CN103776947A - Method for detecting malondialdehyde in food - Google Patents
Method for detecting malondialdehyde in food Download PDFInfo
- Publication number
- CN103776947A CN103776947A CN201410039942.0A CN201410039942A CN103776947A CN 103776947 A CN103776947 A CN 103776947A CN 201410039942 A CN201410039942 A CN 201410039942A CN 103776947 A CN103776947 A CN 103776947A
- Authority
- CN
- China
- Prior art keywords
- food
- mda
- malondialdehyde
- solution
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 16
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 title abstract description 28
- 229940118019 malondialdehyde Drugs 0.000 title abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- 239000000523 sample Substances 0.000 claims description 6
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 5
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims description 3
- 235000019796 monopotassium phosphate Nutrition 0.000 claims description 3
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 235000021149 fatty food Nutrition 0.000 claims description 2
- 239000005457 ice water Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000012488 sample solution Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims 3
- 238000001212 derivatisation Methods 0.000 claims 3
- 239000003643 water by type Substances 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000008367 deionised water Substances 0.000 claims 1
- 229910021641 deionized water Inorganic materials 0.000 claims 1
- 238000010790 dilution Methods 0.000 claims 1
- 239000012895 dilution Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
- 238000004064 recycling Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000002137 ultrasound extraction Methods 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 abstract 2
- 239000003921 oil Substances 0.000 description 19
- 239000003925 fat Substances 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 150000002978 peroxides Chemical class 0.000 description 9
- 239000002253 acid Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 5
- 235000016709 nutrition Nutrition 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- -1 lipid peroxide Chemical class 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000004626 essential fatty acids Nutrition 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000014593 oils and fats Nutrition 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 235000020234 walnut Nutrition 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 208000006029 Cardiomegaly Diseases 0.000 description 1
- 235000019542 Cured Meats Nutrition 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000004930 Fatty Liver Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010016952 Food poisoning Diseases 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 206010019708 Hepatic steatosis Diseases 0.000 description 1
- 206010019842 Hepatomegaly Diseases 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 238000004850 capillary HPLC Methods 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008378 epithelial damage Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 208000001936 exophthalmos Diseases 0.000 description 1
- 208000010706 fatty liver disease Diseases 0.000 description 1
- 235000021050 feed intake Nutrition 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013332 fish product Nutrition 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 235000008446 instant noodles Nutrition 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 201000008627 kidney hypertrophy Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000006400 oxidative hydrolysis reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013582 standard series solution Substances 0.000 description 1
- 231100000240 steatosis hepatitis Toxicity 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000002477 vacuolizing effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
所属技术领域Technical field
本发明涉及一种食品中丙二醛的检测技术,具体涉及高效液相色谱对食品中丙二醛的分离检测。The invention relates to a detection technology for malondialdehyde in food, in particular to the separation and detection of malondialdehyde in food by high performance liquid chromatography.
背景技术Background technique
食品中的油脂具有重要的营养价值,不仅提供人体所需要的机体热量和必需脂肪酸,并作为脂溶性维生素如VA的载体有助于其吸收,而且能够有效地改善食物的风味及质感。油脂含量较高的食品,在加工和贮藏期间,因空气中的氧气、光照、微生物、酶等作用,产生令人不愉快的气味、苦涩味和一些有毒性的化合物,这种现象称为油脂的酸败,俗称哈变。油脂酸败不但能改变含油脂类食品的风味,影响含油脂类食品的营养价值,而且对人体的健康也有一定的影响,有的产物还具有致癌作用。油脂氧化会引起食品中脂肪变质、变味,给食品品质、营养价值及安全性带来的危害是多方面的。首先,降低食品的营养价值,食品的自身氧化作用会使食品中的脂溶性维生素和必需脂肪酸遭到破坏,因而降低了食品的营养价值;其次,食品自身氧化会产生有毒代谢产物。The fat in food has important nutritional value. It not only provides body calories and essential fatty acids needed by the human body, but also serves as a carrier for fat-soluble vitamins such as VA to facilitate their absorption, and can effectively improve the flavor and texture of food. Foods with high oil content, during processing and storage, produce unpleasant smell, bitter taste and some toxic compounds due to the action of oxygen in the air, light, microorganisms, enzymes, etc. Rancidity, commonly known as hard change. Grease rancidity can not only change the flavor of oil-containing foods, affect the nutritional value of oil-containing foods, but also have a certain impact on human health, and some products also have carcinogenic effects. Oxidation of oil will cause the deterioration and taste of fat in food, which will bring harm to food quality, nutritional value and safety in many aspects. First of all, the nutritional value of food is reduced, and the self-oxidation of food will destroy the fat-soluble vitamins and essential fatty acids in food, thus reducing the nutritional value of food; secondly, the self-oxidation of food will produce toxic metabolites.
酸败油脂中含有大量的分解产物过氧化脂质,食用酸败的油脂或含酸败油脂的食品(如糕点、饼干、方便面等)所引起的食物中毒,潜伏期一般在1-5小时,少数在24小时以上。其中毒特点是发病突然,来势快,开始感觉恶心,继之出现呕吐、腹泻、腹疼头痛、发烧等症状。食品自身氧化分解的产物是有毒的醛、酮类化合物,而醛、酮类化合物对畜禽的健康和生产能力有不良影响。研究表明,油脂氧化产生的多聚物动物不能吸收利用,产生毒性反应和腹泻;某些氧化产物可以导致动物肝脏肿大,使其采食量下降,消化率降低;氧化油脂对畜禽动物生殖上皮的损伤将直接导致动物生殖能力的下降。饲料中的酸败脂肪所产生的醛类物质直接损害鱼类肝胰脏,影响正常的肝功能;可观察到病鱼游动不规则、突眼、胆囊膨大、肝色浅或浊肿、肝组织大片溶解性坏死、纤维化、空泡化等。家禽食用了含有过氧化脂质的饲料会引起黄脂病,猫食用后会引起肝、心、肾脏的肥大,导致肝变性或脂肪肝。若用含油脂二次氧化的产物过氧化氢链烯醛的油脂饲喂小白鼠,24小时之内就有小鼠死亡。Rancid fats contain a large amount of decomposition products lipid peroxide. Food poisoning caused by eating rancid fats or foods containing rancid fats (such as cakes, biscuits, instant noodles, etc.), the incubation period is generally 1-5 hours, and a few are 24 hours above. The characteristics of poisoning are sudden onset, rapid onset, nausea at first, followed by vomiting, diarrhea, abdominal pain, headache, fever and other symptoms. The oxidative decomposition products of food itself are toxic aldehydes and ketones, and aldehydes and ketones have adverse effects on the health and production capacity of livestock and poultry. Studies have shown that the polymers produced by oil oxidation cannot be absorbed and utilized by animals, resulting in toxic reactions and diarrhea; certain oxidation products can cause animal liver enlargement, reduce feed intake, and lower digestibility; Epithelial damage will directly lead to the decline of animal reproductive ability. The aldehydes produced by the rancid fat in the feed directly damage the hepatopancreas of fish and affect the normal liver function; irregular swimming, exophthalmos, enlarged gallbladder, light or turbid liver, and liver tissue can be observed in diseased fish. Large pieces of lytic necrosis, fibrosis, vacuolation, etc. Poultry eating feed containing lipid peroxide can cause yellow lipid disease, and cats can cause liver, heart, and kidney hypertrophy after eating, leading to liver degeneration or fatty liver. If mice are fed with fats containing alkenal hydroperoxide, the product of secondary oxidation of fats, the mice will die within 24 hours.
我国现阶段评价含油脂类食品是否符合国家安全卫生标准的理化指标为过氧化值和酸价,过氧化值主要反映含油脂类食品是否发生了氧化水解酸败反应,当过氧化值超出20meq/kg(毫克当量/千克)时即表示酸败;而酸价则表示油脂酸败的程度。现行国家标准将过氧化值和酸价作为判断含油脂类食品是否酸败的主要指标,而实际上上述两个指标并不能真正反映含油脂类食品是否已经酸败。这是因为过氧化值升高是油脂酸败的早期指标,当油脂酸败到一定程度,过氧化物进一步分解成醛及酮时,过氧化值又会降低,而实际上油脂已经严重变质;大多数油脂中都难免有少量游离脂肪酸存在,因此很少有食用油脂的酸价为零。把过氧化值和酸价作为评价含油脂类食品是否酸败的指标并不切确。而丙二醛(MalondiaLdehyde,MDA)是油脂氧化酸败过程中生成的过氧化脂质,在热、光、重金属等过氧化物分解因子存在下,进一步分解产生的一种醛类物质,是食品油脂氧化酸败的重要终产物。随着油脂氧化酸败程度的加深,丙二醛含量较过氧化值及酸价有明显的升高。因此丙二醛这一指标具有灵敏、稳定性好等特点,是客观评价食品油脂酸败程度最为敏感的指标。At present in my country, the physical and chemical indicators for evaluating whether oil-containing foods meet the national safety and health standards are peroxide value and acid value. The peroxide value mainly reflects whether oxidative hydrolysis rancidity has occurred in oil-containing foods. (milligram equivalent/kg) means rancidity; and acid value indicates the degree of rancidity of oil. The current national standard regards peroxide value and acid value as the main indicators for judging whether oil-containing foods are rancid, but in fact the above two indicators cannot really reflect whether oil-containing foods have become rancid. This is because the increase in peroxide value is an early indicator of oil rancidity. When the oil becomes rancid to a certain extent and the peroxide is further decomposed into aldehydes and ketones, the peroxide value will decrease again, but in fact the oil has deteriorated seriously; most It is inevitable that a small amount of free fatty acids exist in oils and fats, so the acid value of edible oils is rarely zero. It is not accurate to use peroxide value and acid value as indicators to evaluate whether oily foods are rancid. Malondialdehyde (MalondiaLdehyde, MDA) is a lipid peroxide generated during the oxidative rancidity of oils and fats. In the presence of peroxide decomposition factors such as heat, light, and heavy metals, it is further decomposed into an aldehyde. Important end-product of oxidative rancidity. With the deepening of oil oxidative rancidity, the content of malondialdehyde increased significantly compared with the peroxide value and acid value. Therefore, the index of malondialdehyde has the characteristics of sensitivity and good stability, and is the most sensitive index for objectively evaluating the rancidity of food oils.
目前丙二醛测定方法有毛细管电泳法、高效液相色谱法、荧光法和比色法。毛细管电泳法、高效液相色谱方法由于仪器昂贵现阶段还没有普及,比色法在试样处理上较繁琐,耗时长。国内目前采用较多的仍然是常规TBA(硫代巴比妥酸)值测定法,TBA值测定法是指利用脂肪的主要氧化终产物-丙二醛与硫代巴比妥酸发生呈色反应,并在532nm处有特征吸收,利用吸收强度和丙二醛的浓度在一定范围内呈线性关系,可用来测定脂肪氧化程度的方法,是反映含油脂制品在贮藏过程中氧化变质程度的直接指标,也是反映含油脂食品安全性的一个重要指标。这种方法方便,易操作。国内目前有一项国家标准《猪油中丙二醛的测定》采用常规的TBA值测定法。但是,常规TBA值方法测定的丙二醛含量水平值偏高,可以通过改进TBA值测定方法,采用高效液相色谱方法测定,运用荧光检测器测定。At present, the determination methods of malondialdehyde include capillary electrophoresis, high performance liquid chromatography, fluorescence method and colorimetry. Capillary electrophoresis and high performance liquid chromatography are not popular at this stage due to expensive instruments, and colorimetry is cumbersome and time-consuming in sample processing. At present, the conventional TBA (thiobarbituric acid) value determination method is still widely used in China. The TBA value determination method refers to the color reaction between malondialdehyde, the main oxidation end product of fat, and thiobarbituric acid. , and has a characteristic absorption at 532nm, using the linear relationship between the absorption intensity and the concentration of malondialdehyde within a certain range, it can be used to measure the degree of fat oxidation, and it is a direct indicator reflecting the degree of oxidative deterioration of oil-containing products during storage , is also an important indicator reflecting the safety of fatty foods. This method is convenient and easy to operate. At present, there is a national standard "Determination of Malondialdehyde in Lard" which adopts the conventional TBA value determination method. However, the MDA content level determined by the conventional TBA value method is relatively high, which can be determined by improving the TBA value determination method, using high-performance liquid chromatography, and using a fluorescence detector.
丙二醛含量水平是评价食品油脂氧化程度的重要指标。作为食品油脂氧化的终产物,测定丙二醛含量更能切确反映食品的实际氧化程度。而且,丙二醛本身也有一定危害,对沙门氏菌有致突变性,为致癌性启动物。迄今为止,我国仍没有针对食品中丙二醛含量的测定建立相应的国家标准或行业标准。通过本技术标准的研究,可以为食品氧化酸败程度评价提供更为准确的测量方法,为食品质量安全监控提供技术支撑。MDA content level is an important index to evaluate the oxidation degree of food oil. As the final product of food oil oxidation, the determination of malondialdehyde content can more accurately reflect the actual oxidation degree of food. Moreover, malondialdehyde itself has certain hazards, is mutagenic to Salmonella, and is a carcinogenic promoter. So far, my country has not established corresponding national standards or industry standards for the determination of malondialdehyde content in food. Through the study of this technical standard, a more accurate measurement method can be provided for the evaluation of food oxidative rancidity, and technical support can be provided for food quality and safety monitoring.
发明内容Contents of the invention
本发明的目的在于:针对目前高油脂类食品酸败氧化难以检测存在所存在的问题,提供一种食品中丙二醛快速、准确的检测方法。The purpose of the present invention is to provide a fast and accurate detection method for malondialdehyde in food, aiming at the problem that it is difficult to detect rancidity and oxidation of high-fat food at present.
为实现上述发明目的,本发明采用如下技术方案:一种检测食品中丙二醛的快速检测法,其特征是色谱柱为C18分离柱(长250mm,内径4.6mm,粒径5μm),柱温为35℃,流动相为乙腈+磷酸二氢钾溶液=18+82(V+V),流速为1.0mL/min,荧光检测器,其激发波长为525nm,发射波长为560nm。利用三氯乙酸混合液提取,然后将丙二醛与TBA溶液衍生化。上机分析,将获得的峰的保留时间与标准品图谱比较,将获得的峰面积代入标准曲线即可知道丙二醛的含量。In order to realize the above-mentioned invention object, the present invention adopts following technical scheme: a kind of rapid detection method of malondialdehyde in detection food, it is characterized in that chromatographic column is C18 separation column (long 250mm, internal diameter 4.6mm, particle diameter 5 μ m), column temperature The temperature is 35°C, the mobile phase is acetonitrile+potassium dihydrogen phosphate solution=18+82(V+V), the flow rate is 1.0mL/min, and the fluorescence detector has an excitation wavelength of 525nm and an emission wavelength of 560nm. It was extracted with trichloroacetic acid mixture, and then derivatized with malondialdehyde and TBA solution. On-machine analysis, the retention time of the obtained peak is compared with the standard spectrum, and the content of malondialdehyde can be known by substituting the obtained peak area into the standard curve.
本发明与其他高效液相色谱检测方式相比一是应用荧光检测器对丙二醛和TBA所生成的复合物进行检测,大大提高了丙二醛的检测限,同时解决了丙二醛检测干扰严重的技术难题,使食品中丙二醛的含量得以准确测定,本发明的这些特别之处在国内外文献中未见报道。Compared with other high performance liquid chromatography detection methods, the present invention uses a fluorescence detector to detect the compound generated by MDA and TBA, which greatly improves the detection limit of MDA and solves the detection interference of MDA Serious technical difficulty makes the content of malondialdehyde in the food be measured accurately, and these special features of the present invention are not reported in domestic and foreign documents.
本发明与其他高效色谱法检测丙二醛含量的结果比较:The present invention compares with the result that other efficient chromatography detects malondialdehyde content:
检测对象:本发明针对食品中丙二醛进行检测。Detection object: the present invention detects malondialdehyde in food.
检测范围:本发明主要应用于油脂类、糕点、鱼肉类的干腌制品、核桃、花生等高油脂食品。Detection range: the present invention is mainly applied to high-fat foods such as oils, cakes, dry-cured fish and meat products, walnuts, and peanuts.
附图说明Description of drawings
图1是丙二醛标准品的高效液相色谱谱图。Fig. 1 is the high-performance liquid chromatogram of malondialdehyde standard substance.
具体实施方式Detailed ways
取超市腌肉和核桃试样,分别按下述操作过程进行分析检测。Take supermarket cured meat and walnut samples, and analyze and detect them according to the following operation procedures.
称取约2g试样,置入250mL三角瓶中,准确加入50mL三氯乙酸混合液,180r/min振摇30min,取约20mL提取液于50mL离心管中,5000r/min离心5min。移取上述试样溶液上清液、丙二醛标准系列溶液各5mL分别置于25.0mL比色管内,加入5.0mL TBA溶液,混匀,置于90℃水浴中保温20min,取出,用冰水浴迅速冷却,移入离心试管内,12000r/min离心5min,取上清液上机测定,丙二醛标准系列和试样同步衍生化,上机分析。Weigh about 2g of sample, put it into a 250mL Erlenmeyer flask, accurately add 50mL of trichloroacetic acid mixture, shake at 180r/min for 30min, take about 20mL of extract in a 50mL centrifuge tube, and centrifuge at 5000r/min for 5min. Pipette 5 mL each of the above sample solution supernatant and malondialdehyde standard series solution into a 25.0 mL colorimetric tube, add 5.0 mL TBA solution, mix well, place in a 90°C water bath for 20 minutes, take it out, and place it in an ice water bath Cool rapidly, transfer to a centrifuge test tube, centrifuge at 12000r/min for 5min, take the supernatant and measure it on the computer, derivatize the standard series of malondialdehyde and the sample synchronously, and analyze it on the computer.
该方法在0.02μg/mL~0.20μg/ml范围内线性良好,精密度良好。The method has good linearity and precision in the range of 0.02μg/mL-0.20μg/ml.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410039942.0A CN103776947A (en) | 2014-01-24 | 2014-01-24 | Method for detecting malondialdehyde in food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410039942.0A CN103776947A (en) | 2014-01-24 | 2014-01-24 | Method for detecting malondialdehyde in food |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103776947A true CN103776947A (en) | 2014-05-07 |
Family
ID=50569442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410039942.0A Pending CN103776947A (en) | 2014-01-24 | 2014-01-24 | Method for detecting malondialdehyde in food |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103776947A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777120A (en) * | 2015-04-24 | 2015-07-15 | 中山大学 | Method for measuring malonaldehyde content in suspension liquid after plasma sterilization |
CN106281725A (en) * | 2016-09-05 | 2017-01-04 | 南京工业大学 | Method for reducing anisidine value of DHA oil |
CN106645471A (en) * | 2016-12-09 | 2017-05-10 | 华南理工大学 | Dual-wavelength detection method capable of determining three toxic aldehydes in edible vegetable oil at the same time |
CN108572224A (en) * | 2018-04-25 | 2018-09-25 | 滨州医学院 | A kind of assay method of malondialdehyde content in biological tissue |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020072125A1 (en) * | 1999-11-09 | 2002-06-13 | Jean Morelle | Method for rapidly determining the presence of malondialdehyde (MDA) in urine, in food and cosmetic products |
US20040033614A1 (en) * | 2002-05-31 | 2004-02-19 | Rajiv Agarwal | Detection of oxidative intermediates in biological samples |
-
2014
- 2014-01-24 CN CN201410039942.0A patent/CN103776947A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020072125A1 (en) * | 1999-11-09 | 2002-06-13 | Jean Morelle | Method for rapidly determining the presence of malondialdehyde (MDA) in urine, in food and cosmetic products |
US20040033614A1 (en) * | 2002-05-31 | 2004-02-19 | Rajiv Agarwal | Detection of oxidative intermediates in biological samples |
Non-Patent Citations (2)
Title |
---|
中华人民共和国卫生部: "《中华人民共和国国家标准 GB/T 5009.181-2003 猪油中丙二醛的测定》", 11 August 2003 * |
中国国家标准化管理委员会等: "《中华人民共和国国家标准 GB/T 28717-2012 饲料中丙二醛的测定 高效液相色谱法》", 3 September 2012 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777120A (en) * | 2015-04-24 | 2015-07-15 | 中山大学 | Method for measuring malonaldehyde content in suspension liquid after plasma sterilization |
CN106281725A (en) * | 2016-09-05 | 2017-01-04 | 南京工业大学 | Method for reducing anisidine value of DHA oil |
CN106645471A (en) * | 2016-12-09 | 2017-05-10 | 华南理工大学 | Dual-wavelength detection method capable of determining three toxic aldehydes in edible vegetable oil at the same time |
CN106645471B (en) * | 2016-12-09 | 2019-06-18 | 华南理工大学 | A dual-wavelength detection method for simultaneous determination of three toxic aldehydes in edible vegetable oil |
CN108572224A (en) * | 2018-04-25 | 2018-09-25 | 滨州医学院 | A kind of assay method of malondialdehyde content in biological tissue |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy | |
Velioğlu et al. | Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis | |
Rustad et al. | Lipid oxidation | |
Zhou et al. | Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods | |
Bergamo et al. | Measurement of malondialdehyde levels in food by high-performance liquid chromatography with fluorometric detection | |
Franco et al. | Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months | |
Berhe et al. | Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters | |
Triumf et al. | Composition and some quality characteristics of the longissimus muscle of reindeer in Norway compared to farmed New Zealand red deer | |
Liu et al. | Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation | |
CN103776947A (en) | Method for detecting malondialdehyde in food | |
Biswas et al. | Meat quality analysis: advanced evaluation methods, techniques, and technologies | |
Wu et al. | Effects of dietary replacement of fish oil by vegetable oil on proximate composition and odor profile of hepatopancreas and gonad of Chinese mitten crab (Eriocheir sinensis) | |
Song et al. | Evaluation of lipid peroxidation level in corn dried distillers grains with solubles | |
Fidalgo et al. | Enhanced preservation of vacuum-packaged Atlantic salmon by hyperbaric storage at room temperature versus refrigeration | |
Logan et al. | Preliminary investigation into the use of Raman spectroscopy for the verification of Australian grass and grain fed beef | |
Qiao et al. | Investigation of biogenic amines in dried bonito flakes from different countries using high-performance liquid chromatography | |
Sørensen et al. | Biogenic amines: a key freshness parameter of animal protein products in the coming circular economy | |
Szydłowska‐Czerniak et al. | Antioxidant capacity of rapeseed meal and rapeseed oils enriched with meal extract | |
Ma et al. | Formation of malondialdehyde, 4-hydroxy-hexenal and 4-hydroxy-nonenal during deep-frying of potato sticks and chicken breast meat in vegetable oils | |
Windahl et al. | The determination of niacin in selected foods by capillary electrophoresis and high performance liquid chromatography: acid extraction | |
CN106645471B (en) | A dual-wavelength detection method for simultaneous determination of three toxic aldehydes in edible vegetable oil | |
Fernando et al. | Quantitation of hexanal by automated SPME for studying dietary influences on the oxidation of pork | |
Sivadier et al. | Latency and persistence of diet volatile biomarkers in lamb fats | |
Marcinčák et al. | Determination of lipid oxidation level in broiler meat by liquid chromatography | |
Marcincak et al. | Comparative evaluation of analytical techniques to quantify malondialdehyde in broiler meat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140507 |