CN103779457A - 一种可获得极宽短波红外发光谱的半导体材料及其制备方法 - Google Patents

一种可获得极宽短波红外发光谱的半导体材料及其制备方法 Download PDF

Info

Publication number
CN103779457A
CN103779457A CN201410052172.3A CN201410052172A CN103779457A CN 103779457 A CN103779457 A CN 103779457A CN 201410052172 A CN201410052172 A CN 201410052172A CN 103779457 A CN103779457 A CN 103779457A
Authority
CN
China
Prior art keywords
inpbi
temperature
inp
film
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410052172.3A
Other languages
English (en)
Inventor
王凯
王庶民
张立瑶
顾溢
龚谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201410052172.3A priority Critical patent/CN103779457A/zh
Publication of CN103779457A publication Critical patent/CN103779457A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/305Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种可获得极宽短波红外发光谱的半导体材料及其制备方法,通过在生长磷化铟(InP)材料时加入少量铋(Bi)元素形成全新的InPBi材料,获得室温下短波红外区域光致发光谱波长覆盖范围极宽的材料。比如当Bi的元素百分含量为1.1%时,其室温光致发光谱的波长覆盖范围可以达到1.3-2.7μm,半峰宽达到650nm。本发明报道的InPBi单晶材料为世界上首次成功合成。此InPBi红外光源材料可采用常规分子束外延、金属有机物化学气相沉积等多种方法进行生长,结构和操作工艺简单,易于控制。

Description

一种可获得极宽短波红外发光谱的半导体材料及其制备方法
技术领域
本发明属于半导体光电材料制备领域,特别涉及一种使室温半导体材料发光光谱明显展宽并以此制备超辐射光源的材料及其应用。
背景技术
宽光谱光源在医学领域有着重要的作用。随着现代医学技术的发展,医学诊断技术越来越向无痛无创技术发展,典型的代表有超声波检查、X射线照相技术、计算机X射线断层扫描技术、核磁共振等技术,有的技术甚至可以实现三维成像,但其空间分辨率往往被限制在数百微米量级上。光学相干层析成像技术是近几年发展起来的检测技术,通过探测生物体内微弱的背反射光实现生物体内部成像。该技术中采用了宽光谱光源,光源的半峰宽和系统的成像分辨率有密切关系,半峰宽越宽,分辨率越高。目前运用最广泛的是超辐射发光二极管作为光源,其系统分辨率最高可以达到10微米。如果需要达到更高的分辨率,则需要发光峰更宽的光源。
近年来,稀铋半导体材料由于其独特而重要的材料性能引起国际上广泛关注。人们发现在III-V族材料内掺入少量Bi元素后材料的禁带宽度会有效降低,比如在GaAs中每加入1%的Bi元素,材料的禁带宽度就会降低84-88meV;在InAsBi中每加入1%的Bi元素,材料的禁带宽度就会降低42-55meV;在InSbBi中每加入1%的Bi元素,材料的禁带宽度就会降低36meV,这给人们在材料选择上又多了一种选择。而且随着Bi浓度的增加,GaAsBi的自旋轨道分裂能也会增加,会抑制激光器中的俄歇复合效应,减小热消耗。此外人们发现在GaAs中掺入Bi之后禁带宽度随温度的变化比GaAs小很多,而从目前已有的GaAsBi激光器性能来看,其发光波长随温度的变化率是传统InGaAsP激光器的40%。这些优良的材料性质吸引着人们在稀铋领域内发掘更多的半导体材料。
目前为止,除了上述提到的几种稀铋材料外,人们对InGaAsBi、GaSbBi和GaNBi等都有研究,获得了有趣的结果。
发明内容
鉴于宽光谱光源的应用需求,本发明的目的在于提供一种半导体材料及其制备方法,用于解决现有技术中的半导体材料制成的发光二极管发光波长较短、且光谱范围较窄的问题。
为实现上述目的及其他相关目的,本发明提供一种半导体材料,该半导体材料为InPBi,其中Bi元素的原子百分含量为0.1-5%。
所述的InPBi材料可以在InP、GaAs、InAs等衬底上进行生长。
本发明还提供一种采用所述的半导体材料制备的InPBi薄膜,其制备方法包括以下步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为200-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层,衬底温度为320-520℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强设为200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为50-3000nm的InPBi薄膜,此时,衬底温度在220-370℃之间;
(6)关闭所有源料的快门,将温度降至室温,生长结束。
本发明还提供一种采用所述的半导体材料制备的InPBi多层异质结材料,其制备方法包括以下步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为200-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层,衬底温度为320-470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强降至200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为2-100nm的InPBi薄膜,此时,衬底温度在220-370℃之间;
(6)关闭Bi的挡板,生长厚度为5-200nm的InP薄膜;
(7)周期性重复步骤(5)和(6)n次,n为整数,其取值大于等于1,小于等于100;
(8)关闭所有源料的快门,将温度降至室温,生长结束。
本发明所获得的材料发光光谱范围宽,所述的InPBi薄膜、异质结或纳米结构可以用常规的分子束外延、金属有机物化学气相沉积和原子层沉积等方法进行生长,操作工艺简单,易控制。
本专利中提到的InPBi材料为首次采用分子束外延方法成功生长,所生长的材料具有非常好的材料质量,该材料在室温下展示了非常宽的发光特性。
附图说明
图1为本发明实施例1的InPBi薄膜结构示意图;
图2为本发明实施例2的InPBi多层异质结材料示意图;
图3为本发明实施例1中InPBi薄膜的室温光致发光谱图。
图4为本发明实施例2的InPBi多层异质结材料的室温光致发光谱图。
元件标号说明
衬底           10
缓冲层         20
InP Bi材料层   30
InP薄膜        40
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅附图所示。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,因此图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可随意改变,且其组件布局型态也可更为复杂。
所述的宽光谱材料可以在InP或其它衬底上进行生长,InPBi材料中Bi元素的原子百分含量可以通过控制In炉温度、Bi炉温度、PH3压强调控沉积在衬底表面的Bi元素的百分比,通过调节衬底温度控制衬底表面P元素的沉积进而影响Bi元素的含量。
请参阅图1所示的InPBi薄膜结构,其包括衬底10、位于所述衬底10上的缓冲层20以及位于所述缓冲层上的InPBi材料层30。
以下为采用气态源分子束外延设备在InP衬底上制备InPBi薄膜材料的主要步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为200-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层20,衬底温度为320-520℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强设为200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为50-3000nm的InPBi薄膜30,此时,衬底温度在220-370℃之间;
(6)关闭所有源料的快门,将温度降至室温,生长结束。
请参阅图2所示的InPBi多层异质结构,其包括衬底10、位于所述衬底10上的缓冲层20、位于所述缓冲层上的周期性InPBi/InP薄膜。以下以采用气态源分子束外延设备在InP衬底上制备InPBi多层异质结材料说明主要步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为200-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层20,衬底温度为320-470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强降至200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为2-100nm的InPBi薄膜30,此时,衬底温度在220-370℃之间;
(6)关闭Bi的挡板,生长厚度为5-200nm的InP薄膜40;
(7)周期性重复步骤(5)和(6)n次,n为整数,其取值大于等于1,小于等于100;
(8)关闭所有源料的快门,将温度降至室温,生长结束。
以下通过具体实施例说明含有不同Bi元素百分比的InPBi半导体材料及其制备方法。
实施例一:Bi元素的原子百分比为0.5%的InPBi薄膜材料
本实施例中薄膜材料的制备方法如下:
(1)设置In炉温度为915℃,Bi炉温度为465℃,PH3压强为630Torr,衬底温度为470℃,所有温度均由热偶测得;
(2)打开In炉挡板和PH3阀门,在InP衬底上生长一层厚为100nm的InP缓冲层,衬底温度为470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度降至360℃;
(4)将PH3的压强降至350Torr;
(5)同时打开In和Bi的挡板,生长厚为430nm的InPBi薄膜,衬底温度为360℃;
(6)关闭In、Bi和P的快门,将衬底温度降至室温,生长结束。
通过以上所述方法获得Bi元素的原子百分比为0.5%的InPBi薄膜材料,该材料具有极宽的室温光致发光谱,如图2所示,发光谱峰值在1.5微米处,半峰宽为515nm。
实施例二:Bi元素的原子百分比为1.1%的InPBi薄膜材料
本实施例中薄膜材料的制备方法如下:
(1)设置In炉温度为915℃,Bi炉温度为465℃,PH3压强为630Torr,衬底温度为470℃,所有温度均由热偶测得;
(2)打开In炉挡板和PH3阀门,在InP衬底上生长一层厚为100nm的InP缓冲层,衬底温度为470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度降至320℃;
(4)将PH3的压强降至350Torr;
(5)同时打开In和Bi的挡板,生长厚为430nm的InPBi薄膜;
(6)关闭In、Bi和P的快门,将衬底温度降至室温,生长结束。
通过以上所述方法获得Bi元素的原子百分比为1.1%的InPBi薄膜材料,该材料具有极宽的室温光致发光谱,如图3所示,发光谱峰值在1.9微米左右,半峰宽为650nm。
实施例三:Bi元素的原子百分比为5%的InPBi薄膜材料
本实施例中薄膜材料的制备方法如下:
(1)设置In炉温度为915℃,Bi炉温度为505℃,PH3压强为630Torr,衬底温度为470℃(热偶测得);
(2)打开In炉挡板和PH3阀门,在InP衬底上生长一层厚为100nm的InP缓冲层,衬底温度为470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度降至300℃;
(4)将PH3的压强降至350Torr;
(5)同时打开In和Bi的挡板,生长厚为430nm的InPBi薄膜;
(6)关闭In、Bi和P的快门,将衬底温度降至室温,生长结束。
通过以上所述方法获得Bi元素的原子百分比为5.0%的InPBi薄膜材料,该材料同样具有极宽的室温光致发光谱。
实施例4:Bi元素的原子百分比为1.1%的InPBi多层异质结材料
本实施例中多层异质结材料的制备方法如下:
(1)设置In炉温度为940℃,Bi炉温度为465℃,PH3压强为630Torr,使得对应的InP生长速率为820nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为100nm的InP缓冲层,衬底温度为470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为320℃;
(4)将PH3的压强降至320Torr;
(5)同时打开In和Bi的挡板,生长厚为56nm的InPBi薄膜,此时,衬底温度为320℃;
(6)关闭Bi的挡板,生长厚度为100nm的InP薄膜;
(7)周期性重复步骤(5)和(6)4次;
(8)关闭所有源料的快门,将温度降至室温,生长结束。
通过以上所述方法获得Bi元素的原子百分比为1.1%的InPBi多层异质结材料,该材料具有极宽的室温光致发光谱,发光谱峰值在1.63微米,半峰宽为757nm。
本发明通过在生长磷化铟(InP)材料时加入少量铋(Bi)元素形成全新的InPBi材料,获得室温下短波红外区域光致发光谱波长覆盖范围极宽的材料。比如当Bi的元素百分含量为1.1%时,其室温光致发光谱的波长覆盖范围可以达到1.3-2.7μm,半峰宽达到650nm。本发明报道的InPBi单晶材料为世界上首次成功合成。此InPBi薄膜材料可采用常规分子束外延、金属有机物化学气相沉积等多种方法进行生长,结构和操作工艺简单,易于控制。
综上所述,本发明获得了室温下短波红外区域光致发光谱波长覆盖范围极宽的新型材料,有效克服了现有技术中的种种缺点,具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种可获得极宽短波红外发光谱的半导体材料,其特征在于:该半导体材料为InPBi,其中Bi元素的原子百分含量为0.1-5%。
2.一种采用权利要求1所述的半导体材料制备的InPBi薄膜。
3.一种采用气态源分子束外延方法制备权利要求2所述的InPBi薄膜的方法,其特征在于该方法包括以下步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为200-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层,衬底温度为320-520℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强设为200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为50-3000nm的InPBi薄膜,此时,衬底温度在220-370℃之间;
(6)关闭所有源料的快门,将温度降至室温,生长结束。
4.一种采用权利要求1所述的半导体材料制备的InPBi多层异质结材料。
5.一种如权利要求4所述的InPBi多层异质结材料的制备方法,其特征在于该方法包括以下步骤:
(1)设置In炉温度为800-1000℃,Bi炉温度为430-530℃,PH3压强为300-700Torr,使得对应的InP生长速率为10-2000nm/h;
(2)打开In炉挡板和PH3阀门,在InP衬底10上生长一层厚为0-10000nm的InP缓冲层,衬底温度为320-470℃;
(3)关闭In炉挡板,在PH3阀门打开的前提下,将衬底温度设为220-370℃之间;
(4)将PH3的压强降至200-480Torr;
(5)同时打开In和Bi的挡板,生长厚为2-100nm的InPBi薄膜,此时,衬底温度在220-370℃之间;
(6)关闭Bi的挡板,生长厚度为5-200nm的InP薄膜;
(7)周期性重复步骤(5)和(6)n次,n为整数,其取值大于等于1,小于等于100;
(8)关闭所有源料的快门,将温度降至室温,生长结束。
CN201410052172.3A 2014-02-14 2014-02-14 一种可获得极宽短波红外发光谱的半导体材料及其制备方法 Pending CN103779457A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410052172.3A CN103779457A (zh) 2014-02-14 2014-02-14 一种可获得极宽短波红外发光谱的半导体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410052172.3A CN103779457A (zh) 2014-02-14 2014-02-14 一种可获得极宽短波红外发光谱的半导体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN103779457A true CN103779457A (zh) 2014-05-07

Family

ID=50571497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410052172.3A Pending CN103779457A (zh) 2014-02-14 2014-02-14 一种可获得极宽短波红外发光谱的半导体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103779457A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810454A (zh) * 2015-05-12 2015-07-29 中国科学院上海微系统与信息技术研究所 一种半导体材料、半导体薄膜及其制备方法
CN110571342A (zh) * 2019-09-11 2019-12-13 上海理工大学 一种半导体量子点异质结材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263792A1 (en) * 2002-08-02 2005-12-01 Sony Corporation Semiconductor device
CN1853281A (zh) * 2003-09-09 2006-10-25 旭化成株式会社 红外线传感器ic、红外线传感器及其制造方法
CN101374925A (zh) * 2006-01-27 2009-02-25 株式会社半导体能源研究所 发光材料、发光器件和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263792A1 (en) * 2002-08-02 2005-12-01 Sony Corporation Semiconductor device
CN1853281A (zh) * 2003-09-09 2006-10-25 旭化成株式会社 红外线传感器ic、红外线传感器及其制造方法
CN101374925A (zh) * 2006-01-27 2009-02-25 株式会社半导体能源研究所 发光材料、发光器件和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI GU, ET AL.: "Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy", 《NANOSCALE RESEARCH LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810454A (zh) * 2015-05-12 2015-07-29 中国科学院上海微系统与信息技术研究所 一种半导体材料、半导体薄膜及其制备方法
CN110571342A (zh) * 2019-09-11 2019-12-13 上海理工大学 一种半导体量子点异质结材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Lee Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes
Willander et al. Luminescence from zinc oxide nanostructures and polymers and their hybrid devices
Jeong et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking
Lupan et al. Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication
De Santi et al. Role of defects in the thermal droop of InGaN-based light emitting diodes
Sang et al. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures
Abbasi et al. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence
Zhang et al. Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si (111)
Yoo et al. Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes
Nami et al. Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy
TWI269355B (en) Quantum-dot infrared photodetector
DE112015000824B4 (de) Verfahren zur Herstellung eines elektronischen Halbleiterchips
CN103165418B (zh) 在GaAs纳米线侧壁生长同质量子结构的MBE方法
Chan et al. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays
Su et al. Homogeneous ZnO nanowire arrays pn junction for blue light-emitting diode applications
Macaluso et al. Progress in violet light-emitting diodes based on ZnO/GaN heterojunction
Zhang et al. Recent advances on gan-based micro-leds
Zhang et al. Homo-epitaxial secondary growth of ZnO nanowire arrays for a UV-free warm white light-emitting diode application
Nikishin III-nitride short period superlattices for deep UV light emitters
Liu et al. Influences of screw dislocations on electroluminescence of AlGaN/AlN-based UVC LEDs
CN103779457A (zh) 一种可获得极宽短波红外发光谱的半导体材料及其制备方法
Yakimov et al. Electrical and recombination properties of polar orthorhombic κ-Ga2O3 films prepared by halide vapor phase epitaxy
Tiagulskyi et al. Highly rectifying heterojunctions formed by annealed ZnO nanorods on GaN substrates
Polyakov et al. Impact of hydrogen plasma on electrical properties and deep trap spectra in Ga2O3 polymorphs
Mo et al. Effect of interface voids on electroluminescence colors for ZnO microdisk/p-GaN heterojunction light-emitting diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140507