CN103778485B - 一种分布式发电供能系统及其优化方法 - Google Patents

一种分布式发电供能系统及其优化方法 Download PDF

Info

Publication number
CN103778485B
CN103778485B CN201410061481.7A CN201410061481A CN103778485B CN 103778485 B CN103778485 B CN 103778485B CN 201410061481 A CN201410061481 A CN 201410061481A CN 103778485 B CN103778485 B CN 103778485B
Authority
CN
China
Prior art keywords
mrow
msub
munderover
msubsup
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410061481.7A
Other languages
English (en)
Other versions
CN103778485A (zh
Inventor
黄焘
陈钢
杨振纲
陈旭
关南强
马斌
申展
雷金勇
许爱东
郭晓斌
荆朝霞
周少雄
杨苹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
South China University of Technology SCUT
Comprehensive Energy of China Southern Power Grid Co Ltd
Original Assignee
China South Power Grid International Co ltd
South China University of Technology SCUT
Comprehensive Energy of China Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, South China University of Technology SCUT, Comprehensive Energy of China Southern Power Grid Co Ltd filed Critical China South Power Grid International Co ltd
Priority to CN201410061481.7A priority Critical patent/CN103778485B/zh
Publication of CN103778485A publication Critical patent/CN103778485A/zh
Application granted granted Critical
Publication of CN103778485B publication Critical patent/CN103778485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种分布式发电供能系统的优化方法,包括以下步骤:首先建立分布式发电供能系统的模型;然后针对模型,根据以下热能供需平衡和功率平衡的方程,求得约束条件;最后根据热能供需平衡和功率平衡的约束条件,建立以节省成本和减少温室气体排放量为目标的目标优化函数。本发明定义了包含最小化日常运行成本和最小化温室气体排放量的2个子目标优化函数,大幅度降低微电网的运行成本和降低微电网的温室气体排放量,达到能源部提出的节能减排要求。

Description

一种分布式发电供能系统及其优化方法
技术领域
本发明属于分布式发电系统节能减排技术研究领域,特别涉及分布式发电供能系统的成本及温室气体排放的优化方法。
背景技术
中国电力在取得极大发展、为我国经济和其它产业的发展提供强有力支持的同时,也是中国环境污染的重要原因。因此,节能减排对于电力行业具有特别重要的意义。分散电源的兴起和发展给电力系统提供了一种非常有前途的节能减排技术。但是却也不可避免的对周围的居民区乃至整个地球造成一定的污染。基于分散电源的分布式发电供能系统的接入是未来智能电网建设的重要组成部分,而实现节能减排是智能电网运行的关键目标之一,因此,研究分析分布式发电供能系统的节能减排效益对于智能电网的规划和运行意义重大。
国内外的一些学者对配电侧中引入分散电源的节能减排效益开展了研究,但待选优化的分散电源类型较少,且只模拟了电负荷,而没有对热负荷或冷负荷进行相应的分析,不能全面真实地反映分散电源的节能减排效益。
发明内容
本发明的目的在于提供一种能全面反映分布式发电供能系统的成本及温室气体排放的优化方法。该方法提出一种兼顾最小化日常运行成本和最小化温室气体排放量的方案,尽量减少日常的能源运行成本和温室气体排放量,为孤岛微电网的运行提供了一个优化管理系统。
为实现上述的目的,本发明的一种分布式发电供能系统的优化方法,包括以下步骤:
(1)建立分布式发电供能系统的模型;模型包括原动机单元、分布式能源和电网,分布式能源和电网互补供能,电网连接交流母线;分布式能源包括并网运行的储能系统、风力发电系统和光伏发电系统,它们通过DC/DC转换器和DC/AC转换器分别与直流母线和交流母线连接;原动机单元包括内燃机、微型汽轮机和燃料电池,原动机单元的发电端连接交流母线、原动机单元的热气端分别通过热交换器和吸收式制冷箱与加热负载、制冷负载连接,原动机的燃气端分别通过燃气锅炉和吸收冰箱与加热负载、制冷负载连接。
(2)针对步骤一建立的模型,根据热能供需平衡和功率平衡的方程,求得约束条件;
热能供需平衡方程为:
其中,NGB和NHEX分别表示燃气锅炉和热交换机的数量,表示孤岛热需求量,NACC和NCEX分别表示吸收制冷机和冷交换装置的数量,表示孤岛冷气需求量。
功率平衡方程包括交流系统的功率平衡方程和直流系统的功率平衡方程;
交流系统的功率平衡方程:
直流系统的功率平衡方程:
其中表示微电网在时间t的交流电能需求量。
(3)根据(2)求得的约束条件,建立以节省成本和减少温室气体排放量为目标的目标优化函数;目标优化函数为分别包含最小化日常运行成本和最小化温室气体排放的2个子目标优化函数。
最小化日常运行成本的子目标优化函数为:
其中CGr,t表示电价。
最小化温室气体排放的子目标优化函数为:
其中εi和εGr,t分别表示为第i种能源的温室气体排放量和电网在时间t的温室气体临界排放量。
本发明采取分布式能源与电网互补供能的能源输入方式以及热电联产的能量输送方式,在整体系统的智能生产调度下,实现对用户冷热能源需求的供应,以此提高系统能源的综合利用效率,减少排污量,从而达到节能减排的目的。
附图说明
图1为本发明模型的连接示意图。
具体实施方式
如图1所示,建立的微电网系统的数学模型,该模型包含了能量储存系统、太阳能光伏发电装置、风力发电机组、内燃机、微型燃气轮机、燃料电池、热能存储、燃气锅炉和吸收式制冷机、能量交换器、转换器以及电网连接在内的11个组成单元。
功率平衡和热平衡约束条件
1)热平衡
热气供需平衡约束条件:
其中,NGB和NHEX分别表示燃气锅炉和热交换机的数量,表示孤岛热需求量。
冷气供需平衡约束条件:
其中NACC和NCEX分别表示吸收制冷机和冷交换装置的数量,表示孤岛冷气需求量。
由此可得包含加热和制冷部分的热交换的热平衡方程:
2)功率平衡
交流系统的功率平衡方程如下:
其中表示微电网在时间t的交流电能需求量。
类似,直流系统的功率平衡约束条件为:
——式(50)
建立系统目标优化函数
1)日常成本最小化
微电网每日总能源成本可表示为:
其中CGr,t表示电价。
2)温室气体排放量最小化
微电网最小温室气体排放量可表示为:
其中εi和εGr,t分别表示为第i种能源的温室气体排放量和电网在时间t的温室气体临界排放量。
3)多目标最优化
多目标最优化用于寻找和管理不同通常是对立的目标函数的最优解决方案。多目标最优化的解决方案通常能达到帕累托最优。帕累托最优解决方案是不同目标的最协调解决方案。

Claims (7)

1.一种分布式发电供能系统的优化方法,其特征包括以下步骤:
(1)建立分布式发电供能系统的模型;所述的模型包括原动机单元、分布式能源和电网,分布式能源和电网互补供能、分别连接交流母线,原动机单元的发电端连接交流母线、其热气端和燃气端与加热负载、制冷负载连接;
(2)针对(1)建立的模型,根据热能供需平衡和功率平衡方程,求得约束条件;所述的热能供需平衡方程为
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> </munderover> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>F</mi> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>h</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>T</mi> </mrow> </msub> </munderover> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>H</mi> <mi>E</mi> <mi>X</mi> </mrow> </msub> </munderover> <mfrac> <msubsup> <mi>h</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>k</mi> </msub> </mfrac> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>E</mi> <mi>X</mi> </mrow> </msub> </munderover> <mfrac> <msubsup> <mi>h</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>k</mi> </msub> </mfrac> </mrow>
其中,NGB和NHEX分别表示燃气锅炉和热交换机的数量,表示孤岛热需求量,NACC和NCEX分别表示吸收制冷机和冷交换装置的数量,表示孤岛冷气需求量;
所述的功率平衡方程包括交流系统的功率平衡方程和直流系统的功率平衡方程;
交流系统的功率平衡方程:
<mrow> <mover> <mo>&amp;Sigma;</mo> <msub> <mi>N</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> </mover> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mover> <mo>&amp;Sigma;</mo> <msub> <mi>N</mi> <mrow> <mi>F</mi> <mi>C</mi> </mrow> </msub> </mover> <msub> <mi>p</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mover> <mo>&amp;Sigma;</mo> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>T</mi> </mrow> </msub> </mover> <msub> <mi>p</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>A</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>G</mi> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>p</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>A</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>p</mi> <mrow> <mi>D</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>A</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow>
直流系统的功率平衡方程:
<mrow> <msub> <mi>p</mi> <mrow> <mi>p</mi> <mi>v</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>h</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>p</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>D</mi> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mi>h</mi> <mi>g</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>p</mi> <mrow> <mi>D</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </msubsup> </mrow>
其中表示微电网在时间t的交流电能需求量;
(3)根据(2)求得的约束条件,建立多目标优化函数。
2.根据权利要求1所述的分布式发电供能系统的优化方法,其特征在于:所述的原动机单元包括内燃机、微型汽轮机和燃料电池。
3.根据权利要求1所述的分布式发电供能系统的优化方法,其特征在于:所述的分布式能源包括并网运行的储能系统、风力发电系统和光伏发电系统,它们通过DC/DC转换器和DC/AC转换器分别向直流负载和交流负载供能。
4.根据权利要求1所述的分布式发电供能系统的优化方法,其特征在于:所述的原动机单元的热气端分别通过热交换器和吸收式制冷箱与加热负载、制冷负载连接,原动机的燃气端分别通过燃气锅炉和吸收冰箱与加热负载、制冷负载连接。
5.根据权利要求1至4任一所述的分布式发电供能系统的优化方法,其特征在于:(3)所述的多目标优化函数为两个分别包含最小化日常运行成本和最小化温室气体排放的子目标优化函数。
6.根据权利要求5所述的分布式发电供能系统的优化方法,其特征在于:所述的最小化日常运行成本的子目标优化函数为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>min</mi> <mo>&amp;lsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;tau;p</mi> <mrow> <mi>G</mi> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>C</mi> <mrow> <mi>G</mi> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>C</mi> <mrow> <mi>d</mi> <mi>c</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>T</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>F</mi> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>G</mi> <mi>B</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>A</mi> <mi>C</mi> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>w</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>t</mi> <mi>e</mi> <mi>x</mi> </mrow> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>H</mi> <mi>E</mi> <mi>X</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>E</mi> <mi>X</mi> </mrow> </msub> </munderover> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中CGr,t表示电价。
7.根据权利要求5所述的分布式发电供能系统的优化方法,其特征在于:所述的最小化温室气体排放的子目标优化函数为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>min</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mi>&amp;tau;</mi> <mo>&amp;lsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>I</mi> <mi>C</mi> <mi>E</mi> </mrow> </msub> </munderover> <msub> <mi>&amp;epsiv;</mi> <mi>i</mi> </msub> <mfrac> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>T</mi> </mrow> </msub> </munderover> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;eta;</mi> <mi>m</mi> </msub> </mfrac> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>F</mi> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>&amp;epsiv;</mi> <mi>f</mi> </msub> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;eta;</mi> <mi>f</mi> </msub> </mfrac> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>G</mi> <mi>B</mi> </mrow> </msub> </munderover> <msub> <mi>&amp;epsiv;</mi> <mi>i</mi> </msub> <mfrac> <msubsup> <mi>h</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>G</mi> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow> <mi>G</mi> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>A</mi> <mi>C</mi> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>&amp;epsiv;</mi> <mi>j</mi> </msub> <mfrac> <msubsup> <mi>h</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>j</mi> </msub> </mfrac> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中εi和εGr,t分别表示为第i种能源的温室气体排放量和电网在时间t的温室气体临界排放量。
CN201410061481.7A 2014-02-24 2014-02-24 一种分布式发电供能系统及其优化方法 Active CN103778485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410061481.7A CN103778485B (zh) 2014-02-24 2014-02-24 一种分布式发电供能系统及其优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410061481.7A CN103778485B (zh) 2014-02-24 2014-02-24 一种分布式发电供能系统及其优化方法

Publications (2)

Publication Number Publication Date
CN103778485A CN103778485A (zh) 2014-05-07
CN103778485B true CN103778485B (zh) 2018-04-10

Family

ID=50570693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410061481.7A Active CN103778485B (zh) 2014-02-24 2014-02-24 一种分布式发电供能系统及其优化方法

Country Status (1)

Country Link
CN (1) CN103778485B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207205B (zh) * 2015-09-16 2018-01-26 国网天津市电力公司 一种融合需求侧响应的分布式能源系统能量优化调控方法
CN105811397B (zh) * 2016-03-11 2019-02-22 国网天津市电力公司 一种基于多时间尺度的多能互补微网调度方法
CN106230006A (zh) * 2016-07-22 2016-12-14 国网北京市电力公司 微电网控制方法和装置及微电网
CN108062022A (zh) * 2016-11-05 2018-05-22 南京理工大学 一种热电协同系统的优化控制方法
CN108510122B (zh) * 2018-03-30 2021-08-31 中国电建集团福建省电力勘测设计院有限公司 基于最优双约束条件的综合能源系统优化方法
CN110416992B (zh) * 2019-07-24 2022-03-18 东北电力大学 一种适用直流用电用户的综合能源优化用能方法
CN112116122B (zh) * 2020-08-02 2024-09-06 国网辽宁省电力有限公司电力科学研究院 一种提升电网灵活性的楼宇热电联产系统运行优化方法
CN112325687B (zh) * 2020-10-28 2022-10-25 广东电网有限责任公司广州供电局 跨季节储热的多能互补分布式能源系统
CN112576324B (zh) * 2020-12-03 2021-08-27 广东省昱辰电子科技有限公司 超低温发电方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930343A (zh) * 2012-09-28 2013-02-13 南方电网科学研究院有限责任公司 一种分布式发电供能系统能量优化方法
CN103439941A (zh) * 2013-08-23 2013-12-11 贵州电网公司电网规划研究中心 一种燃气内燃机冷热电三联供系统优化运行方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930343A (zh) * 2012-09-28 2013-02-13 南方电网科学研究院有限责任公司 一种分布式发电供能系统能量优化方法
CN103439941A (zh) * 2013-08-23 2013-12-11 贵州电网公司电网规划研究中心 一种燃气内燃机冷热电三联供系统优化运行方法

Also Published As

Publication number Publication date
CN103778485A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN103778485B (zh) 一种分布式发电供能系统及其优化方法
Lu et al. Study on the configuration and operation optimization of CCHP coupling multiple energy system
Ma et al. The optimal structure planning and energy management strategies of smart multi energy systems
Zhou et al. An engineering approach to the optimal design of distributed energy systems in China
Li et al. An improved operation strategy for CCHP system based on high-speed railways station case study
Guo et al. Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting
CN107464008A (zh) 一种大型楼宇冷热电联供系统的优化调度方法
US20150142192A1 (en) Method of regulating a plant comprising cogenerating installations and thermodynamic systems intended for air conditioning and/or heating
Zhang et al. Nested optimization design for combined cooling, heating, and power system coupled with solar and biomass energy
CN104820363B (zh) 基于生物质气的冷热电联供系统及能量优化控制方法
Han et al. Collaborative optimization method and operation performances for a novel integrated energy system containing adiabatic compressed air energy storage and organic Rankine cycle
Zhang et al. Energy scheduling optimization of the integrated energy system with ground source heat pumps
Guan et al. Optimal configuration and operation of multi-energy complementary distributed energy systems
Mu et al. Optimal operation model of integrated energy system for industrial plants considering cascade utilisation of heat energy
Huang et al. Modeling of distributed energy system with multiple energy complementation
Wei et al. Optimal operation of micro integrated energy systems considering electrical and heat load classification and scheduling
CN213783243U (zh) 一种面向产业园区的综合能源系统运行优化装置
Chen et al. Low-Carbon Operation Strategy of Park-Level Integrated Energy System with Firefly Algorithm
Zhang et al. Optimized configuration of integrated energy system considering the access and operation of renewable energy
Zheng et al. Optimal rural integrated energy system configuration against the background of the rural energy transformation strategy
CN204494904U (zh) 基于生物质气的冷热电联供系统
Chen et al. Research on optimal collaborative method for microgrid environmental and economic dispatch in grid-connected mode
Zhao et al. CCHP Capacity Optimization with User Demand Characteristics
Jia et al. Design of energy management platform for integrated energy system
Zhou et al. Research on Modeling Method of Comprehensive Energy User Load in Load-intensive City Smart Park

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 510062, Guangdong, Guangzhou, Yuexiu District Dongfeng East Road, Qi Gang, No. 6, No. 8, West Tower, 13-20 floor

Co-patentee after: China Southern Power Grid comprehensive energy Co.,Ltd.

Patentee after: China South Power Grid International Co.,Ltd.

Co-patentee after: SOUTH CHINA University OF TECHNOLOGY

Address before: 510062, Guangdong, Guangzhou, Yuexiu District Dongfeng East Road, Qi Gang, No. 6, No. 8, West Tower, 13-20 floor

Co-patentee before: CHINA SOUTHERN POWER GRID COMPREHENSIVE ENERGY Co.,Ltd.

Patentee before: China South Power Grid International Co.,Ltd.

Co-patentee before: SOUTH CHINA University OF TECHNOLOGY

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20200226

Address after: 510663 Building 3, 4, 5 and 3 of Building J1, 11 Kexiang Road, Science City, Luogang District, Guangzhou City, Guangdong Province

Co-patentee after: SOUTH CHINA University OF TECHNOLOGY

Patentee after: China South Power Grid International Co.,Ltd.

Address before: 510062, Guangdong, Guangzhou, Yuexiu District Dongfeng East Road, Qi Gang, No. 6, No. 8, West Tower, 13-20 floor

Co-patentee before: China Southern Power Grid comprehensive energy Co.,Ltd.

Patentee before: China South Power Grid International Co.,Ltd.

Co-patentee before: SOUTH CHINA University OF TECHNOLOGY

TR01 Transfer of patent right