CN103772871A - 一种新型复合聚酰亚胺泡沫塑料的制备方法 - Google Patents

一种新型复合聚酰亚胺泡沫塑料的制备方法 Download PDF

Info

Publication number
CN103772871A
CN103772871A CN201310704113.5A CN201310704113A CN103772871A CN 103772871 A CN103772871 A CN 103772871A CN 201310704113 A CN201310704113 A CN 201310704113A CN 103772871 A CN103772871 A CN 103772871A
Authority
CN
China
Prior art keywords
preparation
polyimide
ppg
new type
composite polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310704113.5A
Other languages
English (en)
Other versions
CN103772871B (zh
Inventor
李荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU CITY WANTAI VACUUM FUENACE CO Ltd
Original Assignee
SUZHOU CITY WANTAI VACUUM FUENACE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU CITY WANTAI VACUUM FUENACE CO Ltd filed Critical SUZHOU CITY WANTAI VACUUM FUENACE CO Ltd
Priority to CN201310704113.5A priority Critical patent/CN103772871B/zh
Publication of CN103772871A publication Critical patent/CN103772871A/zh
Application granted granted Critical
Publication of CN103772871B publication Critical patent/CN103772871B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明一种新型复合聚酰亚胺泡沫塑料的制备方法,属于工程塑料领域。包括以下技术步骤:a、称取3,3′,4,4′-二苯甲酮四酸二甲酯BTDA和4,4′-二氨基二苯甲烷MDA及封端剂5-降冰片烯-2,3-二酸单甲酯,反应后得到聚酰亚胺反应物粉体;b、称取三聚氰胺,聚环氧丙烷PPG,催化剂量的二月桂酸二丁基锡,二乙醇胺,三羟基丙烷,反应后得到PPG/三聚氰胺聚合物;c、按比例称取聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅,搅拌进行粉体混合,将混合粉体装入模具中进行热压成型。本发明所获得复合聚酰亚胺泡沫塑料具有有优良耐候性,同时又具有高折射率、高耐热、低吸湿性,阻燃性好,制备方法简单,生成成本低。

Description

一种新型复合聚酰亚胺泡沫塑料的制备方法
技术领域
本发明属于工程塑料领域,特别涉及一种新型复合聚酰亚胺泡沫塑料的制备方法。
背景技术
聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺泡沫塑料综合了聚酰亚胺树脂和泡沫塑料的结构与性能优点。是一种高性能的泡沫塑料。首先,聚酰亚胺泡沫塑料的热稳定性最好,其长期可耐250~300℃。短期可耐400~500℃,弹性聚酰亚胺泡沫塑料可耐极低温,在-269℃的液态氦中仍不会脆裂:其次,聚酰亚胺泡沫塑料具有优异的阻燃性能,为自熄性泡沫塑料,氧指数高达42%:第三,聚酰亚胺泡沫塑料具有很高的耐辐照性能。在5×109 md剂量辐照后,强度仍能保持80%左右;第四,聚酰亚胺泡沫塑料还具有很好的介电性能,介电常数为3.4左右,如引入空气以纳米尺寸分散在聚酰亚胺泡沫中制成的聚酰亚胺纳米泡沫塑料,介电常数可降到2.5左右。
聚甲基丙烯酸甲酯(PMMA)在光学材料中应用最广,使用量也最大。其优点是: (1) 优异的透光性(对可见光透过率为92 %~94 %) 、较低的色散(阿贝数为57.8) 和双折射; (2) 优异的耐候性; (3) 优异的抗冲击性(冲击强度为2.0~3.0 kJ/m2 ) ; (4) 简单的制备工艺和优异的加工性能。正是这些优点使PMMA 成为设计和制备新型有机聚合物透明材料最重要的基体。然而,PMMA 作为光学材料使用也有其不足之处,主要有: (1) 折射率仅为1.492 ,与PC、PS 等的1.59 相比较低,从而使得制作相同屈光度的镜片及透镜等光学元件时会较厚,不适应光学器件小型化轻量化的发展要求; (2) 其玻璃化转变温度( Tg ) 仅105 ℃,热变形温度为95 ℃,故耐热性较差,不能在较高温度下使用,极大地限制了PMMA 在光学领域的应用; (3) 20 ℃、24 h 的平均吸水率达2.1 % ,表现出较高的吸湿性,使材料在使用过程中因吸湿而性能下降,尺寸稳定性变差,难以达到制备高精度光学仪器的要求; (4) 其布氏硬度为15.3 ,表面硬度低,耐磨性差,仅为CR-39 透明材料的1/40 ,故不耐刮擦、易起毛。
有研究报道,采用3,3′,4,4′-二苯甲酮四酸二甲酯(BTDA)和二元胺4,4′-二氨基二苯甲烷(MDA)及封端剂5-降冰片烯-2,3-二酸单甲酯在低沸点醇溶剂中制成溶液。120~232℃预聚合,进一步升温,预聚体交联形成聚酰亚胺泡沫塑料,然后在70℃下加热去溶剂得到先驱体粉末,最后在220℃下加热发泡成为聚酰亚胺泡沫塑料,该工艺从天然植物中提取的α-2蒎烯、β-2蒎烯、冰片、异冰片,以及从石油、煤焦油副产品中得到的双环戊二烯、降冰片烯及其衍生物等,来源丰富,价廉易得。但整个工艺生产成本高,用到有机溶剂,环境污染大。
发明内容:
本发明的目的是针对现有技术中的不足,提供一种操作简便的,克服了聚酰亚胺、聚甲基丙烯酸甲酯原有不良特性,而又保持其原有优异特性的,成本较低,适于工业化生产的新型复合聚酰亚胺泡沫塑料的制备方法。
技术方案:为实现上述发明目的,一种新型复合聚酰亚胺泡沫塑料的制备方法,包括以下技术步骤:
a、称取3,3′,4,4′-二苯甲酮四酸二甲酯BTDA和4,4′-二氨基二苯甲烷MDA及封端剂5-降冰片烯-2,3-二酸单甲酯,溶解于计量的四氢呋喃/甲醇溶液中,充入氮气,保温45~70℃,反应0.5~8小时,得到聚酰亚胺反应物溶液,将反应液抽真空至0.1~1.5Kpa,蒸馏回收溶剂,得到聚酰亚胺反应物粉体;
b、称取三聚氰胺,聚环氧丙烷PPG,催化剂量的二月桂酸二丁基锡,二乙醇胺,三羟基丙烷,充入氮气,保温40~60℃,反应0.5~6小时,得到聚醚改性的三聚氰胺反应物溶液,减压蒸除小分子物质,得到PPG/三聚氰胺聚合物;
c、按比例称取聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅,搅拌下进行粉体混合,将混合粉体装入模压成型模具中进行热压成型,保持成型温度200~300℃,成型压力为25~40Mpa,成型时间60~150分钟,冷却后脱模,得到一种新型复合聚酰亚胺泡沫塑料。
所述的聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅, 质量比为20~35:30~50:5~10:0.5~3。
所述的成型温度为220℃。
所述的成型压力为32Mpa。
所述的成型时间为110分钟。
根据以上的技术方案,可以实现以下的有益效果:与现有技术相比,本发明具有以下优点:本发明所获得复合聚酰亚胺泡沫塑料具有有优良耐候性,同时又具有高折射率、高耐热、低吸湿性,阻燃性好,制备方法简单,生成成本低,工业化实施容易。
具体实施方式:
    下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1:
称取3,3′,4,4′-二苯甲酮四酸二甲酯BTDA(300.0kg)和4,4′-二氨基二苯甲烷MDA(300.0kg), 5-降冰片烯-2,3-二酸单甲酯(65.0kg),溶解于四氢呋喃(180.0kg)和甲醇(120.0kg)的混合溶液中,充入氮气,保温45~70℃,反应4小时,得到聚酰亚胺反应物溶液,将反应液抽真空至0.1~1.5Kpa,蒸馏回收溶剂,得到聚酰亚胺反应物粉体;
称取三聚氰胺(80.0kg),聚环氧丙烷PPG(300.0kg),催化剂二月桂酸二丁基锡(0.2kg),二乙醇胺(15.2kg),三羟基丙烷(80.0kg),充入氮气,保温40~60℃,反应3.5小时,得到聚醚改性的三聚氰胺反应物溶液,减压蒸除小分子物质,得到PPG/三聚氰胺聚合物;
按质量比为20:40:8:1的比例称取聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺聚合物,纳米二氧化硅,搅拌下进行粉体混合,将混合粉体装入模压成型模具中进行热压成型,保持成型温度220℃,成型压力为32Mpa,成型时间110分钟,冷却后脱模,得到一种新型复合聚酰亚胺泡沫塑料。
实施例2:
称取3,3′,4,4′-二苯甲酮四酸二甲酯BTDA(300.0kg)和4,4′-二氨基二苯甲烷MDA(300.0kg), 5-降冰片烯-2,3-二酸单甲酯(65.0kg),溶解于四氢呋喃(180.0kg)和甲醇(120.0kg)的混合溶液中,充入氮气,保温45~70℃,反应4小时,得到聚酰亚胺反应物溶液,将反应液抽真空至0.1~1.5Kpa,蒸馏回收溶剂,得到聚酰亚胺反应物粉体;
称取三聚氰胺(80.0kg),聚环氧丙烷PPG(300.0kg),催化剂二月桂酸二丁基锡(0.2kg),二乙醇胺(15.2kg),三羟基丙烷(80.0kg),充入氮气,保温40~60℃,反应3.5小时,得到聚醚改性的三聚氰胺反应物溶液,减压蒸除小分子物质,得到PPG/三聚氰胺聚合物;
按质量比为30:45:8:1.5的比例称取聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅,搅拌下进行粉体混合,将混合粉体装入模压成型模具中进行热压成型,保持成型温度220℃,成型压力为32Mpa,成型时间110分钟,冷却后脱模,得到一种新型复合聚酰亚胺泡沫塑料。

Claims (5)

1. 一种新型复合聚酰亚胺泡沫塑料的制备方法,其特征在于,包括以下技术步骤:
a、称取3,3′,4,4′-二苯甲酮四酸二甲酯BTDA和4,4′-二氨基二苯甲烷MDA及封端剂5-降冰片烯-2,3-二酸单甲酯,溶解于计量的四氢呋喃/甲醇溶液中,充入氮气,保温45~70℃,反应0.5~8小时,得到聚酰亚胺反应物溶液,将反应液抽真空至0.1~1.5Kpa,蒸馏回收溶剂,得到聚酰亚胺反应物粉体;
b、称取三聚氰胺,聚环氧丙烷PPG,催化剂量的二月桂酸二丁基锡,二乙醇胺,三羟基丙烷,充入氮气,保温40~60℃,反应0.5~6小时,得到聚醚改性的三聚氰胺反应物溶液,减压蒸除小分子物质,得到PPG/三聚氰胺聚合物;
c、按比例称取聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅,搅拌下进行粉体混合,将混合粉体装入模压成型模具中进行热压成型,保持成型温度200~300℃,成型压力为25~40Mpa,成型时间60~150分钟,冷却后脱模,得到一种新型复合聚酰亚胺泡沫塑料。
2.如权利要求1所述一种新型复合聚酰亚胺泡沫塑料的制备方法,其特征在于:聚酰亚胺,聚甲基丙烯酸甲酯,PPG/三聚氰胺,纳米二氧化硅, 质量比为20~35:30~50:5~10:0.5~3。
3.如权利要求1所述一种新型复合聚酰亚胺泡沫塑料的制备方法,其特征在于:成型温度为220℃。
4.如权利要求1所述一种新型复合聚酰亚胺泡沫塑料的制备方法,其特征在于:成型压力为32Mpa。
5.如权利要求1所述一种新型复合聚酰亚胺泡沫塑料的制备方法,其特征在于:成型时间为110分钟。
CN201310704113.5A 2013-12-20 2013-12-20 一种复合聚酰亚胺泡沫塑料的制备方法 Expired - Fee Related CN103772871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310704113.5A CN103772871B (zh) 2013-12-20 2013-12-20 一种复合聚酰亚胺泡沫塑料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310704113.5A CN103772871B (zh) 2013-12-20 2013-12-20 一种复合聚酰亚胺泡沫塑料的制备方法

Publications (2)

Publication Number Publication Date
CN103772871A true CN103772871A (zh) 2014-05-07
CN103772871B CN103772871B (zh) 2016-08-17

Family

ID=50565668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310704113.5A Expired - Fee Related CN103772871B (zh) 2013-12-20 2013-12-20 一种复合聚酰亚胺泡沫塑料的制备方法

Country Status (1)

Country Link
CN (1) CN103772871B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384932A (zh) * 2014-08-29 2016-03-09 波音公司 具有双官能和混合官能封端基的聚酰亚胺的纳米改性骨架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528950A (en) * 1967-07-03 1970-09-15 Trw Inc Polyimide polymers
CN101058639A (zh) * 2006-04-19 2007-10-24 中国科学院化学研究所 一种含氟聚酰亚胺基体树脂及其制备方法
CN101585966A (zh) * 2009-06-17 2009-11-25 东华大学 三维正交机织物增强pmr型聚酰亚胺复合材料的生产方法
CN101752024A (zh) * 2010-01-26 2010-06-23 深圳典邦科技有限公司 耐高温触摸屏用导电银浆及其制备方法
CN102618034A (zh) * 2012-03-24 2012-08-01 青岛海洋新材料科技有限公司 一种聚醚胺改性异氰酸酯基聚酰亚胺泡沫体制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528950A (en) * 1967-07-03 1970-09-15 Trw Inc Polyimide polymers
CN101058639A (zh) * 2006-04-19 2007-10-24 中国科学院化学研究所 一种含氟聚酰亚胺基体树脂及其制备方法
CN101585966A (zh) * 2009-06-17 2009-11-25 东华大学 三维正交机织物增强pmr型聚酰亚胺复合材料的生产方法
CN101752024A (zh) * 2010-01-26 2010-06-23 深圳典邦科技有限公司 耐高温触摸屏用导电银浆及其制备方法
CN102618034A (zh) * 2012-03-24 2012-08-01 青岛海洋新材料科技有限公司 一种聚醚胺改性异氰酸酯基聚酰亚胺泡沫体制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
詹茂盛 等编著: "《聚酰亚胺泡沫》", 30 April 2010, 国防工业出版社 *
龙永江等: "聚酰亚胺泡沫塑料的合成路线及制备工艺", 《合成树脂及塑料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384932A (zh) * 2014-08-29 2016-03-09 波音公司 具有双官能和混合官能封端基的聚酰亚胺的纳米改性骨架

Also Published As

Publication number Publication date
CN103772871B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Du et al. Ti3C2T x@ PDA-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity
Du et al. Amino-functionalized single-walled carbon nanotubes-integrated polyurethane phase change composites with superior photothermal conversion efficiency and thermal conductivity
Zhou et al. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage
Mu et al. Robust aerogels based on conjugated microporous polymer nanotubes with exceptional mechanical strength for efficient solar steam generation
Zhao et al. Hierarchically channel-guided porous wood-derived shape-stabilized thermal regulated materials with enhanced thermal conductivity for thermal energy storage
Xi et al. Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage
Cao et al. One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage
Zhang et al. Biomass homogeneity reinforced carbon aerogels derived functional phase‐change materials for solar–thermal energy conversion and storage
CN112280053B (zh) 基于笼状分子砌块的二维COFs纳米片及其应用
Wu et al. Bioinspired Micro/Nanostructured Polyethylene/Poly (Ethylene Oxide)/Graphene Films with Robust Superhydrophobicity and Excellent Antireflectivity for Solar–Thermal Power Generation, Thermal Management, and Afterheat Utilization
CN102061109B (zh) 苯并唑类功能化的石墨烯杂化材料的制备方法
Lin et al. Thermally induced flexible wood based on phase change materials for thermal energy storage and management
Cao et al. Branched alkylated polynorbornene and 3D flower-like MoS2 nanospheres reinforced phase change composites with high thermal energy storage capacity and photothermal conversion efficiency
Luo et al. Multi‐functional polyurethane composites with self‐healing and shape memory properties enhanced by graphene oxide
Li et al. Polydopamine-coated metal-organic framework-based composite phase change materials for photothermal conversion and storage
CN111073325A (zh) 一种木质素/纤维热塑性复合材料及其制备方法
Sun et al. Composites with a novel core–shell structural expanded perlite/polyethylene glycol composite PCM as novel green energy storage composites for building energy conservation
Wang et al. Fully recyclable and reprocessable polystyrene-based vitrimers with improved thermal stability and mechanical properties through nitrogen-coordinating cyclic boronic ester bonds
Zhao et al. Aromatic Schiff Base-Based polymeric phase change materials for Safe, Leak-Free, and efficient thermal energy management
Wang et al. Smart shape memory polyurethane with photochromism and mechanochromism properties
Zhao et al. Preparation of mechanically robust and thermochromic phase change materials for thermal energy storage and temperature indicator
Yang et al. Cellulose nanofiber encapsulated polyethylene glycol phase change composites containing AIE-gen for monitoring leak process
CN103772871A (zh) 一种新型复合聚酰亚胺泡沫塑料的制备方法
Liu et al. Phase change energy storage material with photocuring, photothermal conversion, and self-cleaning performance via a two-layer structure
Li et al. Dual-functional polyethylene glycol/graphene aerogel phase change composites with ultrahigh loading for thermal energy storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20161220

CF01 Termination of patent right due to non-payment of annual fee