CN103771848B - La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof - Google Patents
La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof Download PDFInfo
- Publication number
- CN103771848B CN103771848B CN201410001797.7A CN201410001797A CN103771848B CN 103771848 B CN103771848 B CN 103771848B CN 201410001797 A CN201410001797 A CN 201410001797A CN 103771848 B CN103771848 B CN 103771848B
- Authority
- CN
- China
- Prior art keywords
- feo
- cofe
- sol
- preparation
- composite granule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000843 powder Substances 0.000 title abstract description 61
- 150000001875 compounds Chemical class 0.000 title abstract description 6
- 229910002518 CoFe2O4 Inorganic materials 0.000 title abstract 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000003756 stirring Methods 0.000 claims abstract description 23
- 239000000126 substance Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000012153 distilled water Substances 0.000 claims abstract description 11
- 238000001354 calcination Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 4
- 229910003321 CoFe Inorganic materials 0.000 claims description 77
- 239000002131 composite material Substances 0.000 claims description 64
- 238000010438 heat treatment Methods 0.000 claims description 12
- -1 iron ion Chemical class 0.000 claims description 12
- 238000001291 vacuum drying Methods 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910001451 bismuth ion Inorganic materials 0.000 claims description 7
- 229910001429 cobalt ion Inorganic materials 0.000 claims description 7
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 9
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 claims 1
- 235000019219 chocolate Nutrition 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 4
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 abstract description 2
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 abstract description 2
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 abstract description 2
- 230000005291 magnetic effect Effects 0.000 description 15
- 229910052746 lanthanum Inorganic materials 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 229910052797 bismuth Inorganic materials 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 10
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 9
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005621 ferroelectricity Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 2
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 230000005303 antiferromagnetism Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910002902 BiFeO3 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Magnetic Ceramics (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
技术领域 technical field
本发明属于材料科学领域,具体涉及一种La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体及其制备方法。 The invention belongs to the field of material science, and specifically relates to a La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder and a preparation method thereof.
背景技术 Background technique
多铁性材料是一大类非常重要的先进功能材料,利用多铁性材料制成的元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域。随着移动通讯和计算机技术的飞速发展,要求各种电子设备变得更加高度集成化、多功能化、小型化和快速响应化,从而对材料提出了更高的标准,要求元器件不仅大容量、小型化、高速度,而且具有可靠性、耐久性、抗振动和低成本的特点,这就需要发展同时具有两种或两种以上功能的新型材料,多铁性材料也随之成为近年来国际上一个新的热门研究领域,其中具有钙钛矿结构的BiFeO3成为大家研究的一种重要材料,因为BiFeO3是室温以上同时具有铁电性和反铁磁性的唯一材料,其铁电居里温度为TC=830℃,反铁磁尼尔温度为TN=370℃,并且两种铁性之间存在耦合作用,即通过磁场来调节电性能,或用电场来控制磁性能。 Multiferroic materials are a large class of very important advanced functional materials. Components made of multiferroic materials have the functions of converting, transmitting, processing information, storing energy, saving energy, etc., and are widely used in energy, telecommunications, automatic Control, communication, household appliances, biology, medical and health, light industry, mineral processing, physical prospecting, military industry and other fields. With the rapid development of mobile communication and computer technology, all kinds of electronic equipment are required to become more highly integrated, multi-functional, miniaturized and fast-responsive, thus putting forward higher standards for materials, requiring components not only with large capacity , miniaturization, high speed, and has the characteristics of reliability, durability, vibration resistance and low cost, which requires the development of new materials with two or more functions at the same time, multiferroic materials have also become a A new hot research field in the world, in which BiFeO 3 with a perovskite structure has become an important material for everyone to study, because BiFeO 3 is the only material that has both ferroelectricity and antiferromagnetism above room temperature, and its ferroelectricity ranks The inner temperature is TC=830°C, the antiferromagnetic Niel temperature is TN=370°C, and there is a coupling effect between the two ferrotypes, that is, the electrical properties are adjusted by the magnetic field, or the magnetic properties are controlled by the electric field.
目前BiFeO3存在三个突出问题:(1)由于Bi容易挥发,合成时必须同时考虑动力学和热力学上的平衡,因此难以获得纯相的BiFeO3。对BiFeO3生长工艺和条件的控制成为一个具有挑战的工作;(2)漏电流较大导致铁电性难以测量;(3)BiFeO3特殊的G型反铁磁结构,使宏观尺寸的BiFeO3在室温下表现出很弱的反铁磁性,这些严重阻碍了BiFeO3实际应用的发展。现在工业生产中要球磁 电材料具有尽可能大的矫顽场、高的饱和磁化强度和高的磁电耦合系数等,为了得到具有高饱和磁化强度并且高的矫顽力的磁电材料,通常人们选择用掺杂改性或用不同的材料进行复合来实现这一目的。例如硬磁/软磁复合由硬磁相和软磁相构成,它们之间有很强的交换耦合作用。在反磁化过程中,受硬磁层磁矩的影响,软磁层内的磁矩偏转方向的分布是连续的,反磁化场越大或离界面越远的地方磁矩越接近外场方向,而且在磁场小于交换耦合临界场时磁矩能可逆地转动。对于ABO3型钙钦矿铁电材料,A位离子和B位离子的取代可实现其结构调整,并最终达到改变性能的目的BiFeO3进行一定的元素掺杂可降低漏电流进而提高铁酸铋的磁性能和电性能;CoFe2O4具有高的矫顽场和饱和磁化强度,CoFe2O4的引入可以提高BiFeO3的磁性能。 At present, there are three prominent problems in BiFeO 3 : (1) Since Bi is easy to volatilize, the balance of kinetics and thermodynamics must be taken into consideration during synthesis, so it is difficult to obtain pure phase BiFeO 3 . The control of BiFeO 3 growth process and conditions has become a challenging work; (2) The large leakage current makes it difficult to measure the ferroelectricity; (3) The special G-type antiferromagnetic structure of BiFeO 3 makes the macroscopic size of BiFeO 3 It exhibits very weak antiferromagnetism at room temperature, which seriously hinders the development of BiFeO3 for practical applications. Now in industrial production, spherical magnetoelectric materials should have as large a coercive field as possible, high saturation magnetization and high magnetoelectric coupling coefficient, etc., in order to obtain magnetoelectric materials with high saturation magnetization and high coercive force, Usually people choose to use doping modification or compound with different materials to achieve this purpose. For example, a hard magnetic/soft magnetic compound is composed of a hard magnetic phase and a soft magnetic phase, and there is a strong exchange coupling between them. In the reverse magnetization process, affected by the magnetic moment of the hard magnetic layer, the distribution of the deflection direction of the magnetic moment in the soft magnetic layer is continuous. The larger the reverse magnetization field or the farther away from the interface, the closer the magnetic moment is to the direction of the external field, and The magnetic moment can rotate reversibly when the magnetic field is less than the exchange coupling critical field. For the ABO 3 -type cachinite ferroelectric material, the substitution of A-site ions and B-site ions can realize its structure adjustment, and finally achieve the purpose of changing the performance. Doping BiFeO 3 with certain elements can reduce the leakage current and improve the bismuth ferrite. Magnetic and electrical properties; CoFe 2 O 4 has high coercive field and saturation magnetization, and the introduction of CoFe 2 O 4 can improve the magnetic properties of BiFeO 3 .
通常制备磁电复合粉体的方法是首先采用固相法分别制备出各单相粉体,然后进行机械混合。此方法,不仅工艺复杂所需要的煅烧温度高,而且制备出的复合粉体是在晶粒尺寸上进行混合导致均匀性比较差,最终直接影响到复合粉体的性能。 Usually, the method for preparing magnetoelectric composite powders is to prepare each single-phase powders separately by solid-phase method firstly, and then perform mechanical mixing. This method not only requires a high calcination temperature due to the complex process, but also the prepared composite powder is mixed on the grain size, resulting in relatively poor uniformity, which ultimately directly affects the performance of the composite powder.
发明内容 Contents of the invention
本发明的目的在于克服现有技术中的问题,提供La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体及其制备方法,其制备温度较低、方法简单,制得的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体均匀性较好。 The object of the present invention is to overcome the problems in the prior art and provide La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder and its preparation method, which has a relatively low preparation temperature and simple method, and the prepared La 0.1 Bi The uniformity of 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder is better.
为实现上述目的,本发明采用如下的技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的制备方法,包括以下步骤: A preparation method of La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder, comprising the following steps:
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且0.6≤x≤0.9; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and 0.6≤x≤0.9;
2)向步骤1)的溶液中加入柠檬酸,在80-100℃下加热并搅拌均匀,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子总摩尔量的2-4倍; 2) Add citric acid to the solution in step 1), heat and stir at 80-100°C to obtain sol A, wherein the molar amount of citric acid added is the total amount of iron ions, bismuth ions, lanthanum ions, and cobalt ions in the solution. 2-4 times the molar weight;
3)搅拌下,将溶胶A的pH值调节为6.5-7.5,得到均匀的溶胶B; 3) Under stirring, adjust the pH value of sol A to 6.5-7.5 to obtain uniform sol B;
4)将溶胶B在180-200℃下干燥,得到黑褐色疏松状干凝胶; 4) Sol B was dried at 180-200°C to obtain a dark brown loose xerogel;
5)将干凝胶研磨后,在700-800℃下煅烧1-4h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) After grinding the xerogel, calcining at 700-800°C for 1-4h to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
所述步骤2)中加热是通过水浴加热实现的。 The heating in the step 2) is realized by heating in a water bath.
所述步骤2)中搅拌的时间为1~2小时。 The stirring time in the step 2) is 1-2 hours.
所述步骤3)中pH值是采用乙二胺或氨水调节的。 The pH value in the step 3) is adjusted by using ethylenediamine or ammonia water.
所述步骤4)中干燥的时间为2-4小时。 The drying time in step 4) is 2-4 hours.
所述步骤4)中干燥是在真空干燥箱中进行的。 The drying in step 4) is carried out in a vacuum oven.
所述步骤5)中煅烧是在电炉中进行的。 Calcination in step 5) is carried out in an electric furnace.
一种La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体,其特征在于,该La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且0.6≤x≤0.9。 A La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder, characterized in that the general chemical formula of the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and 0.6≤x≤0.9.
相对于现有技术,本发明具有的有益效果:本发明以Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O、Co(NO3)2·6H2O和柠檬酸为原料,经调pH值、干燥,在700-800℃下煅烧得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体;本发明制备温度较低、方法简单,且节省能源;本发明制得的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体均匀性较好,随着复合粉体中CoFe2O4含量增加,饱和磁化强度由4.8emu/g增加到26.1emu/g,矫顽场由1260.14奥斯特增加到1930.73奥斯特,克服了现有制备复合粉体的方法中合成温度较高、制得的复合粉体性能较差的 问题。 Compared with the prior art, the present invention has beneficial effects: the present invention uses Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La(NO 3 ) 3 ·6H 2 O, Co (NO 3 ) 2 ·6H 2 O and citric acid are used as raw materials, adjusted pH, dried, and calcined at 700-800°C to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder; prepared by the present invention The temperature is low, the method is simple, and energy is saved; the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared by the present invention has better uniformity, and as the content of CoFe 2 O 4 in the composite powder increases, The saturation magnetization increased from 4.8emu/g to 26.1emu/g, and the coercive field increased from 1260.14 Oersted to 1930.73 Oersted, which overcomes the high synthesis temperature and the obtained composite powder in the existing method for preparing composite powder. The problem of poor powder performance.
附图说明 Description of drawings
图1为当La0.1Bi0.9FeO3的质量百分比为90%,CoFe2O4质量百分比为10%时复合粉体在700℃煅烧下的XRD图。 Figure 1 is the XRD pattern of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 90% and the mass percentage of CoFe 2 O 4 is 10%.
图2为当La0.1Bi0.9FeO3的质量百分比为80%,CoFe2O4质量百分比为20%时复合粉体在700℃煅烧下的XRD图。 Figure 2 is the XRD pattern of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 80% and the mass percentage of CoFe 2 O 4 is 20%.
图3为当La0.1Bi0.9FeO3的质量百分比为70%,CoFe2O4质量百分比为30%时复合粉体在700℃煅烧下的XRD图。 Figure 3 is the XRD pattern of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 70% and the mass percentage of CoFe 2 O 4 is 30%.
图4为当La0.1Bi0.9FeO3的质量百分比为60%,CoFe2O4质量百分比为40%时复合粉体在700℃煅烧下的XRD图。 Figure 4 is the XRD pattern of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 60% and the mass percentage of CoFe 2 O 4 is 40%.
图5为当La0.1Bi0.9FeO3的质量百分比为90%,CoFe2O4质量百分比为10%时复合粉体在700℃煅烧后粉体的SEM图。 Figure 5 is an SEM image of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 90% and the mass percentage of CoFe 2 O 4 is 10%.
图6为当La0.1Bi0.9FeO3的质量百分比为80%,CoFe2O4质量百分比为20%时复合粉体在700℃煅烧后粉体的SEM图。 Fig. 6 is an SEM image of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 80% and the mass percentage of CoFe 2 O 4 is 20%.
图7为当La0.1Bi0.9FeO3的质量百分比为70%,CoFe2O4质量百分比为30%时复合粉体在700℃煅烧后粉体的SEM图。 Figure 7 is an SEM image of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 70% and the mass percentage of CoFe 2 O 4 is 30%.
图8为当La0.1Bi0.9FeO3的质量百分比为60%,CoFe2O4质量百分比为40%时复合粉体在700℃煅烧后粉体的SEM图。 Figure 8 is an SEM image of the composite powder calcined at 700°C when the mass percentage of La 0.1 Bi 0.9 FeO 3 is 60% and the mass percentage of CoFe 2 O 4 is 40%.
图9为当La0.1Bi0.9FeO3质量比为90%,CoFe2O4的质量比为10%时复合粉体在700℃煅烧后粉体的磁滞回线。 Figure 9 is the hysteresis loop of the composite powder calcined at 700°C when the mass ratio of La 0.1 Bi 0.9 FeO 3 is 90% and the mass ratio of CoFe 2 O 4 is 10%.
图10为当La0.1Bi0.9FeO3质量比为80%,CoFe2O4的质量比为20%时复合粉体在700℃煅烧后粉体的磁滞回线。 Figure 10 is the hysteresis loop of the composite powder calcined at 700°C when the mass ratio of La 0.1 Bi 0.9 FeO 3 is 80% and the mass ratio of CoFe 2 O 4 is 20%.
图11为当La0.1Bi0.9FeO3质量比为70%,CoFe2O4的质量比为30%时复合粉 体在700℃煅烧后粉体的磁滞回线。 Figure 11 is the hysteresis loop of the composite powder calcined at 700°C when the mass ratio of La 0.1 Bi 0.9 FeO 3 is 70% and the mass ratio of CoFe 2 O 4 is 30%.
图12为当La0.1Bi0.9FeO3质量比为60%,CoFe2O4的质量比为40%时复合粉体在700℃煅烧后粉体的磁滞回线。 Figure 12 is the hysteresis loop of the composite powder calcined at 700°C when the mass ratio of La 0.1 Bi 0.9 FeO 3 is 60% and the mass ratio of CoFe 2 O 4 is 40%.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明做详细说明。 The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1 Example 1
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.9; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; where, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.9;
2)向步骤1)的溶液中加入柠檬酸,在80℃水浴加热下搅拌1h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的2倍; 2) Add citric acid to the solution in step 1), and stir for 1 h under heating in a water bath at 80°C to obtain sol A, wherein the molar amount of citric acid added is the four metals in the solution: iron ions, bismuth ions, lanthanum ions, and cobalt ions 2 times the total molar mass of ions;
3)搅拌下,采用乙二胺将溶胶A的pH值调节为6.5,得到均匀的溶胶B; 3) Under stirring, use ethylenediamine to adjust the pH value of sol A to 6.5 to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在200℃下干燥2h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 200°C for 2 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在700℃下煅烧1h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Put the dry gel into a crucible after grinding, and place the crucible in an electric furnace for calcination at 700°C for 1 hour to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.9。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.9.
从图1可以看出,本实施例制备的磁电复合粉体中有含有钙钛矿型La0.1Bi0.9FeO3和尖晶石型CoFe2O4。 It can be seen from Figure 1 that the magnetoelectric composite powder prepared in this example contains perovskite-type La 0.1 Bi 0.9 FeO 3 and spinel-type CoFe 2 O 4 .
从图5可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体中两相晶粒分布较为均匀,且两相晶粒发育较好,其中La0.1Bi0.9FeO3晶粒尺寸为 200nm左右,CoFe2O4的晶粒尺寸小于100nm。 It can be seen from Figure 5 that the distribution of two-phase grains in the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively uniform, and the two-phase grains are well developed, among which La 0.1 Bi The grain size of 0.9 FeO 3 is about 200nm, and the grain size of CoFe 2 O 4 is less than 100nm.
从图9可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的磁滞回线较为平滑,饱和磁化强度为4.8emu/g,矫顽场为1411.39奥斯特。 It can be seen from Figure 9 that the hysteresis loop of the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively smooth, the saturation magnetization is 4.8emu/g, and the coercive field is 1411.39 oersted.
实施例2 Example 2
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.8; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.8;
2)向步骤1)的溶液中加入柠檬酸,在100℃水浴加热下搅拌1h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的3倍; 2) Add citric acid to the solution in step 1), and stir for 1 hour under heating in a water bath at 100°C to obtain sol A, wherein the molar amount of citric acid added is the four metals in the solution: iron ions, bismuth ions, lanthanum ions, and cobalt ions 3 times the total molar mass of ions;
3)搅拌下,采用乙二胺将溶胶A的pH值调节为7.5,得到均匀的溶胶B; 3) Under stirring, use ethylenediamine to adjust the pH value of Sol A to 7.5 to obtain uniform Sol B;
4)将溶胶B放入真空干燥箱,在190℃下干燥3h,得到黑褐色疏松状干凝胶; 4) Put Sol B into a vacuum drying oven and dry at 190°C for 3 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在700℃下煅烧4h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Put the dry gel into a crucible after being ground, and place the crucible in an electric furnace for calcination at 700°C for 4 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.8。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.8.
从图2可以看出,本实施例制备的磁电复合粉体中有含有钙钛矿型La0.1Bi0.9FeO3和尖晶石型CoFe2O4。 It can be seen from Fig. 2 that the magnetoelectric composite powder prepared in this example contains perovskite-type La 0.1 Bi 0.9 FeO 3 and spinel-type CoFe 2 O 4 .
从图6可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体中两相晶粒分布较为均匀,且两相晶粒发育较好,其中La0.1Bi0.9FeO3晶粒尺寸为200nm左右,CoFe2O4的晶粒尺寸小于100nm。 It can be seen from Figure 6 that the distribution of two-phase grains in the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively uniform, and the two-phase grains are well developed, among which La 0.1 Bi The grain size of 0.9 FeO 3 is about 200nm, and the grain size of CoFe 2 O 4 is less than 100nm.
从图10可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的 磁滞回线较为平滑,饱和磁化强度为9.9emu/g,矫顽场为1260.14奥斯特。 It can be seen from Figure 10 that the hysteresis loop of the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively smooth, the saturation magnetization is 9.9emu/g, and the coercive field is 1260.14 oersted.
实施例3 Example 3
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.7; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.7;
2)向步骤1)的溶液中加入柠檬酸,在90℃水浴加热下搅拌2h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的4倍; 2) Add citric acid to the solution in step 1), and stir for 2 hours under heating in a water bath at 90°C to obtain sol A, wherein the molar amount of citric acid added is the four metals in the solution: iron ion, bismuth ion, lanthanum ion, and cobalt ion 4 times the total molar mass of ions;
3)搅拌下,采用乙二胺将溶胶A的pH值调节为7,得到均匀的溶胶B; 3) Under stirring, use ethylenediamine to adjust the pH value of sol A to 7 to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在180℃下干燥4h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 180°C for 4 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在700℃下煅烧2h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Put the dry gel into a crucible after grinding, and place the crucible in an electric furnace for calcination at 700°C for 2 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.7。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.7.
从图3可以看出,本实施例制备的磁电复合粉体中有含有钙钛矿型La0.1Bi0.9FeO3和尖晶石型CoFe2O4。 It can be seen from Fig. 3 that the magnetoelectric composite powder prepared in this example contains perovskite-type La 0.1 Bi 0.9 FeO 3 and spinel-type CoFe 2 O 4 .
从图7可以看出,本实施例制备的磁电复合粉体中两相晶粒分布较为均匀,且两相晶粒发育较好,其中La0.1Bi0.9FeO3晶粒尺寸为200nm左右,CoFe2O4的晶粒尺寸小于100nm。 It can be seen from Figure 7 that the distribution of two-phase grains in the magnetoelectric composite powder prepared in this example is relatively uniform, and the development of two-phase grains is better, among which the grain size of La 0.1 Bi 0.9 FeO 3 is about 200nm, and the grain size of CoFe The grain size of 2 O 4 is less than 100nm.
从图11可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的磁滞回线较为平滑,饱和磁化强度为16.8emu/克,矫顽场为1485.92奥斯特。 It can be seen from Figure 11 that the hysteresis loop of the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively smooth, the saturation magnetization is 16.8emu/g, and the coercive field is 1485.92 oersted.
实施例4 Example 4
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.6; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.6;
2)向步骤1)的溶液中加入柠檬酸,在85℃水浴加热下搅拌1.5h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的3倍; 2) Add citric acid to the solution in step 1), and stir for 1.5 hours under heating in a water bath at 85°C to obtain sol A. 3 times the total molar weight of metal ions;
3)搅拌下,采用乙二胺将溶胶A的pH值调节为6.5,得到均匀的溶胶B; 3) Under stirring, use ethylenediamine to adjust the pH value of sol A to 6.5 to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在195℃下干燥2h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 195°C for 2 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在700℃下煅烧3h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Grind the xerogel and put it into a crucible, place the crucible in an electric furnace and calcinate at 700°C for 3 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.6。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.6.
从图4可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体中有含有钙钛矿型La0.1Bi0.9FeO3和尖晶石型CoFe2O4。 It can be seen from Figure 4 that the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example contains perovskite-type La 0.1 Bi 0.9 FeO 3 and spinel-type CoFe 2 O 4 .
从图8可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体中两相晶粒分布较为均匀,且两相晶粒发育较好,其中La0.1Bi0.9FeO3晶粒尺寸为200nm左右,CoFe2O4的晶粒尺寸小于100nm。 It can be seen from Figure 8 that the distribution of two-phase grains in the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively uniform, and the two-phase grains are well developed, among which La 0.1 Bi The grain size of 0.9 FeO 3 is about 200nm, and the grain size of CoFe 2 O 4 is less than 100nm.
从图12可以看出,本实施例制备的La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体的磁滞回线较为平滑,饱和磁化强度为22.6emu/克,矫顽场为1930.73奥斯特。 It can be seen from Figure 12 that the hysteresis loop of the La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder prepared in this example is relatively smooth, the saturation magnetization is 22.6emu/g, and the coercive field is 1930.73 oersted.
实施例5 Example 5
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液; 其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.9; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.9;
2)向步骤1)的溶液中加入柠檬酸,在100℃水浴加热下搅拌1h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的2倍; 2) Add citric acid to the solution in step 1), and stir for 1 hour under heating in a water bath at 100°C to obtain sol A, wherein the molar amount of citric acid added is the four metals in the solution: iron ions, bismuth ions, lanthanum ions, and cobalt ions 2 times the total molar mass of ions;
3)搅拌下,采用氨水将溶胶A的pH值调节为6.5,得到均匀的溶胶B; 3) Under stirring, adjust the pH value of sol A to 6.5 with ammonia water to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在180℃下干燥4h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 180°C for 4 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在800℃下煅烧1h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Put the dry gel into a crucible after being ground, and place the crucible in an electric furnace for calcination at 800°C for 1 hour to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.9。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.9.
实施例6 Example 6
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3.9H2O、Bi(NO3)3.9H2O、La(NO3)3.6H2O和Co(NO3)2.6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.8; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 .9H 2 O, Bi(NO 3 ) 3 .9H 2 O, La (NO 3 ) 3 .6H 2 O and Co(NO 3 ) 2 .6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.8;
2)向步骤1)的溶液中加入柠檬酸,在95℃水浴加热下搅拌1.5h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的3倍; 2) Add citric acid to the solution in step 1), and stir for 1.5 hours under heating in a water bath at 95°C to obtain sol A. 3 times the total molar weight of metal ions;
3)搅拌下,采用氨水将溶胶A的pH值调节为7.5,得到均匀的溶胶B; 3) Under stirring, adjust the pH value of sol A to 7.5 with ammonia water to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在185℃下干燥3h,得到黑褐色疏松状干凝胶; 4) Put Sol B into a vacuum drying oven and dry at 185°C for 3 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在720℃下煅烧4h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) The dry gel was ground and put into a crucible, and the crucible was placed in an electric furnace and calcined at 720°C for 4 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.8。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.8.
实施例7 Example 7
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.7; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.7;
2)向步骤1)的溶液中加入柠檬酸,在87℃水浴加热下搅拌1.5h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的4倍; 2) Add citric acid to the solution in step 1), and stir for 1.5 hours under heating in a water bath at 87°C to obtain sol A, wherein the molar amount of citric acid added is four kinds of iron ions, bismuth ions, lanthanum ions, and cobalt ions in the solution 4 times the total molar weight of metal ions;
3)搅拌下,采用氨水将溶胶A的pH值调节为7,得到均匀的溶胶B; 3) Under stirring, adjust the pH value of sol A to 7 with ammonia water to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在190℃下干燥2h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 190°C for 2 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在750℃下煅烧3h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Grind the xerogel and put it into a crucible, place the crucible in an electric furnace and calcinate at 750°C for 3 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.7。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x= 0.7.
实施例8 Example 8
1)按化学通式xLa0.1Bi0.9FeO3/(1-x)CoFe2O4,将分析纯的Fe(NO3)3·9H2O、Bi(NO3)3·9H2O、La(NO3)3·6H2O和Co(NO3)2·6H2O加入到蒸馏水中配制成溶液;其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.6; 1) According to the general chemical formula xLa 0.1 Bi 0.9 FeO 3 /(1-x)CoFe 2 O 4 , analytically pure Fe(NO 3 ) 3 ·9H 2 O, Bi(NO 3 ) 3 ·9H 2 O, La (NO 3 ) 3 6H 2 O and Co(NO 3 ) 2 6H 2 O were added to distilled water to prepare a solution; wherein, x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x=0.6;
2)向步骤1)的溶液中加入柠檬酸,在80℃水浴加热下搅拌2h,得到溶胶A,其中,加入柠檬酸的摩尔量为溶液中铁离子、铋离子、镧离子、钴离子四种金属离子总摩尔量的3倍; 2) Add citric acid to the solution in step 1), and stir for 2 hours under heating in a water bath at 80°C to obtain sol A. 3 times the total molar mass of ions;
3)搅拌下,采用氨水将溶胶A的pH值调节为6.5,得到均匀的溶胶B; 3) Under stirring, adjust the pH value of sol A to 6.5 with ammonia water to obtain uniform sol B;
4)将溶胶B放入真空干燥箱,在200℃下干燥2h,得到黑褐色疏松状干凝胶; 4) Put sol B into a vacuum drying oven and dry at 200°C for 2 hours to obtain a dark brown loose xerogel;
5)将干凝胶研磨后装入坩埚中,并将坩埚置于电炉中在770℃下煅烧2h得到La0.1Bi0.9FeO3/CoFe2O4磁电复合粉体。 5) Put the dry gel into a crucible after grinding, and place the crucible in an electric furnace for calcination at 770°C for 2 hours to obtain La 0.1 Bi 0.9 FeO 3 /CoFe 2 O 4 magnetoelectric composite powder.
本实施例制得的磁电复合粉体的化学通式为xLa0.1Bi0.9FeO3/(1-x)/CoFe2O4,其中,x为La0.1Bi0.9FeO3的质量百分数,且x=0.6。 The general chemical formula of the magnetoelectric composite powder prepared in this example is xLa 0.1 Bi 0.9 FeO 3 /(1-x)/CoFe 2 O 4 , where x is the mass percentage of La 0.1 Bi 0.9 FeO 3 , and x =0.6.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410001797.7A CN103771848B (en) | 2014-01-02 | 2014-01-02 | La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410001797.7A CN103771848B (en) | 2014-01-02 | 2014-01-02 | La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103771848A CN103771848A (en) | 2014-05-07 |
CN103771848B true CN103771848B (en) | 2015-06-24 |
Family
ID=50564685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410001797.7A Active CN103771848B (en) | 2014-01-02 | 2014-01-02 | La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103771848B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105062478B (en) * | 2015-08-10 | 2017-08-22 | 中国科学院新疆理化技术研究所 | A kind of biological method for preparing ferrite bismuth ferrite composite fluorescent material |
TWI645035B (en) * | 2016-11-30 | 2018-12-21 | 連展科技股份有限公司 | Bacterially induced crystal particle, thermal conductive material and method for manufacturing bacterially induced crystal particle |
CN106745303B (en) * | 2017-02-27 | 2018-07-27 | 陕西科技大学 | A kind of three-dimensional flower ball-shaped cadmium ferrite bismuth meal body and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086119A (en) * | 2010-12-09 | 2011-06-08 | 华中科技大学 | A preparation method of room temperature multiferroic BiFeO3-SrTiO3 solid solution ceramics |
CN102503391A (en) * | 2011-10-20 | 2012-06-20 | 陕西科技大学 | Preparation method of bismuth ferrite-based composite material with high ferromagnetic and ferroelectric properties |
-
2014
- 2014-01-02 CN CN201410001797.7A patent/CN103771848B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086119A (en) * | 2010-12-09 | 2011-06-08 | 华中科技大学 | A preparation method of room temperature multiferroic BiFeO3-SrTiO3 solid solution ceramics |
CN102503391A (en) * | 2011-10-20 | 2012-06-20 | 陕西科技大学 | Preparation method of bismuth ferrite-based composite material with high ferromagnetic and ferroelectric properties |
Non-Patent Citations (1)
Title |
---|
娄本浊等.(1-x)BiFeO3-xCoFe2O4复合陶瓷介电性能的研究.《压电与声光》.2012,第34卷(第1期),129-132. * |
Also Published As
Publication number | Publication date |
---|---|
CN103771848A (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103771846B (en) | A kind of BaFe12O19/Y3Fe5O12 two-phase magnetic composite powder and its preparation method | |
CN105601264B (en) | A kind of high densification multiferroic (1 y) BiFeO3‑yBi1‑xRxFeO3The preparation method of composite ceramics | |
CN103771848B (en) | La0.1Bi0.9FeO3/CoFe2O4 magneto-electricity compound powder body and preparation method thereof | |
Kaiwen et al. | Structure and magnetic properties of manganese–nickel ferrite with lithium substitution | |
Yin et al. | Anisotropic magnetization plateaus in S eff= 1/2 skew-chain single-crystal C o 2 V 2 O 7 | |
CN103833341A (en) | A kind of BaFe12O19/CoFe2O4 two-phase magnetic composite powder and its preparation method | |
CN104495944B (en) | A kind of preparation method of N doping bismuth ferrite nano powder | |
CN103771847B (en) | A kind of La0.1Bi0.9FeO3/BiY2Fe5O12 magnetoelectric composite powder and its preparation method | |
CN106745303B (en) | A kind of three-dimensional flower ball-shaped cadmium ferrite bismuth meal body and preparation method thereof | |
CN106630992B (en) | High-performance SrFe12O19/CoFe2O4Composite ferrite material and preparation method thereof | |
CN104591721B (en) | Single-phase multiferroic M-type lead ferrite ceramic material and preparation method thereof | |
CN104556997A (en) | A kind of NiFe2O4/Bi2Fe4O9 two-phase magnetic composite powder and its preparation method | |
CN103553574A (en) | Preparation method of high grain orientation piezoceramic material | |
CN104446449B (en) | A kind of preparation method of BIT Fe multiferroic ferroelectric bulk ceramics | |
CN102503398B (en) | A kind of dysprosium doped BiFeO3 multiferroic bulk ceramics and preparation method thereof | |
Guo et al. | Magnetocaloric properties of double-perovskite Sr1. 98Al0. 02FeMoO6 | |
CN105645944B (en) | A kind of Bi2Fe4O9/BaFe12O19Composite ceramics and preparation method thereof | |
CN103204676A (en) | Method for microwave-assisted low-temperature rapid synthesis of ferrite ultrafine powder | |
CN103833349A (en) | A kind of La0.1Bi0.9FeO3/NiFe2O4 magnetoelectric composite powder and its preparation method | |
Shami et al. | Effect of sintering temperature on nanostructured multiferroic BiFeO3 ceramics | |
CN104591717A (en) | A kind of CoFe2O4/Bi2Fe4O9 two-phase magnetic composite powder and its preparation method | |
CN104591294A (en) | Bismuth ferrite based two-phase magnetic composite powder and preparation method thereof | |
CN111087023B (en) | Preparation method of room temperature multiferroic material Ba4SmFe0.5Nb9.5O30 and prepared room temperature multiferroic material | |
CN108558387A (en) | Single-phase more iron microwave absorbing materials and preparation method thereof | |
CN106007695A (en) | Method for one-time synthesis of NFO-PZT-BFO composite multiferroic material by using precursor hydrothermal treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201204 Address after: 212300 block a, Rongjin Plaza, No. 88, Qiliang Road, Danyang Development Zone, Zhenjiang City, Jiangsu Province Patentee after: JIANGSU XINZHONG INTELLECTUAL PROPERTY OPERATION MANAGEMENT Co.,Ltd. Address before: 710021 Shaanxi province Xi'an Weiyang University Park No. 1 Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 212300 block D2, science and Innovation Park, No. 19, Qiliang Road, Danyang Development Zone, Zhenjiang City, Jiangsu Province Patentee after: Jiangsu Xinzhong Enterprise Management Co.,Ltd. Address before: Block a, Rongjin Plaza, No.88 Qiliang Road, Danyang Development Zone, Zhenjiang City, Jiangsu Province Patentee before: JIANGSU XINZHONG INTELLECTUAL PROPERTY OPERATION MANAGEMENT Co.,Ltd. |