸出优化目标系中的重点对象;同时取额定工况下各值为基准修正加权系数消除各种物理性能参数本身数值大小对优化结果的影响;根据性能指标要求对提高和降低目标分别采用正权数和负权数,统一优化函数极值目标方向,归一为极大值或极小值搜寻。The step 7) also includes: the sub-objective function weighting operation adopts an unbalanced relative two-way weighting method to transform the objective function, and assigns different weighting coefficients ω i ≠ ω c (0<i≤j, 0<c ≤j), highlight the key objects in the optimization target system; at the same time, take each value under the rated working condition as the benchmark correction weighting coefficient Eliminate the influence of the numerical value of various physical performance parameters on the optimization results; according to the requirements of performance indicators, positive weights and negative weights are used for the improvement and reduction goals, and the direction of the extreme value of the optimization function is unified, and normalized to the maximum value or extreme value. Small value search.
采用优化算法找出单一综合优化目标优化函数G全局最优解,优化设计出电机各方面性能统筹最优的组件尺寸Use the optimization algorithm to find the global optimal solution of a single comprehensive optimization objective optimization function G, and optimize and design the component size with the best overall performance in all aspects of the motor
所述步骤8)还包括:采用改进型智能优化算法进行全局寻优;所述的改进型智能优化算法,引入了量子计算,采用量子旋转门更新量子比特,进行算子速度和位置的更新,利用量子非门实现量子比特的变异,增加算子种群的多样性。同时采用自适应迭代代数,散乱数据交叉、高斯变异策略和前向迁移方式。与传统的智能优化算法相比,具有更好的种群多样性,全局寻优能力和更快的收敛速度;所述的智能优化算法包括但不仅限于遗传算法、蚁群算法、粒子群算法、免疫算法等。The step 8) also includes: using an improved intelligent optimization algorithm for global optimization; the improved intelligent optimization algorithm introduces quantum computing, uses a quantum revolving door to update qubits, and updates operator speed and position, The quantum NOT gate is used to realize the mutation of the qubit and increase the diversity of the operator population. At the same time, it adopts adaptive iterative algebra, scattered data crossover, Gaussian mutation strategy and forward migration method. Compared with the traditional intelligent optimization algorithm, it has better population diversity, global optimization ability and faster convergence speed; the intelligent optimization algorithm includes but not limited to genetic algorithm, ant colony algorithm, particle swarm algorithm, immune algorithm etc.
归纳出的结构件尺寸为三维尺寸,针对电机结构组件空间结构进行优化设计,结构件三维尺寸变量函数为X=(x1,x2,x3,......,xk;y1,y2,y3,......,yk;z1,z2,z3,......,zk)T。The size of the structural parts is summarized as a three-dimensional size, and the optimal design is carried out for the space structure of the motor structural components. The variable function of the three-dimensional size of the structural parts is X=(x 1 ,x 2 ,x 3 ,...,x k ;y 1 ,y 2 ,y 3 ,...,y k ; z 1 ,z 2 ,z 3 ,...,z k ) T .
本发明的益处在于:统筹综合考虑电机电磁输出性能、工作温升、振动和噪声各方面性能,显著提高电机结构件尺寸优化设计目标群科学合理性;以电机内综合物理场数值计算为基础,相比现有解析计算程序为核心的优化,大幅度提高各项性能指标计算准确性,可以开展结构件尺寸的精细化设计;采用非均衡相对双向加权方法改造目标函数,消除了不同性能指标本身数值大小对结算结果的影响;在智能优化算法中引入了量子计算,使算法具有更好的种群多样性,全局寻优能力和更快的收敛速度。The benefits of the present invention lie in that: comprehensive consideration of the performance of the electromagnetic output of the motor, working temperature rise, vibration and noise, significantly improving the scientific rationality of the target group for the size optimization design of the motor structural parts; based on the numerical calculation of the comprehensive physical field in the motor, Compared with the optimization of the existing analytical calculation program as the core, the calculation accuracy of various performance indicators is greatly improved, and the refined design of the size of structural parts can be carried out; the objective function is modified by using an unbalanced relative two-way weighting method, eliminating the need for different performance indicators. The influence of numerical value on the settlement result; Quantum computing is introduced into the intelligent optimization algorithm, so that the algorithm has better population diversity, global optimization ability and faster convergence speed.
附图说明Description of drawings
图1为本发明设计方法的步骤流程图;Fig. 1 is the step flow chart of design method of the present invention;
图2为电磁、流体、温度多重收敛迭代物理场耦合流程图;Figure 2 is a flow chart of electromagnetic, fluid and temperature multiple convergence iterative physical field coupling;
图3为本发明实施例1设计流程图;Fig. 3 is the design flowchart of embodiment 1 of the present invention;
图4为本发明实施例2设计流程图。Fig. 4 is a design flowchart of embodiment 2 of the present invention.
具体实施方式detailed description
当结合附图考虑时,通过参照下面的详细描述,能够更完整更好地理解本发明以及容易得知其中许多伴随的优点,但此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分。A more complete and better understanding of the invention, and many of its attendant advantages, will readily be learned by reference to the following detailed description when considered in conjunction with the accompanying drawings, but the accompanying drawings illustrated herein are intended to provide a further understanding of the invention and constitute part of the invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1:如图1至图3所示,Embodiment 1: as shown in Figure 1 to Figure 3,
步骤1)电机内非线性电磁场数值计算,得到电机磁场分布和电磁性能参数随电机结构件尺寸变规律,归纳出以结构件尺寸X=(x1,x2,x3,......,xk)T为变量的电磁性能解析表达函数簇Fe=(fe1,fe2,fe3,……,fen);Step 1) Numerical calculation of the nonlinear electromagnetic field in the motor, the distribution of the magnetic field and the electromagnetic performance parameters of the motor change with the size of the motor structural parts, and it is concluded that the size of the structural parts X=(x 1 , x 2 , x 3 ,..... .,x k ) T is the variable electromagnetic performance analytical expression function cluster F e =(f e1 ,f e2 ,f e3 ,……,f en );
电机的电磁性能根据设计需求不同而有侧重,包括但不仅限于电枢电流I(X)、效率eff(X)、功率因数pf(X)、起动电流Ist(X)、起动转矩Tst(X)。The electromagnetic performance of the motor is different according to the design requirements, including but not limited to armature current I(X), efficiency eff(X), power factor pf(X), starting current Ist(X), starting torque Tst(X ).
步骤2)电机内电磁、流体、温度多重收敛迭代物理场耦合计算,如图2所示,确定电机全域瞬态温度分布规律,找出电机不同组件最高工作温度和最大温差随结构尺寸变化规律,归纳总结出以结构件尺寸X=(x1,x2,x3,......,xk)T为变量的不同组件最高工作温度变化函数Ftmax=(ftmax1,ftmax2,ftmax3,……,ftmaxm)和最大温差变化解析函数Ftdet=(ftdet1,ftdet2,ftdet3,……,ftdetm);Step 2) Multiple convergent iterative physical field coupling calculations of electromagnetic, fluid, and temperature in the motor, as shown in Figure 2, determine the transient temperature distribution law of the entire motor, find out the maximum operating temperature and maximum temperature difference of different components of the motor with the structural size change law, Summarize the maximum working temperature change function F tmax = ( f tmax1 , f tmax2 , f tmax3 ,...,f tmaxm ) and the maximum temperature difference change analytical function F tdet =(f tdet1 ,f tdet2 ,f tdet3 ,...,f tdetm );
电机的温度分布能根据冷却系统结构和工作状态不同而选择不同组件优化设计,包括但不仅限于定子铁心最高温升TMsc(X)、定子绕组最高温升TMsw(X)、转子铁心最高温升TMrc(X)、定子铁心最大温差TDsc(X)、定子绕组最大温差TDsw(X)、转子铁心最大温差TDrc(X)。The temperature distribution of the motor can be optimized by selecting different components according to the structure and working state of the cooling system, including but not limited to the maximum temperature rise of the stator core TMsc(X), the maximum temperature rise of the stator winding TMsw(X), and the maximum temperature rise of the rotor core TMrc (X), the maximum temperature difference TDsc(X) of the stator core, the maximum temperature difference TDsw(X) of the stator winding, and the maximum temperature difference TDrc(X) of the rotor core.
步骤3)考虑不同组件材料的导热系数和膨胀系数,基于电机全域瞬态温度场得到工作时电机内其膨胀或收缩受阻的热应力分布,归纳总结出以结构件尺寸X=(x1,x2,x3,......,xk)T为变量的不同组件最大热应力解析表达函数Fsmax=(fsmax1,fsmax2,fsmax3,……,fsmaxo);Step 3) Considering the thermal conductivity and expansion coefficient of different component materials, based on the global transient temperature field of the motor, the thermal stress distribution in the motor that is hindered by expansion or contraction during operation is obtained, and the structural component size X=(x 1 ,x 2 ,x 3 ,...,x k ) T is the variable maximum thermal stress analytical expression function F smax =(f smax1 ,f smax2 ,f smax3 ,...,f smaxo );
电机各组件的最大热应力考察包括但不仅限于定子绕组最大热应力SMsw(X)、定子铁心最大热应力SMsc(X)、转子铁心最大热应力SMrc(X)。The investigation of the maximum thermal stress of each component of the motor includes, but is not limited to, the maximum thermal stress of the stator winding SMsw(X), the maximum thermal stress of the stator core SMsc(X), and the maximum thermal stress of the rotor core SMrc(X).
步骤4)数值计算不同结构件尺寸下电机气隙谐波分量大小变化规律,计算推导出以结构件尺寸X=(x1,x2,x3,......,xk)T为变量的电机电磁噪声变化函数Fen=(fen);Step 4) Numerically calculate the change law of the harmonic component of the air gap of the motor under different structural parts sizes, and calculate and deduce that the structural part size X=(x 1 ,x 2 ,x 3 ,...,x k ) T The motor electromagnetic noise variation function F en =(f en ) is a variable;
步骤5)计及不同组件材料的弹性模量和泊格比,电机工作频率下多阶振动模态数值计算,得到定子铁心,绕组,转子等主要组件不同方向最大振动模态值Fmmax=(fmmax1,fmmax2,fmmax3,……,fmmaxp)和固有频率的解析表达函数Fif=(fif1,fif2,fif3,……,fifp),随电机尺寸X=(x1,x2,x3,......,xk)T的变化;Step 5) Taking into account the elastic modulus and Pogge ratio of different component materials, the numerical calculation of the multi-order vibration mode at the operating frequency of the motor is carried out, and the maximum vibration mode value F mmax in different directions of the main components such as the stator core, winding and rotor is obtained =(f mmax1 ,f mmax2 ,f mmax3 ,……,f mmaxp ) and the analytical expression function F if =(f if1 ,f if2 ,f if3 ,……,f ifp ) of the natural frequency, with the motor size X=(x 1 , x 2 ,x 3 ,...,x k ) change of T ;
电机的优化设计中,振动模态目标对象包括但不仅限于定子铁心最大振动模态MMsc(X)、定子绕组最大振动模态MMsw(X)、转子铁心最大振动模态MMrc(X)、定子铁心固有频率IFsc(X)、定子绕组固有频率IFsw(X)、转子铁心固有频率IFrc(X)。In the optimal design of the motor, the vibration mode target objects include, but are not limited to, the maximum vibration mode MMsc(X) of the stator core, the maximum vibration mode MMsw(X) of the stator winding, the maximum vibration mode MMrc(X) of the rotor core, and the maximum vibration mode of the stator core MMrc(X). Natural frequency IFsc(X), stator winding natural frequency IFsw(X), rotor core natural frequency IFrc(X).
步骤6)确定函数基本约束条为:电磁性能高于原设计Feod<Fe,温度、振动和噪声性能低于设计性能极限要求Ftmax,Ftdet,Fsmax,Fen,Fmmax<For;确定变量变化范围满足电机设计基本尺寸关系,0<X<Xn;,X∈Rn Step 6) Determine the basic constraints of the function as follows: the electromagnetic performance is higher than the original design F eod <F e , and the temperature, vibration and noise performance is lower than the design performance limit requirements F tmax , F tdet , F smax , F en , F mmax <F or ; Determine the variable range to meet the basic size relationship of motor design, 0<X<X n ;, X∈R n
步骤7)经过加权集合,使得上述电磁输出性能参数函数,温度分布函数,热应力函数,电磁噪声函数,振动固有频率函数集成为单一综合优化目标优化函数,加权因子ωi满足 Step 7) After weighted aggregation, the above electromagnetic output performance parameter function, temperature distribution function, thermal stress function, electromagnetic noise function, and vibration natural frequency function are integrated into a single comprehensive optimization objective optimization function, and the weighting factor ω i satisfies
步骤8)采用优化算法找出单一综合优化目标优化函数G全局最优解,优化设计出电机各方面性能统筹最优的组件尺寸。Step 8) Use the optimization algorithm to find the global optimal solution of the single comprehensive optimization objective optimization function G, and optimize and design the component size with the best overall performance in all aspects of the motor.
步骤9)按照得到最优解的结构件尺寸变量完善电机整体设计方案,根据加工工艺适当调整结构尺寸设计,并将优化调整后设计电机的电磁、温升、振动和噪声等指标并与原设计方案指标进行对比,如未达到预期性能提高效果,调整加权因子重新进行优化设计,如达到预期性能提高效果确定设计方案;Step 9) Improve the overall design of the motor according to the size variables of the structural parts obtained from the optimal solution, adjust the structural size design appropriately according to the processing technology, and compare the electromagnetic, temperature rise, vibration and noise indicators of the optimized and adjusted design motor with the original design Compare the program indicators, if the expected performance improvement effect is not achieved, adjust the weighting factor and re-optimize the design, and determine the design plan if the expected performance improvement effect is achieved;
步骤10)绘制电机各组件加工图纸,线切割模具,冲模、叠压、绕线、嵌线、浸漆、装配,试验测定电机实际电磁、温升、振动和噪声等指标合格后,方案定型并批量生产。Step 10) Draw the processing drawings of each component of the motor, wire cutting mold, die, lamination, winding, embedding, dipping, assembly, test and measure the actual electromagnetic, temperature rise, vibration and noise of the motor after passing the test, the plan is finalized and finalized Mass production.
实施例2:如图1、图2和图4所示,其他步骤与实施例1相同,其中步骤7)子目标函数加权运算采用非均衡相对双向加权方法改造目标函数,根据优化目标主次轻重分配不同的加权系数ωi≠ωc(0<i≤j,0<c≤j),凸出优化目标系中的重点对象;Embodiment 2: As shown in Figure 1, Figure 2 and Figure 4, other steps are the same as in Embodiment 1, wherein step 7) sub-objective function weighting operation adopts an unbalanced relative two-way weighting method to transform the objective function, according to the priority of the optimization target Assign different weighting coefficients ω i ≠ ω c (0<i≤j, 0<c≤j), highlighting key objects in the optimization target system;
同时取额定工况下各值为基准修正加权系数消除各种物理性能参数本身数值大小对优化结果的影响;At the same time, each value under the rated working condition is taken as the benchmark correction weighting coefficient Eliminate the influence of the numerical value of various physical performance parameters on the optimization results;
根据性能指标要求对提高和降低目标分别采用正权数和负权数,统一优化函数极值目标方向,归一为极大值或极小值搜寻。According to the requirements of performance indicators, positive weights and negative weights are used respectively for the improvement and reduction goals, and the direction of the extreme value goal of the optimization function is unified, which is normalized as the search for the maximum value or the minimum value.
其中步骤8)采用改进型智能优化算法进行全局寻优。Among them, step 8) adopts an improved intelligent optimization algorithm for global optimization.
所述的改进型智能优化算法,引入了量子计算,采用量子旋转门更新量子比特,进行算子速度和位置的更新,利用量子非门实现量子比特的变异,增加算子种群的多样性。同时采用自适应迭代代数,散乱数据交叉、高斯变异策略和前向迁移方式。与传统的智能优化算法相比,具有更好的种群多样性,全局寻优能力和更快的收敛速度。The improved intelligent optimization algorithm introduces quantum computing, uses quantum revolving gates to update qubits, updates operator speed and position, uses quantum NOT gates to realize qubit variation, and increases the diversity of operator populations. At the same time, it adopts adaptive iterative algebra, scattered data crossover, Gaussian mutation strategy and forward migration method. Compared with the traditional intelligent optimization algorithm, it has better population diversity, global optimization ability and faster convergence speed.
所述的智能优化算法包括但不仅限于遗传算法、蚁群算法、粒子群算法、免疫算法等。The intelligent optimization algorithm includes but not limited to genetic algorithm, ant colony algorithm, particle swarm algorithm, immune algorithm and so on.
以上对本发明所提供的数值计算与解析分析相结合参数协同优化电机设计方法进行了详细介绍,以上参照附图对本申请的示例性的实施方案进行了描述。本领域技术人员应该理解,上述实施方案仅仅是为了说明的目的而所举的示例,而不是用来进行限制,凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。The above is a detailed introduction to the motor design method of numerical calculation and analytical analysis combined with parameter collaborative optimization provided by the present invention, and the exemplary implementation of the present application is described above with reference to the accompanying drawings. It should be understood by those skilled in the art that the above-mentioned embodiments are only examples for the purpose of illustration, and are not used for limitation. Any modifications, equivalent replacements, etc. All should be included in the protection scope of this application.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410020935.6A CN103793559B (en) | 2014-01-16 | 2014-01-16 | Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410020935.6A CN103793559B (en) | 2014-01-16 | 2014-01-16 | Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103793559A CN103793559A (en) | 2014-05-14 |
CN103793559B true CN103793559B (en) | 2017-11-07 |
Family
ID=50669221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410020935.6A Active CN103793559B (en) | 2014-01-16 | 2014-01-16 | Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103793559B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104375083B (en) * | 2014-10-28 | 2017-03-22 | 哈尔滨工业大学 | Noise testing method for multi-phase alternating-current permanent magnet motor with even number of units |
CN106021706B (en) * | 2016-05-17 | 2019-02-15 | 北京交通大学 | A lightweight method for efficient induction motor based on particle swarm multiphysics collaborative optimization |
CN106250595B (en) * | 2016-07-25 | 2019-06-07 | 四川大学 | Materials hot working whole process heating power stream microstructure multiple physical field numerical computation method |
CN106940735B (en) * | 2016-10-19 | 2021-05-14 | 天津大学 | Method for predicting elastic vibration stability of induction motor |
CN107977518B (en) * | 2017-12-06 | 2021-09-07 | 北京精密机电控制设备研究所 | Multidisciplinary joint simulation method for servo motor design |
CN108390607A (en) * | 2018-01-29 | 2018-08-10 | 北京交通大学 | A kind of computational methods in windy road complex fluid domain ac motor temperature field |
CN112307627A (en) * | 2020-11-02 | 2021-02-02 | 中国舰船研究设计中心 | Intelligent design method of all-optical device on complex function chip |
CN114912320B (en) * | 2022-05-06 | 2025-03-18 | 哈尔滨工业大学(威海) | A multi-parameter and multi-objective optimization design method for single-phase induction motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101425726A (en) * | 2008-11-18 | 2009-05-06 | 天津大学 | Motor optimized design method based on fuzzy expert system multi-target particle team |
US7779371B2 (en) * | 2006-11-17 | 2010-08-17 | Cooper Technologies Company | Methods, systems and user interface for evaluating product designs in light of promulgated standards |
-
2014
- 2014-01-16 CN CN201410020935.6A patent/CN103793559B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7779371B2 (en) * | 2006-11-17 | 2010-08-17 | Cooper Technologies Company | Methods, systems and user interface for evaluating product designs in light of promulgated standards |
CN101425726A (en) * | 2008-11-18 | 2009-05-06 | 天津大学 | Motor optimized design method based on fuzzy expert system multi-target particle team |
Non-Patent Citations (3)
Title |
---|
Numerical Analysis on HSPMG Used for Distributed Generation System;张晓晨 等;《2010 International Conference on Computer Application and System Modeling (lCCASM 2010)》;20101024;第14卷;第V14-607至V14-611页 * |
自适应遗传算法在直线感应电机参数优化中的应用;郭慧浩 等;《防爆电机》;20050630;第40卷(第3期);第16-18页 * |
高温超导直线感应电机的电磁优化设计;赵佳 等;《北京交通大学学报》;20110430;第35卷(第2期);第123-127页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103793559A (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103793559B (en) | Numerical computations are combined parameter collaboration optimization design of electrical motor method with analytical analysis | |
Xue et al. | Analytical prediction and optimization of cogging torque in surface-mounted permanent magnet machines with modified particle swarm optimization | |
Guo et al. | Simultaneous magnetic and structural topology optimization of synchronous reluctance machine rotors | |
Sato et al. | Topology optimization of synchronous reluctance motor using normalized Gaussian network | |
Hong et al. | Multi-objective optimal design of permanent magnet synchronous motor for high efficiency and high dynamic performance | |
CN108647397B (en) | Rotor topology optimization method of high-speed motor based on PSO algorithm under multiple constraints | |
Duan et al. | A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study | |
Hao et al. | Optimization of torque ripples in an interior permanent magnet synchronous motor based on the orthogonal experimental method and MIGA and RBF neural networks | |
Duan et al. | Nonlinear scaling rules for brushless PM synchronous machines based on optimal design studies for a wide range of power ratings | |
CN110765649B (en) | Multi-objective optimization method for axial magnetic field flux switching permanent magnet motor | |
Makarchuk et al. | The electromagnetic transformer of mechanical energy into heat for wind turbine | |
Song et al. | Multiobjective optimal design of switched reluctance linear launcher | |
CN113049998B (en) | Loss prediction method of ferromagnetic materials under multi-harmonic excitation | |
CN116680818A (en) | Multi-physical field bidirectional coupling modeling method for high-speed amorphous/nanocrystalline alloy motor | |
CN110390157B (en) | An optimal design method for doubly salient hybrid excitation generator based on Taguchi method | |
Belahcen et al. | Combined FE and Particle Swarm algorithm for optimization of high speed PM synchronous machine | |
Shang et al. | Multi-Objective optimization of high power density motor based on metamodel of optimal prognosis | |
Barri et al. | Optimal design of Traction Electric Motors by a new Adaptive Pareto Algorithm | |
Zhou et al. | Analysis and research on mechanical stress and multiobjective optimization of synchronous reluctance motor | |
CN116611282A (en) | Optimization method for efficiency of permanent magnet synchronous motor | |
Chekroun et al. | A New approach design optimizer of induction motor using particle swarm algorithm | |
Liu et al. | Improved Multiphysics Multiobjective Optimization for U-Shaped IPMSM Equipped With Eccentric Rotor | |
CN111324974A (en) | Optimization method and device of air-cooled generator based on stator tooth internal cooling ventilation structure | |
Ma | Advanced Design and Optimization Techniques for Electrical Machines | |
Li et al. | Multi objective optimization design of permanent magnet ring torque motor based on response surface method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |