CN103765245A - Hybrid deterministic-geostatistical earth model - Google Patents
Hybrid deterministic-geostatistical earth model Download PDFInfo
- Publication number
- CN103765245A CN103765245A CN201280041316.4A CN201280041316A CN103765245A CN 103765245 A CN103765245 A CN 103765245A CN 201280041316 A CN201280041316 A CN 201280041316A CN 103765245 A CN103765245 A CN 103765245A
- Authority
- CN
- China
- Prior art keywords
- volume
- deterministic
- geological
- earth model
- geostatistical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 115
- 230000004044 response Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 33
- 238000009826 distribution Methods 0.000 claims description 24
- 238000004458 analytical method Methods 0.000 claims description 22
- 208000035126 Facies Diseases 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 239000011435 rock Substances 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000005012 migration Effects 0.000 claims description 14
- 238000013508 migration Methods 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000000644 propagated effect Effects 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 7
- 230000003595 spectral effect Effects 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000012876 topography Methods 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 238000004448 titration Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 23
- 238000003860 storage Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 7
- 238000012800 visualization Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
- G01V2210/665—Subsurface modeling using geostatistical modeling
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Processing Or Creating Images (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- User Interface Of Digital Computer (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本公开总体上涉及对所关注的地质体积建模,并且更具体地说,涉及生成混合式确定性-地质统计地球模型。The present disclosure relates generally to modeling a geological volume of interest, and more particularly to generating a hybrid deterministic-geostatistical earth model.
背景技术Background technique
执行地震成像和地下解释,以尽可能准确地获取地球地下体积的地质模型。常规工业工作流程通常包括以下一系列处理步骤:(a)将地震数据处理成地球地下体积的3D地震图像体积;(b)利用列表和其它已知岩石物理数据以及岩石特性,来提取地球地下体积中的每一个地下点处的属性(例如,速度、泊松比、密度、声阻抗等);(c)在解释工作站上解释3D地质图像体积的几何结构、测井信息、以及地质模拟,以获取结构、地层学、以及地质形态学;以及(d)根据所提取的属性和所获取的结构、地层学、以及地质形态学,来构建地质和储集层地下模型。Perform seismic imaging and subsurface interpretation to obtain as accurate a geological model of the Earth's subsurface volume as possible. Conventional industrial workflows typically include the following sequence of processing steps: (a) processing seismic data into a 3D seismic image volume of the Earth's subsurface volume; (b) extracting the Earth's subsurface volume using tabular and other known petrophysical data and rock properties Attributes (e.g., velocity, Poisson's ratio, density, acoustic impedance, etc.) obtaining structure, stratigraphy, and geological morphology; and (d) constructing a geological and reservoir subsurface model based on the extracted attributes and the obtained structure, stratigraphy, and geological morphology.
常规工业工作流程对利用结构和地层学的解释并且利用来自地震估计的储集层特性成像时所使用的地球模型具有有限调和(reconciliation)/集成。每一个处理步骤都具有无法完全定量地限定的固有不确定性和非唯一性。从而,难于量化通过常规工业工作流程所生成的地质储集层模型的不确定性和非唯一性。大多数工业工作流程求助于地质统计方法来估计不确定性和非唯一性。即便如此,也不保证所得概率性模型与生成该模型时所利用的所有数据一致。Conventional industrial workflows have limited reconciliation/integration of earth models used with structural and stratigraphic interpretation and imaging of reservoir properties from seismic estimates. Each processing step has inherent uncertainty and non-uniqueness that cannot be fully quantitatively defined. Thus, it is difficult to quantify the uncertainty and non-uniqueness of geological reservoir models generated by conventional industrial workflows. Most industrial workflows turn to geostatistical methods to estimate uncertainty and non-uniqueness. Even so, there is no guarantee that the resulting probabilistic model will be consistent with all the data utilized in generating it.
发明内容Contents of the invention
本公开的一个方面涉及一种用于通过对离散地质体的确定性识别来生成用于地球模型的确定性框架的计算机实现方法。该方法包括以下步骤:获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的多个图像体积。该地球模型基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的地震数据。该地震数据包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。所述多个图像体积中的各个图像体积对应于不同的叠加域。该方法包括以下步骤:针对与该所关注的地质体积的地球模型相关联的所述多个图像体积上的一个或多个频率范围,执行信号处理增强或频谱分解中的一个或两个。该方法包括以下步骤:通过利用地震地层学分析技术或地震地形学分析技术中的一个或两个分析所述多个图像体积中的一个或多个,来识别所述多个图像体积中的各个图像体积中的一个或多个离散地质体表述(representation)。所述一个或多个地质体表述中的各个地质体表述对应于包括在该所关注的地质体积中的所述一个或多个地质体。该方法包括以下步骤:向所述多个图像体积中的各个图像体积指配相分布。该相分布包括基于钻孔数据和/或地球物理建模中的一个或两个而指配给所识别的一个或多个地质体表述的空间描述值和/或岩石特性。该方法包括以下步骤:基于相分布的集合来生成地球模型的确定性框架。该确定性框架是与地球模型相关联的、在部分或全部地球模型上延伸的矩阵,并且包括所识别的一个或多个地质体表述中的各个地质体表述和一个或多个未定义区域。该方法包括:在该地球模型的确定性框架中识别一个或多个地层间隙。所述一个或多个地层间隙没有所识别地质体表述。One aspect of the present disclosure relates to a computer-implemented method for generating a deterministic framework for an earth model through deterministic identification of discrete geological bodies. The method includes the steps of acquiring a plurality of image volumes associated with an earth model of a geological volume of interest including one or more geological volumes. The earth model is based on seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The seismic data includes one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. Each image volume of the plurality of image volumes corresponds to a different overlay domain. The method includes the step of performing one or both of signal processing enhancement or spectral decomposition for one or more frequency ranges over the plurality of image volumes associated with the earth model of the geological volume of interest. The method includes the step of: identifying each of the plurality of image volumes by analyzing one or more of the plurality of image volumes using one or both of a seismic stratigraphy analysis technique or a seismic topography analysis technique One or more discrete geological volume representations in the image volume. Each geologic representation of the one or more geologic representations corresponds to the one or more geologic volumes included in the geologic volume of interest. The method comprises the step of assigning a phase distribution to each image volume of said plurality of image volumes. The facies distribution includes spatially descriptive values and/or rock properties assigned to the identified one or more geological volume representations based on one or both of borehole data and/or geophysical modeling. The method includes the steps of generating a deterministic framework of an earth model based on the set of facies distributions. The deterministic framework is a matrix associated with the earth model that extends over some or all of the earth model and includes each of the one or more identified geologic representations and one or more undefined regions. The method includes identifying one or more formation gaps within the deterministic framework of the earth model. The one or more formation gaps do not have an identified geologic body representation.
本公开的另一方面涉及一种用于通过利用地质统计信息和/或地震反演填充确定性框架中的地层间隙来生成混合式确定性-地质统计地球模型的计算机实现方法。该方法包括:获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的确定性框架。该地球模型基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的测量地震数据。该测量地震数据包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。该确定性框架是与地球模型相关联的、在部分或全部地球模型上延伸的矩阵。该方法包括:识别一组与所关注的地质体积相关联的一个或多个地质体表述。该组中的一个或多个地质体表述中的各个地质体表述随机地(stochastically)导出,并且表示包括在所关注的地质体积中的所述一个或多个地质体中的各个地质体。该一个或多个地质体表述的组利用钻孔数据或解释动态生成数据中的一个或两个,基于地质统计方法来构造。该方法包括:通过利用该组地质体表述中的各个地质体表述,填充地球模型的确定性框架中的一个或多个地层间隙来生成初始混合式确定性-地质统计地球模型。所述一个或多个地层间隙中的各个地层间隙是该确定性框架中的、没有地质体表述的区域。该方法包括:生成用于与测量地震数据比较的、初始混合式确定性-地质统计地球模型的合成地震响应。该比较有助于确认初始混合式确定性-地质统计地球模型。该方法包括:迭代地细化初始混合验证性地质统计地球模型,以获取一组最终混合式确定性-地质统计地球模型。该细化基于地质地震响应与经细化的混合式确定性-地质统计地球模型的合成地震响应之间的连续比较。该组最终混合式确定性-地质统计地球模型中的各个个体的合成地震响应接近测量地震数据。该方法包括:从该组最终混合式确定性-地质统计地球模型当中选择代表性混合式确定性-地质统计地球模型。该代表性混合式确定性-地质统计地球模型具有基于至少一个储集层参数或地质似真性(plausibility)中的一个或多个的不确定性的范围。Another aspect of the present disclosure relates to a computer-implemented method for generating a hybrid deterministic-geostatistical earth model by filling formation gaps in a deterministic framework with geostatistical information and/or seismic inversion. The method includes obtaining a deterministic framework associated with an earth model of a geological volume of interest including one or more geological volumes. The earth model is based on measured seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The measured seismic data includes one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. The deterministic framework is a matrix associated with the earth model that extends over some or all of the earth model. The method includes identifying a set of one or more geological volume representations associated with a geological volume of interest. Each of the one or more geovolume representations in the set is stochastically derived and represents each of the one or more geovolumes included in the geological volume of interest. The set of one or more geovolume representations is constructed based on geostatistical methods using either or both of borehole data or interpretation dynamically generated data. The method includes generating an initial hybrid deterministic-geostatistical earth model by filling one or more stratigraphic gaps in a deterministic framework of the earth model with each of the set of geologic representations. Each of the one or more stratigraphic gaps is a region in the deterministic framework that has no geologic representation. The method includes generating a synthetic seismic response of an initial hybrid deterministic-geostatistical earth model for comparison with measured seismic data. This comparison helps to validate the initial hybrid deterministic-geostatistical earth model. The method includes iteratively refining an initial hybrid confirmatory geostatistical earth model to obtain a final set of hybrid deterministic-geostatistical earth models. The refinement is based on continuous comparisons between the geological seismic responses and the synthetic seismic responses of the refined hybrid deterministic-geostatistical earth model. The synthetic seismic response of each individual in the set of final hybrid deterministic-geostatistical earth models approximates the measured seismic data. The method includes selecting a representative hybrid deterministic-geostatistical earth model from the set of final hybrid deterministic-geostatistical earth models. The representative hybrid deterministic-geostatistical earth model has a range of uncertainty based on one or more of at least one reservoir parameter or geological plausibility.
本公开的又一方面涉及一种系统,该系统被设置成生成用于地球模型的确定性框架并且生成混合式确定性-地质统计地球模型。该系统包括:一个或多个处理器,该一个或多个处理器被设置成执行计算机程序模块。这种计算机程序模块包括:图像体积模块、地质体模块、相指配模块、框架模块、混合模型模块、以及合成地震响应模块。该图像体积模块被设置成,生成或获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的多个图像体积。该地球模型基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的地震数据。该地震数据包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。所述多个图像体积中的各个图像体积对应于不同的叠加域。该地质体模块被设置成,通过利用地震地层学分析技术或地震地形学分析技术中的一个或两个分析所述多个图像体积中的一个或多个,来识别所述多个图像体积中的各个图像体积中的一个或多个离散地质体表述。所述一个或多个地质体表述中的各个地质体表述对应于包括在该所关注的地质体积中的所述一个或多个地质体。该相指配模块被设置成,向所述多个图像体积中的各个图像体积指配相分布。该相分布包括基于钻孔数据和/或地球物理建模中的一个或两个指配给所识别的一个或多个地质体表述的空间描述值和/或岩石特性。该框架模块被设置成,基于相分布的集合来生成或获取该地球模型的确定性框架。该确定性框架是与地球模型相关联的、在该地球模型的部分或全部上延伸的矩阵,并且包括所识别一个或多个地质体表述中的各个地质体表述和一个或多个地层间隙中的各个地层间隙。所述一个或多个地层间隙中的各个地层间隙是该确定性框架中没有地质体表述的区域。该混合模型模块被设置成,通过利用与所关注的地质统计相关联的一个或多个地质体表述的组中的各个地质体表述,填充确定性框架中的所述一个或多个地层间隙中的各个地层间隙,来生成或获取混合式确定性-地质统计地球模型。该组中的各个地质体表述是随机地导出的,并且表示包括在所关注的地质体积中的所述一个或多个地质体中的各个地质体。该一个或多个地质体表述的组利用钻孔数据或解释动态生成数据中的一个或两个,基于地质统计方法来构造。该合成地震响应模块被设置成,生成或获取用于与地震数据比较的、混合式确定性-地质统计地球模型的合成地震响应,以验证混合式确定性-地质统计地球模型。Yet another aspect of the disclosure relates to a system configured to generate a deterministic framework for an earth model and to generate a hybrid deterministic-geostatistical earth model. The system includes: one or more processors configured to execute computer program modules. Such computer program modules include: an image volume module, a geological volume module, a facies assignment module, a frame module, a hybrid model module, and a synthetic seismic response module. The image volume module is configured to generate or acquire a plurality of image volumes associated with an earth model of a geological volume of interest including one or more geological volumes. The earth model is based on seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The seismic data includes one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. Each image volume of the plurality of image volumes corresponds to a different overlay domain. The geovolume module is configured to identify one or more of the plurality of image volumes by analyzing one or more of the plurality of image volumes using one or both of seismic stratigraphy analysis techniques or seismic topography analysis techniques to identify One or more discrete geovolume representations in each image volume of . Each geologic representation of the one or more geologic representations corresponds to the one or more geologic volumes included in the geologic volume of interest. The phase assignment module is arranged to assign a phase distribution to each image volume of the plurality of image volumes. The facies distribution includes spatially descriptive values and/or rock properties assigned to the identified one or more geological volume representations based on one or both of borehole data and/or geophysical modeling. The frame module is configured to generate or obtain a deterministic frame of the earth model based on the set of facies distributions. The deterministic framework is a matrix associated with the earth model that extends over part or all of the earth model and includes each of the identified one or more geological body representations and one or more stratigraphic gaps various stratigraphic gaps. Each of the one or more stratigraphic gaps is a region in the deterministic framework that has no representation of a geologic body. The hybrid model module is configured to fill in the one or more stratigraphic gaps in the deterministic framework by utilizing each geovolume representation in the set of one or more geovolume representations associated with the geostatistics of interest to generate or obtain a hybrid deterministic-geostatistical earth model. Each geologic body representation in the set is randomly derived and represents each geologic body of the one or more geologic bodies included in the geologic volume of interest. The set of one or more geovolume representations is constructed based on geostatistical methods using either or both of borehole data or interpretation dynamically generated data. The synthetic seismic response module is configured to generate or obtain a synthetic seismic response of the hybrid deterministic-geostatistical earth model for comparison with seismic data to validate the hybrid deterministic-geostatistical earth model.
本公开的又一方面涉及一种其上具体实施有指令的计算机可读存储介质。该指令可通过处理器来执行,以执行一种用于通过对离散地质体的确定性识别来生成地球模型的确定性框架的方法。该方法包括:获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的多个图像体积。该地球模型基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的地震数据。该地震数据包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。所述多个图像体积中的各个图像体积对应于不同的叠加域。该方法包括:针对与该所关注的地质体积的地球模型相关联的所述多个图像体积上的一个或多个频率范围,执行信号处理增强或频谱分解中的一个或两个。该方法包括:通过利用地震地层学分析技术或地震地形学分析技术中的一个或两个分析所述多个图像体积中的一个或多个,来识别所述多个图像体积中的各个图像体积中的一个或多个离散地质体表述。所述一个或多个地质体表述中的各个地质体表述对应于包括在该所关注的地质体积中的所述一个或多个地质体。该方法包括:向所述多个图像体积中的各个图像体积指配相分布。该相分布包括基于钻孔数据和/或地球物理建模中的一个或两个而指配给所识别的一个或多个地质体表述的空间描述值和/或岩石特性。该方法包括:基于相分布的集合来生成该地球模型的确定性框架。该确定性框架是与地球模型相关联的、在部分或全部地球模型上延伸的矩阵,并且包括所识别的一个或多个地质体表述中的各个地质体表述和一个或多个未定义区域。该方法包括:在该地球模型的确定性框架中识别一个或多个地层间隙。所述一个或多个地层间隙没有所识别的地质体表述。Yet another aspect of the disclosure relates to a computer-readable storage medium having instructions embodied thereon. The instructions are executable by a processor to perform a method for generating a deterministic framework of an earth model through deterministic identification of discrete geologic bodies. The method includes acquiring a plurality of image volumes associated with an earth model of a geological volume of interest including one or more geological volumes. The earth model is based on seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The seismic data includes one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. Each image volume of the plurality of image volumes corresponds to a different overlay domain. The method includes performing one or both of signal processing enhancement or spectral decomposition for one or more frequency ranges over the plurality of image volumes associated with the earth model of the geological volume of interest. The method includes identifying each of the plurality of image volumes by analyzing one or more of the plurality of image volumes using one or both of a seismic stratigraphy analysis technique or a seismic topography analysis technique One or more discrete geological volume representations in . Each geologic representation of the one or more geologic representations corresponds to the one or more geologic volumes included in the geologic volume of interest. The method includes assigning a phase distribution to each image volume of the plurality of image volumes. The facies distribution includes spatially descriptive values and/or rock properties assigned to the identified one or more geological volume representations based on one or both of borehole data and/or geophysical modeling. The method includes generating a deterministic framework of the earth model based on the set of facies distributions. The deterministic framework is a matrix associated with the earth model that extends over some or all of the earth model and includes each of the one or more identified geologic representations and one or more undefined regions. The method includes identifying one or more formation gaps within the deterministic framework of the earth model. The one or more formation gaps do not have the identified geologic body representation.
本公开的另一方面涉及一种其上具体实施有指令的计算机可读存储介质。该指令可通过处理器来执行,以执行一种用于通过利用地质统计信息和/或地震反演填充确定性框架中的地层间隙来生成混合式确定性-地质统计地球模型的方法。该方法包括:获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的确定性框架。该地球模型基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的测量地震数据。该测量地震数据包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。该确定性框架是与地球模型相关联的、在部分或全部地球模型上延伸的矩阵。该方法包括:识别一组与所关注的地质体积相关联的一个或多个地质体表述。该组地质体表述中的各个地质体表述是随机地导出的,并且表示包括在所关注的地质体积中的所述一个或多个地质体中的各个地质体。该一个或多个地质体表述的组利用钻孔数据或解释动态生成数据中的一个或两个,基于地质统计方法来构造。该方法包括:通过利用该组地质体表述中的各个地质体表述,填充地球模型的确定性框架中的一个或多个地层间隙来生成初始混合式确定性-地质统计地球模型。所述一个或多个地层间隙中的各个地层间隙是该确定性框架中没有地质体表述的区域。该方法包括:生成用于与测量地震数据比较的、初始混合式确定性-地质统计地球模型的合成地震响应。该比较有助于验证初始混合式确定性-地质统计地球模型。该方法包括:迭代地细化初始混合式确定性-地质统计地球模型,以获取一组最终混合式确定性-地质统计地球模型。该细化基于地质地震响应与经细化的混合式确定性-地质统计地球模型的合成地震响应之间的连续比较。该组最终混合式确定性-地质统计地球模型中的各个个体的合成地震响应接近测量地震数据。该方法包括:从该组最终混合式确定性-地质统计地球模型当中选择代表性混合式确定性-地质统计地球模型。该代表性混合式确定性-地质统计地球模型具有基于至少一个储集层参数或地质似真性中的一个或多个的一定范围的不确定性。Another aspect of the disclosure relates to a computer-readable storage medium having instructions embodied thereon. The instructions are executable by a processor to perform a method for generating a hybrid deterministic-geostatistical earth model by filling formation gaps in a deterministic framework with geostatistical information and/or seismic inversion. The method includes obtaining a deterministic framework associated with an earth model of a geological volume of interest including one or more geological volumes. The earth model is based on measured seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The measured seismic data includes one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. The deterministic framework is a matrix associated with the earth model that extends over some or all of the earth model. The method includes identifying a set of one or more geological volume representations associated with a geological volume of interest. Each geologic body representation in the set of geologic body representations is randomly derived and represents a respective geologic body of the one or more geologic volumes included in the geologic volume of interest. The set of one or more geovolume representations is constructed based on geostatistical methods using either or both of borehole data or interpretation dynamically generated data. The method includes generating an initial hybrid deterministic-geostatistical earth model by filling one or more stratigraphic gaps in a deterministic framework of the earth model with each of the set of geologic representations. Each of the one or more stratigraphic gaps is a region in the deterministic framework that has no representation of a geologic body. The method includes generating a synthetic seismic response of an initial hybrid deterministic-geostatistical earth model for comparison with measured seismic data. This comparison helps validate the initial hybrid deterministic-geostatistical earth model. The method includes iteratively refining an initial hybrid deterministic-geostatistical earth model to obtain a set of final hybrid deterministic-geostatistical earth models. The refinement is based on continuous comparisons between the geological seismic responses and the synthetic seismic responses of the refined hybrid deterministic-geostatistical earth model. The synthetic seismic response of each individual in the set of final hybrid deterministic-geostatistical earth models approximates the measured seismic data. The method includes selecting a representative hybrid deterministic-geostatistical earth model from the set of final hybrid deterministic-geostatistical earth models. The representative hybrid deterministic-geostatistical earth model has a range of uncertainties based on one or more of at least one reservoir parameter or geological plausibility.
当参照附图考虑下面的描述和所附权利要求书时,本技术的这些和其它特征以及特性,和结构与组合部分的相关部件的操作与功能的方法以及制造的经济性将变得更清楚,其全部形成了本说明书的一部分,其中,相同标号指定各个图中的对应部分。然而,应当明白,附图仅仅是出于例示和描述的目的,而非旨在作为对本技术的限制的解说。如在本说明书和权利要求书中使用的,单数形式“一(a)”、“一(an)”,以及“该/所述(the)”包括多个指示物,除非上下文另外清楚地规定。These and other features and characteristics of the present technology, and the method of operation and function of the relevant parts of structure and composition parts and the economics of manufacture will become more apparent when the following description and appended claims are considered with reference to the accompanying drawings , all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It should be understood, however, that the drawings are for purposes of illustration and description only and are not intended as illustrations of the limits of the technology. As used in this specification and claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise .
附图说明Description of drawings
图1例示了根据一个或多个实施例的、被设置成生成用于地球模型的确定性框架并且生成混合式确定性-地质统计地球模型的系统。Figure 1 illustrates a system configured to generate a deterministic framework for an earth model and to generate a hybrid deterministic-geostatistical earth model, according to one or more embodiments.
图2例示了根据一个或多个实施例的、用于生成混合式确定性-地质统计地球模型的工作流程。Figure 2 illustrates a workflow for generating a hybrid deterministic-geostatistical earth model, according to one or more embodiments.
图3A-3C提供了根据一个或多个实施例的、与图2的工作流程相关联的例示性信息。Figures 3A-3C provide illustrative information associated with the workflow of Figure 2, according to one or more embodiments.
图4A-4D提供了根据一个或多个实施例的、与图2的工作流程相关联的例示性信息。Figures 4A-4D provide illustrative information associated with the workflow of Figure 2, according to one or more embodiments.
图5例示了根据一个或多个实施例的、用于通过对离散地质体的确定性识别来生成用于地球模型的确定性框架的方法。Figure 5 illustrates a method for generating a deterministic framework for an earth model through deterministic identification of discrete geological bodies, according to one or more embodiments.
图6例示了根据一个或多个实施例的、用于通过利用地质统计信息和/或地震反演填充确定性框架中的地层间隙来生成混合式确定性-地质统计地球模型的方法。6 illustrates a method for generating a hybrid deterministic-geostatistical earth model by filling formation gaps in a deterministic framework with geostatistical information and/or seismic inversion, according to one or more embodiments.
具体实施方式Detailed ways
本技术可以按一系统和要通过一计算机执行的计算机方法的一般背景来描述和实现。这种计算机可执行指令可以包括程序、例程、对象、组件、数据结构、以及可以被用于执行特定任务和处理抽象数据类型的计算机软件技术。本技术的软件实现可以按针对各种计算平台和环境中的应用的不同语言来编码。应当清楚,本技术的范围和基本原理不限于任何特定计算机软件技术。The technology can be described and implemented in the general context of a system and computer methods to be performed by a computer. Such computer-executable instructions may include programs, routines, objects, components, data structures, and computer software technologies that may be used to perform particular tasks and process abstract data types. Software implementations of the present technology may be coded in different languages for application in various computing platforms and environments. It should be clear that the scope and underlying principles of the technology are not limited to any particular computer software technology.
而且,本领域技术人员应当清楚,本技术可以利用硬件和软件构造中的任一个或组合来实践,包括但不限于,具有单处理器和/或多处理器计算机处理器系统的系统、手持式装置、可编程消费者电子设备、迷你计算机、大型计算机等。本技术还可以在其中通过经由一个或多个数据通信网络链接的服务器或其它处理装置执行任务的分布式计算环境中实践。在分布式计算环境中,程序模块可以位于包括存储器存储装置的本地和远程计算机存储介质两者中。Moreover, it should be apparent to those skilled in the art that the present technology may be practiced using any one or combination of hardware and software configurations, including, but not limited to, systems with single-processor and/or multi-processor computer processor systems, hand-held devices, programmable consumer electronics, minicomputers, mainframe computers, etc. The technology may also be practiced in distributed computing environments where tasks are performed by servers or other processing devices that are linked through one or more data communications networks. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
而且,用于与计算机处理器一起使用的制造品(如CD、预记录盘或其它等同装置)可以包括计算机程序存储介质和记录在其上的、用于引导计算机处理器以有助于实现和实践本技术的程序装置。这种装置和制造品也落入本技术的精神和范围内。Moreover, an article of manufacture for use with a computer processor (such as a CD, pre-recorded disc, or other equivalent device) may include a computer program storage medium and recorded thereon instructions for instructing the computer processor to facilitate implementation and A program device for practicing the technology. Such devices and articles of manufacture also fall within the spirit and scope of the present technology.
下面,参照附图,对本技术的实施例进行描述。本技术可以按许多方式来实现,例如包括系统(包括计算机处理系统)、方法(包括计算机实现方法)、装置、计算机可读存储介质、计算机程序产品、图形用户接口、门户网站、或者有形地固定在计算机可读存储器中的数据结构。下面,对本技术的几个实施例进行讨论。附图仅例示了本技术的典型实施例,并由此不应被视为对其范围和宽度的限制。Embodiments of the present technology will be described below with reference to the drawings. The technology can be implemented in many ways, including, for example, systems (including computer processing systems), methods (including computer-implemented methods), apparatus, computer-readable storage media, computer program products, graphical user interfaces, portals, or tangibly fixed data structures in computer readable memory. In the following, several embodiments of the present technology are discussed. The drawings illustrate only typical embodiments of the technology, and are therefore not to be considered limiting of its scope and breadth.
图1例示了根据一个或多个实施例的、被设置成生成用于地球模型的确定性框架并且生成混合式确定性-地质统计地球模型的系统100。本技术的实施例将地震数据和地质概念集成到地球模型构建中。更具体地说,示例性实施例提供了一种基于地震数据中的信息和地质概念来构建地球模型的新方法,以用作用于解释地震数据的背景(context)和/或在其中缺失地震数据(例如,没有数据或者没有数据可分析性)的区域中添加到地球模型。如图1中描绘,系统100可以包括:电子存储部102、用户接口104、一个或多个信息资源106、至少一个处理器108、和/或其它组件。Figure 1 illustrates a
在一些实施例中,电子存储部102包括电子地存储信息的电子存储介质。电子存储部102的电子存储介质可以包括与系统100集成地(即,基本上不可去除)提供的系统存储部,和/或例如经由端口(例如,USB端口、固件端口等)或驱动器(例如,盘驱动器等)可去除地连接至系统100的可去除存储部。电子存储部102可以包括一个或多个光学可读存储介质(例如,光盘等)、磁可读存储介质(例如,磁带、磁硬盘驱动器、软盘驱动器等)、基于电荷的存储介质(例如,EEPROM、RAM等)、固态存储介质(例如,闪存驱动器等)、和/或其它电子可读存储介质。电子存储部102可以存储软件算法、由处理器108确定的信息、经由用户接口104接收的信息、从信息资源106接收的信息、和/或使得系统100能够如在此所述地起作用的其它信息。电子存储部102可以是系统100内的分离组件,或者电子存储部102可以与系统100的一个或多个其它组件(例如,处理器108)集成地提供。In some embodiments,
用户接口104被设置成,在系统100与用户之间设置用户可以通过其向系统100提供信息和接收来系统100的信息的接口。这使得统称为“信息”的数据、结果、和/或指令和任何其它可传送项能够在用户与系统100之间传送。如在此使用的,术语“用户”可以指单一个体或者可以协作地工作的个体组。适于包含在用户接口104中的接口装置的示例包括下列中的一个或多个:小键盘、按钮、开关、键盘、旋钮(knob)、杠杆、显示屏、触摸屏、扬声器、麦克风、指示灯、声音报警器、和/或打印机。在一个实施方式中,用户接口104实际上包括多个分离接口。The
应当明白,其它通信技术(硬布线或无线)也可以被本技术设想为用户接口104。例如,本技术设想用户接口104可以与由电子存储部102提供的可去除存储接口集成。在这个示例中,可以将信息从可去除存储部(例如,智能卡、闪存驱动器、可去除盘等)加载到系统100中,使得用户能够定制系统100的实现。适于与系统100一起使用作为用户接口104的其它示例性输入装置和技术包括但不限于,RS-232端口、RF链路、IR链路、调制解调器(电话、线缆或其它)。简单地说,用于与系统100传送信息的任何技术被本技术设想为用户接口104。It should be appreciated that other communication technologies (hardwired or wireless) are also contemplated by the present technology as
信息资源106包括与所关注的地质体积有关的一个或多个信息源。通过非限制例,信息资源106之一可以包括在所关注的地质体积处或附近获取的地震数据、从其导出的信息、和/或有关该获取的信息。这种地震数据可以包括源波场和接收器波场。地震数据可以包括地震数据的各个迹线(例如,记录在从源起传播通过所关注的地质体积的地震能量的一个通道上的数据)、偏移叠加、角叠加、方位叠加、和/或其它数据。从地震数据导出的信息例如可以包括:根据表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的地震数据的地质模型、根据表示存在于所关注的地质体积中的地质体的地质模型的图像体积、和/或其它信息。这些图像体积中的各个图像体积可以对应于偏移叠加、角叠加、或方位叠加中的各个个体。与获取地震数据有关的信息例如包括:与地震能量源的位置和/或取向有关的数据、地震能量的一个或多个检测器的位置和/或取向、由该源生成能量并且将其引导至所关注的地质体积的时间、和/或其它信息。
该信息资源106可以包括除了与所关注的地质体积相关联的地震相关数据以外的其它信息。这种信息的示例可以包括:与重力、磁场、电阻率大地电磁信息、雷达数据、井日志、岩石特性、地质模拟数据有关的信息,和/或其它信息。The
处理器108被设置成在系统100中提供信息处理能力。同样地,处理器108可以包括数字处理器、模拟处理器、被设计成处理信息的数字电路、被设计成处理信息的模拟电路、状态机、和/或用于电子地处理信息的其它机构中的一个或多个。尽管处理器108在图1中被示出为单一实体,但这仅仅是出于例示性目的。在一些实现中,处理器108可以包括多个处理单元。这些处理单元可以物理地位于同一装置或计算平台内,或者处理器108可以表示协作操作的多个装置的处理功能。Processor 108 is configured to provide information processing capabilities in
如图1中所示,处理器108可以被设置成执行一个或多个计算机程序模块。该一个或多个计算机程序模块可以包括通信模块110、图像体积模块112、地质体模块114、相指配模块116、框架模块118、混合模型模块120、合成地震响应模块122、和/或其它模块中的一个或多个。处理器108可以被设置成通过软件;硬件;固件;软件、硬件、和/或固件的某一组合;和/或用于配置处理器108上的处理能力的其它机制来执行模块110、112、114、116、118、120和/或122。As shown in FIG. 1, processor 108 may be configured to execute one or more computer program modules. The one or more computer program modules may include a
应当清楚,尽管模块110、112、114、116、118、120、以及122在图1中被例示为共同位于单一处理单元内,但在其中处理器108包括多个处理单元的实现中,模块110、112、114、116、118、120、和/或122中的一个或多个可以相对于其它模块远程定位。对由下面描述的不同模块110、112、114、116、118、120、和/或122提供的功能的描述出于例示性目的,而非旨在进行限制,因为模块110、112、114、116、118、120、和/或122中的任一个可以提供比描述的更多或更少的功能。例如,模块110、112、114、116、118、120、和/或122中的一个或多个可以消除,并且其一些或全部功能可以由模块110、112、114、116、118、120、和/或122中的其它模块提供。作为另一示例,处理器108可以被设置成,执行可以执行下面归因于模块110、112、114、116、118、120、和/或122中的一个的一些或全部功能的一个或多个附加模块。作为又一示例,处理器108可以被设置成执行可以执行一个或多个模块,该一个或多个模块可执行属于在2011年1月31日提交并且题名为“Extracting Geologic Information fromMultiple Offset Stacks and/or Angle Stacks”的共同未决的美国专利申请No.13/017995(“995申请”)中;和/或在2011年1月31日提交并且题名为“Exploitation of Self-Consistency and Differences Between VolumeImages and Interpreted Spatial/Volumetric Context”的共同未决的美国专利申请No.13/018094(“094申请”)中所描述的一个或多个模块的一些或全部功能,这些申请都通过引用并入于此。It should be appreciated that although
通信模块110可以被设置成接收信息。这种信息可以从信息资源106、经由用户接口104的用户、电子存储部102、和/或其它信息源接收。接收信息的示例可以包括:地震数据和由其导出的信息、与地震数据的获取有关的信息、偏移叠加、角叠加、方位叠加、地质模型、图像体积、和/或其它信息。通过通信模块110接收的信息可以被模块112、114、116、118、120、和/或122中的一个或多个所利用。对这样一些利用的示例描述如下。通信模块110可以被设置成向系统100的一个或多个其它组件发送信息。
图像体积模块112可以被设置成生成或以其它方式获取与所关注的地质体积的地球模型相关联的一个或多个图像体积。下面,对图像体积和地球模型进一步描述。所关注的地质体积是地下区域,其可以包括一个或多个地质体。地质体的示例可以包括以下中的一个或多个:地层层位、储集层表面、地质表面、河流通道、三角洲、三角洲扇、海底扇、暗礁、沙洲、凸案坝(point bar)、断层(fault)、不整合面(unconformity)、岩墙(dike)、岩床(sill)、盐主体、裂隙锥面(crevasse splay)、储集层流动单元、流体接触、浊流岩通道、浊流岩床、和/或其它地下体。The
所关注的地质体积可以包括一个或多个“覆盖层”。覆盖层通常可以被描述为矿床、折射物、和/或反射物之上的地质部分。覆盖层的示例可以包括位于矿石或有价沉积物上方并且在其上压下的材料、基岩上方的松散未固结材料、和/或其它覆盖层。覆盖层可以与可以被用于重新成像的速度模型和/或其它模型相关联。A geological volume of interest may include one or more "overburdens." Overburden may generally be described as the geological portion above a mineral deposit, refractor, and/or reflector. Examples of overburden may include material overlying and depressed over ore or valuable deposits, loose unconsolidated material over bedrock, and/or other overburden. Overlays may be associated with velocity models and/or other models that may be used for re-imaging.
所关注的地质体积可以包括一个或多个目标,举例来说,如储集层目标。根据一个或多个实施例,可以在这种目标上执行详细分析,以确定有关地质体和/或岩石特性的信息(下面进一步描述)。根据求得的特定信息,所关注的地质体积可以包括所关注的区域上方的从表面至目标间隔的整个地质部分,或者所关注的地质体积可以被限制成特定目标间隔。A geological volume of interest may include one or more targets, such as reservoir targets, for example. According to one or more embodiments, detailed analysis may be performed on such targets to determine information about geological volumes and/or rock properties (described further below). Depending on the specific information derived, the geological volume of interest may include the entire geological portion above the region of interest from the surface to the target interval, or the geological volume of interest may be restricted to a specific target interval.
该地球模型可以基于表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量的地震数据。该地震数据可以包括至少一个偏移叠加、至少一个角叠加、或至少一个方位叠加中的一个或多个。各个图像体积可以对应于不同的叠加域。The earth model may be based on seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. The seismic data may include one or more of at least one migration stack, at least one angular stack, or at least one azimuthal stack. Each image volume may correspond to a different overlay domain.
根据一些实施例,地球模型可以是单维的或多维的。这种模型的示例可以包括速度模型和/或与所关注的地质体积相关联的其它模型。地球模型可以包括作为所关注的地质体积内的位置的函数的至少一个特性(例如,地震速度、密度、衰减、各向异性、和/或其它特性)的数值表述。速度模型可以包括可以用于追踪服从斯涅耳定律的射线路径的速度的空间分布。速度模型可以指在迁移(举例来说,如深度迁移)中使用的模型。速度模型可以被称为速度立方体。According to some embodiments, the earth model may be single-dimensional or multi-dimensional. Examples of such models may include velocity models and/or other models associated with the geological volume of interest. The earth model may include a numerical representation of at least one property (eg, seismic velocity, density, attenuation, anisotropy, and/or other properties) as a function of position within the geological volume of interest. A velocity model can include a spatial distribution of velocities that can be used to trace ray paths that obey Snell's law. A velocity model may refer to a model used in migration such as depth migration, for example. A velocity model may be referred to as a velocity cube.
一般来说,图像体积是地质模型的一个或多个方面的二维或三维可视表述。各个图像体积可以对应于各个偏移叠加;角叠加;方位叠加;偏移叠加、角叠加、和/或方位叠加的变换(例如,频谱分解和/或其它变换);和/或其它信息。图像体积可以表示存在于所关注的地质体积中的地质体。In general, an image volume is a two-dimensional or three-dimensional visual representation of one or more aspects of a geological model. Individual image volumes may correspond to individual offset overlays; angular overlays; azimuth overlays; transformations of the offset overlays, angular overlays, and/or azimuth overlays (eg, spectral decomposition and/or other transformations); and/or other information. The image volume may represent geological bodies present in the geological volume of interest.
图像体积可以是具有一个或多个属性的所关注的地质体积内的空间分布和/或时间分布的描述。属性例如可以包括以下中的一个或多个:速度、相关性、希尔伯特变换、幅度、瞬时频率、频谱分析、各向异性、衰减、阻抗、密度、泊松比、声特性、弹性特性、岩石物理特性、岩石特性、流体特性、储集层特性、地震响应、地质描述、岩性分类、下沉(dip)、震级(magnitude)、曲率、粗糙度、下沉方位、频谱形状、和/或归因于地质体积和/或地质体的其它信息。根据一些实施例,生成和/或获取图像体积可以包括利用钻孔导出信息、被用于获取地质模型的地震数据、和/或其它信息中的一个或多个。An image volume may be a description of a spatial and/or temporal distribution within a geological volume of interest having one or more attributes. Properties may include, for example, one or more of: velocity, correlation, Hilbert transform, magnitude, instantaneous frequency, spectral analysis, anisotropy, attenuation, impedance, density, Poisson's ratio, acoustic properties, elastic properties , petrophysical properties, rock properties, fluid properties, reservoir properties, seismic response, geological description, lithology classification, dip, magnitude, curvature, roughness, dip azimuth, spectral shape, and and/or other information attributed to geological volumes and/or geological bodies. According to some embodiments, generating and/or acquiring an image volume may include one or more of utilizing borehole derived information, seismic data used to acquire a geological model, and/or other information.
图像体积可以基于与所关注的地质体积相关联的空间对准的地质一致体积来生成和/或获取。图像体积可以由多个偏移叠加、方位叠加、和/或角叠加形成,其表示已经从一个或多个能量源至一个或多个能量接收器传播通过所关注的地质体积的能量。与各个源-接收器偏移和/或源-接收器角相关联的多个图像体积可以基于对应偏移叠加、方位叠加、和/或角叠加来确定。Image volumes may be generated and/or acquired based on spatially aligned geologically consistent volumes associated with the geological volume of interest. The image volume may be formed from a plurality of offset stacks, azimuthal stacks, and/or angular stacks representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. Multiple image volumes associated with respective source-receiver offsets and/or source-receiver angles may be determined based on corresponding offset overlays, azimuthal overlays, and/or angular overlays.
图像体积模块112可以被设置成获取贯穿图像体积的一个或多个切片(slice)。贯穿图像体积的切片可以被排列为切片的逻辑序列。这些切片可以包括:共时间切片、共深度切片、共倾斜切片、共垂直切片、共水平切片、和/或其它切片。在获取这些切片之前,根据一些实施例,图像体积模块112可以根据时间、深度、倾斜、垂直、水平、下沉(dip)、下沉方位、解释层位、和/或其它度量来平坦化图像体积。The
图像体积模块112可以被设置成生成一个或多个光学叠加体积。各个光学叠加体积可以包括两个或更多个切片。同样地,给定光学叠加体积可以对应于从其获取切片的属性体积的厚度范围。根据一些实施例,切片可以是用户从一个或多个方向观看的,并且可以基于用户的目视检查而叠加以生成光学叠加体积。在一些实施例中,切片可以自动叠加以生成光学叠加体积。可以调节包括在给定光学叠加体积中的一个或多个切片的不透明度和/或透明度。在一些实施例中,与各个切片和/或成组切片相关联的不透明度和/或透明度标准可以基于用户输入或者自动地确定。修改包括在给定光学叠加体积中的各个切片的不透明度可以加重包括在从其获取该切片的属性体积的对应厚度范围中的一个或多个地质特征。例如,不透明度和/或透明度可以被调节成使得地质体突破不透明度阈值。
图像体积模块112可以被设置成将图像体积分段。分段可以缩减计算成本。这种分段可以根据在图像体积中表示的地质特征和/或图像体积的其它再分来执行。即,给定区段可以对应于一个或多个地质特征,或者给定区段可以对应于图像体积的某一其它再分。图像体积的一区段可以与在此描述的图像体积的处理类似地处理。例如,图像体积模块112可以被设置成获取贯穿图像体积的一区段的一个或多个切片。The
在一些实施例中,图像体积模块112被设置成,针对与该所关注的地质体积的地球模型相关联的多个图像体积中的各个图像体积上的一个或多个频率范围,执行信号处理增强或频谱分解中的一个或两个。图像体积模块112可以被设置成,通过过滤所述多个图像体积中的各个图像体积、贯穿所述多个图像体积中的各个图像体积的切片、或者与所述多个图像体积中的各个图像体积相关联的光学叠加体积中的一个或多个,来消除噪声相关图案。In some embodiments, the
地质体模块114可以被设置成识别一个或多个图像体积中的一个或多个离散地质体表述。这可以通过利用地震地层分析技术、地震地形分析技术、和/或其它技术中的一种或多种分析一个或多个图像体积来进行。所述一个或多个地质体表述中的各个地质体表述对应于包括在该所关注的地质体积中的所述一个或多个地质体。这些地质体表述中的各个地质体表述可以随机地导出。所述一个或多个地质体表述可以形成利用钻孔数据、解释动态生成数据、和/或其它信息中的一个或多个基于地质统计方法所构成的一组地质体表述。The
根据一些实施例,地质体模块114可以被设置成通过基于动画在给定图像体积中识别一个或多个地层图案来识别所述一个或多个离散地质体表述。这种动画可以包括从给定图像体积导出的一连串帧。各个帧可以包括贯穿给定图像体积的单一切片或与该给定图像体积相关联的光学叠加体积。在一些实施例中,识别给定图像体积中的所述一个或多个地层图案可以包括:基于对贯穿给定图像体积的切片或与该给定图像体积相关联的光学叠加体积的分析来解释该给定图像体积。根据动画识别一个或多个地层图案可以包括:识别该动画的连续帧之间的变化。该动画的连续帧之间的这种变化可以包括在该连续帧之间具有不同移动速率的地质体。According to some embodiments, the
相指配模块116可以被设置成,向所述多个图像体积中的各个图像体积指配相分布。相分布包括基于钻孔数据、地球物理建模、和/或与相分布相关联的其它信息中的一个或多个而指配给所识别的一个或多个地质体表述的空间描述值和/或岩石特性。该空间描述值包括垂直厚度值、横向尺度值、和/或其它空间描述值中的一个或多个。在一些实施例中,该空间描述值可以经由根据地震分析的储集层特性估计来确定。岩石特性的示例包括以下中的一个或多个:速度、多孔性、渗透性、同质性、各向异性、密度、声特性、弹性特性、岩石物理特性、流体特性、储集层特性、地质描述、岩性分类、和/或与地质体相关联的其它特性。The
根据一些实施例,相指配模块116可以被设置成向所识别的一个或多个地质体表述中的各个地质体表述指配解释置信水平。针对给定地质体表述的解释置信水平可以指示空间描述值和/或与该给定地质体表述相关联的岩石特性中的置信度。指配置信水平可以自动地执行和/或基于经由用户接口104和/或系统100的其它组件接收的用户输入来执行。According to some embodiments, the
框架模块118可以被设置成生成和/或以其它方式获取与所关注的地质体积的地球模型相关联的确定性框架。在一些实施例中,框架模块118可以被设置成基于相分布的集合来生成和/或以其它方式获取该确定性框架。该确定性框架是与地球模型相关联的、在部分或全部地球模型上延伸的矩阵。该确定性框架包括被包括在地球模型中的一个或多个地质体表述。该确定性框架可以包括一个或多个未定义和/或待定义区域。这种区域可以被视为该确定性框架中的、没有识别地质体表述的地层间隙。框架模块118可以被设置成在该地球模型的确定性框架中识别一个或多个地层间隙。The
混合模型模块120可以被设置成生成初始混合式确定性-地质统计地球模型。这可以通过利用结合地质体模块114识别的一个或多个地质体表述填充地球模型的确定性框架中的一个或多个地层间隙来执行。根据一些实施例,填充确定性框架中的所述一个或多个地层间隙中的至少一个地层间隙基于多点统计(MPS)工作流程。一个或多个示例性MPS工作流程在2004年8月20日提交的并且题名为“Method for Making aReservoir Facies Model Utilizing a Training Image and a GeologicallyInterpreted Facies Probability Cube”的美国专利申请No.10/923316中进行了描述,其通过引用并入于此。生成初始混合式确定性-地质统计地球模型可以包括:向包括在混合式确定性-地质统计地球模型中的多个地质体表述中的各个地质体表述指配空间描述值、岩石特性、和/或其它信息中的一个或多个。这可以基于钻孔数据、地球物理建模、和/或与所关注的地质体积相关联的其它信息中的一个或多个。The
混合模型模块120可以被设置成,执行反演以生成初始和/或其它混合式确定性-地质统计地球模型。执行反演可以包括从数据(例如,地震数据、现场数据、和/或其它数据)导出用于描述与该数据一致的所关注的地质体积的地下的模型。反演可以包括解决可以生成了一组观察测量值的参数的空间分布。这种参数的示例可以包括:登记数据、地震事件次数、和/或其它参数。The
合成地震响应模块122可以被设置成,生成和/或以其它方式获取合成地震响应。该合成地震响应可以对应于混合式确定性-地质统计地球模型和/或其它模型。合成地震响应可以包括通过假定特定波形行进通过假定模型而生成的计算机生成地震反射记录。合成地震响应可以不受对应模型的维数限制。合成地震响应可以包括传播通过具有衰减和速度各向异性的单维或多维弹性模型。在示例性实施例中,生成用于与测量地震数据比较的、初始和/或其它混合式确定性-地质统计地球模型的合成地震响应。这种比较有助于验证初始和/或其它混合式确定性-地质统计地球模型。The synthetic
返回至混合模型模块120,该模块可以被设置成迭代地细化初始混合式确定性-地质统计地球模型,以获取一组最终混合式确定性-地质统计地球模型。该细化可以基于地质地震响应与经细化的混合式确定性-地质统计地球模型的合成地震响应之间的连续比较。该组最终混合式确定性-地质统计地球模型中的各个个体的合成地震响应接近测量地震数据。在一些实施例中,可以执行模块110、112、114、116、118、120和/或122中的一个或多个之间的迭代性再处理(reworking)。Returning to the
在一些实施例中,混合模型模块120可以被设置成,从该组最终混合式确定性-地质统计地球模型当中选择代表性混合式确定性-地质统计地球模型。根据一些实施例,该代表性混合式确定性-地质统计地球模型可以具有基于至少一个储集层参数、地质似真性、和/或其它信息中的一个或多个的不确定性范围。In some embodiments,
图2例示了根据一个或多个实施例的、用于生成混合式确定性-地质统计地球模型的工作流程200。如图2中描绘,工作流程200包括处理步骤202、206、208、210和/或212。处理步骤202、206、208、210和/或212中的一个或多个可以省略和/或与另一处理步骤组合。附加处理步骤可以包括在工作流程200中。图2所示处理步骤202、206、208、210和/或212的次序不是旨在进行限制,因为处理步骤202、206、208、210、和/或212可以按其它次序执行。工作流程200的一个或多个处理步骤202、206、208、210和/或212可以通过系统100的一个或多个组件来执行。图3A-3C和4A-4D提供了与工作流程200相关联的例示性信息。更具体地说,根据一个或多个实施例,图3A-3C例示了从地震体积提取地质体,而图4A-4D例示了经由贯穿叠加有混合式确定性-地质统计地球模型的地震体积的截面来构架混合式确定性-地质统计地球模型。另外,一个或多个处理步骤可以包括在'995申请和/或'094申请中的一个或两个中描述的方法,其都已通过引用并入于此。FIG. 2 illustrates a
在处理步骤202,分析地震数据以识别一个或多个离散地质体。这种分析可以包括一种或多种地震地层分析技术、一种或多种地震地形分析技术、和/或其它分析技术。图3A例示了地震数据集的示例性可视化。分析该地震数据以识别一个或多个离散地质体。所识别地质体在框架中表示为地质体表述。图3B例示了叠加在图3A的地震数据集上的所识别地质体的表述的示例性可视化。图4A例示了叠加在地震数据集上的所识别地质体的表述的另一示例性可视化。根据一些实施例,处理步骤202包括检查限制偏移/角叠加。信号增强过程可以在需要时执行。当根据地震数据识别离散地质体时,不同的地质体可以利用动画和/或可视化工具在不同偏移叠加域内成像。At
在处理步骤204,可以将属性、储集层特性和/或几何形状、地质体特性和/或几何形状、和/或其它信息指配给各个识别地质体和/或成组的识别地质体。在一些实施例中,将利用地震和/测井信息的幅度偏移分析和/或反演用于确定的各个地质体的空间尺度(例如,厚度)和/或储集层特性。可以将相对置信度量指配给所识别地质体的各个识别地质体,这种置信度量可以定量和/或定性的。图3C例示了指配给图3B的识别地质体的属性、储集层特性、和/或其它信息的一示例性可视化。图4B还例示了指配给图4A的识别地质体的属性、储集层特性、和/或其它信息的一示例性可视化。At
在处理步骤206,储集层模型空间填充有识别地质体以形成确定性框架。该地质体是混合式确定性-地质统计地球模型的确定性组件。确定性框架是与地球模型相关联的、在该地球模型的部分或全部上延伸的矩阵,并且包括所识别的一个或多个地质体表述中的各个地质体表述和一个或多个未定义区域。未定义和/或错误定义部分进一步结合处理步骤208来讨论。图4C例示了填充确定性框架的识别和聚集地质体的示例性可视化,其中,灰色区域指示没有明确定义的地质体的确定性框架的区域。At
在处理步骤208,确定性框架的一个或多个未定义和/或错误定义部分利用概率性地质统计建模填充,以获取混合式确定性-地质统计地球模型。图4D例示了图4C的确定性框架的一示例性例示图,其具有利用概率性地质统计建模填充的部分或全部未定义和/或错误定义部分。在一些实施例中,测井信息通过附加小尺度地质体的识别而集成到确定性框架中。一些实施例包括地质体和/或确定性框架内的填入地层细节。处理步骤208可以包括相模拟(例如,MPS、MPS相关技术、和/或其它模拟技术),以将空间背景填充到确定性框架的未定义和/或错误定义部分中。这可以分辨与储集层特性相关联的任何剩余模糊度,和/或解决地震数据在用于分辨或检测可能在井数据中明显的沉积地质体时的局限。At
在处理步骤210,生成混合式确定性-地质统计地球模型的合成地震响应,以与对应测量地震体积比较。如果关联地震导出特性之间的比较未将所观察地震响应匹配至可接受水平,则可以采取一个或多个动作以减轻不一致。例如,当存在系统性变化时(例如,在存在差地震质量的情况下),将所观察的地震再处理。作为另一示例,如果部分或全部混合式确定性-地质统计地球模型示出了与所观察地震的差比较,则通过步骤202的迭代来重解释确定性框架。作为又一示例,当地质统计填入细节呈现无效时,地质统计约束通过步骤208的迭代来重新解决。一般来说,当合成响应与所测量地震体积之间存在显著不一致时,可以再访问过程步骤202、204、206和/或208中的一个或多个。混合式确定性-地质统计地球模型利用该混合式确定性-地质统计地球模型的特性与地震数据之间的一致性标准来验证和/或更新。根据一些实施例,根据工作流程200可以获取几个不同的混合式确定性-地质统计地球模型。At
在处理步骤212,将一个或多个混合式确定性-地质统计地球模型分类,以确定可接受或优选的混合式确定性-地质统计地球模型。该分类可以基于一个或多个储集层度量。这种度量可以包括:静态储集层特性(例如,本地油储量、本地气储量和/或其它特性)、动态储集层特性(例如,生产率、估计最终开采量、以及其它特性)、和/或其它度量。这些和其它度量可以经由储集层模拟获取,并且可以再与混合式确定性-地质统计地球模型的特征相关。At
图5例示了根据一个或多个实施例的、用于通过对离散地质体的确定性识别来生成用于地球模型的确定性框架的方法500。下面呈现的方法500的操作旨在例示。在一些实施例中,方法500可以利用未描述的一个或多个附加操作和/或不利用所讨论操作中的一个或多个来完成。例如,方法500可以包括在'995申请和/或'094申请中描述的一个或多个操作,其都已通过引用并入于此。另外,其中图5例示和下面描述的方法500的操作的次序不旨在进行限制。FIG. 5 illustrates a method 500 for generating a deterministic framework for an earth model through deterministic identification of discrete geological bodies, according to one or more embodiments. The operations of method 500 presented below are intended to be illustrative. In some embodiments, method 500 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. For example, method 500 may include one or more of the operations described in the '995 application and/or the '094 application, both of which are hereby incorporated by reference. Additionally, the order in which the operations of method 500 are illustrated in FIG. 5 and described below is not intended to be limiting.
在一些实施例中,方法500可以在一个或多个处理装置(例如,数字处理器、模拟处理器、被设计成处理信息的数字电路、被设计成处理信息的模拟电路、状态机、和/或用于电子地处理信息的其它机构)中实现。该一个或多个处理装置可以包括响应于电子地存储在电子存储介质上的指令来执行方法500的一些或全部操作的一个或多个装置。该一个或多个处理装置可以包括通过要具体设计用于执行方法500的一个或多个操作的硬件、固件和/或软件设置的一个或多个装置。In some embodiments, method 500 may be performed on one or more processing devices (e.g., digital processors, analog processors, digital circuits designed to process information, analog circuits designed to process information, state machines, and/or or other mechanisms for processing information electronically). The one or more processing devices may include one or more devices that perform some or all of the operations of method 500 in response to instructions stored electronically on an electronic storage medium. The one or more processing means may comprise one or more means configured by hardware, firmware, and/or software to be specifically designed to perform one or more operations of method 500 .
在操作502,获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的多个图像体积。在一些实施例中,操作502可以通过图像体积模块112来执行。At an operation 502, a plurality of image volumes associated with an earth model of a geological volume of interest including one or more geological volumes is acquired. In some embodiments, operation 502 may be performed by
在操作504,针对与该所关注的地质体积的地球模型相关联的所述多个图像体积上的一个或多个频率范围,执行信号处理增强或频谱分解中的一个或两个。在一些实施例中,操作504可以通过图像体积模块112来执行。At operation 504, one or both of signal processing enhancement or spectral decomposition is performed for one or more frequency ranges over the plurality of image volumes associated with the earth model of the geological volume of interest. In some embodiments, operation 504 may be performed by the
在操作506,通过利用地震地层学分析技术或地震地形学分析技术中的一个或两个分析所述多个图像体积中的一个或多个,来识别所述多个图像体积中的各个图像体积中的一个或多个离散地质体表述。在一些实施例中,操作506可以通过地质体模块114来执行。At operation 506, each image volume of the plurality of image volumes is identified by analyzing one or more of the plurality of image volumes using one or both of a seismic stratigraphy analysis technique or a seismic topography analysis technique One or more discrete geological volume representations in . In some embodiments, operation 506 may be performed by
在操作508,向所述多个图像体积中的各个图像体积指配相分布。在一些实施例中,操作508可以通过相指配模块116来执行。At an operation 508, a phase distribution is assigned to each image volume of the plurality of image volumes. In some embodiments, operation 508 may be performed by
在操作510,基于相分布的集合来生成该地球模型的确定性框架。在一些实施例中,操作510可以通过框架模块118来执行。At operation 510, a deterministic framework of the earth model is generated based on the set of facies distributions. In some embodiments, operation 510 may be performed by
在操作512,识别该地球模型的确定性框架中的一个或多个地层间隙。在一些实施例中,操作512可以通过框架模块118来执行。At operation 512, one or more formation gaps in the deterministic framework of the earth model are identified. In some embodiments, operation 512 may be performed by
图6例示了根据一个或多个实施例的、用于通过利用地质统计信息和/或地震反演填充确定性框架中的地层间隙来生成混合式确定性-地质统计地球模型的方法。下面呈现的方法600的操作旨在例示。在一些实施例中,方法600可以利用未描述的一个或多个附加操作和/或不利用所讨论操作中的一个或多个来完成。例如,方法600可以包括在'995申请和/或'094申请中描述的一个或多个操作,其都已通过引用并入于此。另外,其中图6例示和下面描述的方法600的操作的次序不旨在进行限制。6 illustrates a method for generating a hybrid deterministic-geostatistical earth model by filling formation gaps in a deterministic framework with geostatistical information and/or seismic inversion, according to one or more embodiments. The operations of
在一些实施例中,方法600可以在一个或多个处理装置(例如,数字处理器、模拟处理器、被设计成处理信息的数字电路、被设计成处理信息的模拟电路、状态机、和/或用于电子地处理信息的其它机构)中实现。该一个或多个处理装置可以包括响应于电子地存储在电子存储介质上的指令来执行方法600的一些或全部操作的一个或多个装置。该一个或多个处理装置可以包括通过要具体设计用于执行方法600的一个或多个操作的硬件、固件和/或软件设置的一个或多个装置。In some embodiments,
在操作602,获取与包括一个或多个地质体的所关注的地质体积的地球模型相关联的确定性框架。在一些实施例中,操作602可以通过框架模块118来执行。At an
在操作604,识别一组与所关注的地质体积相关联的一个或多个地质体表述。在一些实施例中,操作604通过地质体模块114来执行。At an
在操作606,通过利用该组地质体表述中的各个地质体表述填充地球模型的确定性框架中的一个或多个地层间隙,生成初始混合式确定性-地质统计地球模型。在一些实施例中,操作606通过混合模型模块120来执行。At
在操作608,生成初始混合式确定性-地质统计地球模型的合成地震响应以与测量地震数据比较。在一些实施例中,操作608通过合成地震响应模块122来执行。At
在操作610,迭代地细化初始混合式确定性-地质统计地球模型,以获取一组最终混合式确定性-地质统计地球模型。在一些实施例中,操作610通过混合模型模块120来执行。At
在操作612,从该组最终混合式确定性-地质统计地球模型当中选择代表性混合式确定性-地质统计地球模型。在一些实施例中,操作612通过混合模型模块120来执行。At
尽管基于当前被认为是最有用且优选的实施例,而出于例示的目的,对本技术进行了详细描述,但要明白的是,这种细节仅用于该目的,并且本技术不限于所公开的实施例,而且,正相反,其旨在覆盖处于所附权利要求书的精神和范围内的修改例和等同布置。例如,要明白的是,本技术设想,在尽可能的情况下,可以将任何实施例的一个或多个特征与任何其它实施例的一个或多个特征相组合。While the technology has been described in detail for purposes of illustration based on what is presently considered to be the most useful and preferred embodiment, it is to be understood that such detail is used for that purpose only and that the technology is not limited to the disclosed and, on the contrary, it is intended to cover modifications and equivalent arrangements falling within the spirit and scope of the appended claims. For example, it is to be appreciated that the present technology contemplates that, where possible, one or more features of any embodiment may be combined with one or more features of any other embodiment.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/217,810 | 2011-08-25 | ||
US13/217,810 US8843353B2 (en) | 2011-08-25 | 2011-08-25 | Hybrid deterministic-geostatistical earth model |
PCT/US2012/030642 WO2013028234A1 (en) | 2011-08-25 | 2012-03-27 | Hybrid deterministic-geostatistical earth model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103765245A true CN103765245A (en) | 2014-04-30 |
CN103765245B CN103765245B (en) | 2016-10-12 |
Family
ID=47744870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280041316.4A Expired - Fee Related CN103765245B (en) | 2011-08-25 | 2012-03-27 | Hybrid Deterministic-Geostatistical Earth Model |
Country Status (9)
Country | Link |
---|---|
US (1) | US8843353B2 (en) |
EP (1) | EP2748644B1 (en) |
CN (1) | CN103765245B (en) |
AU (1) | AU2012299424B2 (en) |
BR (1) | BR112014002535A2 (en) |
CA (1) | CA2846110A1 (en) |
NO (1) | NO2888204T3 (en) |
RU (1) | RU2014111160A (en) |
WO (1) | WO2013028234A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106415321A (en) * | 2014-06-23 | 2017-02-15 | 雪佛龙美国公司 | Instantaneous isochron attribute-based geobody identification for reservoir modeling |
CN107870360A (en) * | 2016-09-28 | 2018-04-03 | 中国石油化工股份有限公司 | Earthquake sedimentary evolution animation producing method and device |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009244726B2 (en) * | 2008-05-05 | 2014-04-24 | Exxonmobil Upstream Research Company | Modeling dynamic systems by visualizing and narrowing a parameter space |
WO2010056427A1 (en) | 2008-11-14 | 2010-05-20 | Exxonmobil Upstream Research Company | Forming a model of a subsurface region |
FR2953039B1 (en) * | 2009-11-26 | 2012-01-13 | Inst Francais Du Petrole | METHOD OF OPERATING A PETROLEUM FACILITY BY RECONSTRUCTION OF TANK MODEL |
EP3450679A1 (en) | 2009-11-30 | 2019-03-06 | Exxonmobil Upstream Research Company | Adaptive newton's method for reservoir simulation |
EP2564309A4 (en) | 2010-04-30 | 2017-12-20 | Exxonmobil Upstream Research Company | Method and system for finite volume simulation of flow |
AU2011258764B2 (en) | 2010-05-28 | 2014-10-23 | Exxonmobil Upstream Research Company | Method for seismic hydrocarbon system analysis |
CA2803068C (en) | 2010-07-29 | 2016-10-11 | Exxonmobil Upstream Research Company | Method and system for reservoir modeling |
AU2011283190A1 (en) | 2010-07-29 | 2013-02-07 | Exxonmobil Upstream Research Company | Methods and systems for machine-learning based simulation of flow |
EP2599023B1 (en) | 2010-07-29 | 2019-10-23 | Exxonmobil Upstream Research Company | Methods and systems for machine-learning based simulation of flow |
WO2012039811A1 (en) | 2010-09-20 | 2012-03-29 | Exxonmobil Upstream Research Company | Flexible and adaptive formulations for complex reservoir simulations |
EP2643790A4 (en) | 2010-11-23 | 2018-01-10 | Exxonmobil Upstream Research Company | Variable discretization method for flow simulation on complex geological models |
BR112014005794A2 (en) | 2011-09-15 | 2017-03-28 | Exxonmobil Upstream Res Co | optimized matrix and vector operations in limited instruction algorithms that perform equation of state calculations |
NO342738B1 (en) * | 2012-12-06 | 2018-08-06 | Roxar Software Solutions As | Procedure and a system for presenting seismic information |
US10578767B2 (en) * | 2012-09-26 | 2020-03-03 | Exxonmobil Upstream Research Company | Conditional process-aided multiple-points statistics modeling |
US10036829B2 (en) | 2012-09-28 | 2018-07-31 | Exxonmobil Upstream Research Company | Fault removal in geological models |
WO2014099202A1 (en) | 2012-12-20 | 2014-06-26 | Exxonmobil Upstream Research Company | Method and system for geophysical modeling of subsurface volumes based on label propagation |
US10234583B2 (en) | 2012-12-20 | 2019-03-19 | Exxonmobil Upstream Research Company | Vector based geophysical modeling of subsurface volumes |
WO2014099204A1 (en) | 2012-12-20 | 2014-06-26 | Exxonmobil Upstream Research Company | Method and system for geophysical modeling of subsurface volumes based on computed vectors |
WO2014099201A1 (en) | 2012-12-20 | 2014-06-26 | Exxonmobil Upstream Research Company | Geophysical modeling of subsurface volumes based on horizon extraction |
US9575205B2 (en) * | 2013-01-17 | 2017-02-21 | Pgs Geophysical As | Uncertainty-based frequency-selected inversion of electromagnetic geophysical data |
GB2512391B (en) | 2013-03-28 | 2020-08-12 | Reeves Wireline Tech Ltd | Improved borehole log data processing methods |
US10261215B2 (en) | 2013-04-02 | 2019-04-16 | Westerngeco L.L.C. | Joint inversion of geophysical attributes |
SG11201600465RA (en) | 2013-09-03 | 2016-02-26 | Landmark Graphics Corp | Global grid building in reverse faulted areas by an optimized unfaulting method |
CN105612530A (en) | 2013-10-01 | 2016-05-25 | 界标制图有限公司 | In-situ wellbore, core and cuttings information system |
US20150362623A1 (en) * | 2014-06-12 | 2015-12-17 | Westerngeco, Llc | Joint inversion of attributes |
US10319143B2 (en) | 2014-07-30 | 2019-06-11 | Exxonmobil Upstream Research Company | Volumetric grid generation in a domain with heterogeneous material properties |
US10359523B2 (en) | 2014-08-05 | 2019-07-23 | Exxonmobil Upstream Research Company | Exploration and extraction method and system for hydrocarbons |
US10221659B2 (en) * | 2014-10-08 | 2019-03-05 | Chevron U.S.A. Inc. | Automated well placement for reservoir evaluation |
US9581710B2 (en) * | 2014-10-24 | 2017-02-28 | Westerngeco L.L.C. | Three-dimensional rock properties using cross well seismic |
US10803534B2 (en) | 2014-10-31 | 2020-10-13 | Exxonmobil Upstream Research Company | Handling domain discontinuity with the help of grid optimization techniques |
AU2015339883B2 (en) | 2014-10-31 | 2018-03-29 | Exxonmobil Upstream Research Company | Methods to handle discontinuity in constructing design space for faulted subsurface model using moving least squares |
EP3213127A1 (en) | 2014-10-31 | 2017-09-06 | Exxonmobil Upstream Research Company | Managing discontinuities in geologic models |
US10753918B2 (en) * | 2014-12-15 | 2020-08-25 | Saudi Arabian Oil Company | Physical reservoir rock interpretation in a 3D petrophysical modeling environment |
WO2016118223A1 (en) | 2015-01-22 | 2016-07-28 | Exxonmobil Upstream Research Company | Adaptive structure-oriented operator |
US10139507B2 (en) | 2015-04-24 | 2018-11-27 | Exxonmobil Upstream Research Company | Seismic stratigraphic surface classification |
US20190265375A1 (en) * | 2016-12-19 | 2019-08-29 | Schlumberger Technology Corporation | Cloud Framework System |
EP3559401B1 (en) | 2016-12-23 | 2023-10-18 | ExxonMobil Technology and Engineering Company | Method and system for stable and efficient reservoir simulation using stability proxies |
US11531127B2 (en) * | 2018-04-30 | 2022-12-20 | Exxonmobil Upstream Research Company | Methods and systems for reference-based inversion of seismic image volumes |
SG11202100461SA (en) | 2018-09-14 | 2021-04-29 | Exxonmobil Upstream Res Co | Reservoir characterization utilizing inversion of resampled seismic data |
US11693141B2 (en) | 2018-12-06 | 2023-07-04 | Halliburton Energy Services, Inc. | Methods and systems for processing borehole dispersive waves with a physics-based machine learning analysis |
CA3149677A1 (en) | 2019-08-06 | 2021-02-11 | Exxonmobil Upstream Research Company | Petrophysical inversion with machine learning-based geologic priors |
US11650349B2 (en) * | 2020-07-14 | 2023-05-16 | Saudi Arabian Oil Company | Generating dynamic reservoir descriptions using geostatistics in a geological model |
US11867857B2 (en) * | 2021-07-13 | 2024-01-09 | Saudi Arabian Oil Company | Method and system for updating a seismic velocity model |
US20230288590A1 (en) * | 2022-03-14 | 2023-09-14 | Cgg Services Sas | System and method for elastic full waveform inversion and imaging |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020099504A1 (en) * | 1999-01-29 | 2002-07-25 | Cross Timothy A. | Method of predicting three-dimensional stratigraphy using inverse optimization techniques |
US6771800B2 (en) * | 2000-04-26 | 2004-08-03 | Elf Exploration Production | Method of chrono-stratigraphic interpretation of a seismic cross section or block |
US20100185422A1 (en) * | 2009-01-20 | 2010-07-22 | Chevron U,S,A., Inc. | Stochastic inversion of geophysical data for estimating earth model parameters |
CN102066980A (en) * | 2008-05-22 | 2011-05-18 | 埃克森美孚上游研究公司 | Seismic horizon skeletonization |
CN102147479A (en) * | 2011-01-11 | 2011-08-10 | 中国海洋石油总公司 | Modelling method of reservoir space physical property parameters |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6480790B1 (en) * | 1999-10-29 | 2002-11-12 | Exxonmobil Upstream Research Company | Process for constructing three-dimensional geologic models having adjustable geologic interfaces |
US6370491B1 (en) * | 2000-04-04 | 2002-04-09 | Conoco, Inc. | Method of modeling of faulting and fracturing in the earth |
US7415401B2 (en) * | 2000-08-31 | 2008-08-19 | Exxonmobil Upstream Research Company | Method for constructing 3-D geologic models by combining multiple frequency passbands |
US20030182093A1 (en) * | 2002-03-25 | 2003-09-25 | Jones Thomas A. | Controlling azimuthally varying continuity in geologic models |
US7024021B2 (en) * | 2002-09-26 | 2006-04-04 | Exxonmobil Upstream Research Company | Method for performing stratigraphically-based seed detection in a 3-D seismic data volume |
US20060041409A1 (en) * | 2004-08-20 | 2006-02-23 | Chevron U.S.A. Inc. | Method for making a reservoir facies model utilizing a training image and a geologically interpreted facies probability cube |
GB2419196B (en) * | 2004-10-13 | 2007-03-14 | Westerngeco Ltd | Processing data representing energy propagating through a medium |
FR2885227B1 (en) * | 2005-04-29 | 2007-06-29 | Inst Francais Du Petrole | METHOD OF SEDIMENTOLOGICAL INTERPRETATION BY ESTIMATING DIFFERENT CHRONOLOGICAL SCENARIOS OF SEDIMENTARY LAYER LAYOUT |
US7764573B2 (en) * | 2006-04-11 | 2010-07-27 | Shell Oil Company | Method of processing seismic data and method of producing a mineral hydrocarbon fluid and a computer program product |
US7254091B1 (en) * | 2006-06-08 | 2007-08-07 | Bhp Billiton Innovation Pty Ltd. | Method for estimating and/or reducing uncertainty in reservoir models of potential petroleum reservoirs |
US8902711B2 (en) * | 2009-11-11 | 2014-12-02 | Chevron U.S.A. Inc. | System and method for analyzing and transforming geophysical and petrophysical data |
FR2953039B1 (en) * | 2009-11-26 | 2012-01-13 | Inst Francais Du Petrole | METHOD OF OPERATING A PETROLEUM FACILITY BY RECONSTRUCTION OF TANK MODEL |
US8660798B2 (en) * | 2010-02-25 | 2014-02-25 | Chevron U.S.A. Inc. | System and method for attenuating aliasing in seismic data caused by acquisition geometry |
-
2011
- 2011-08-25 US US13/217,810 patent/US8843353B2/en active Active
-
2012
- 2012-03-27 AU AU2012299424A patent/AU2012299424B2/en active Active
- 2012-03-27 CA CA2846110A patent/CA2846110A1/en not_active Abandoned
- 2012-03-27 CN CN201280041316.4A patent/CN103765245B/en not_active Expired - Fee Related
- 2012-03-27 RU RU2014111160/28A patent/RU2014111160A/en not_active Application Discontinuation
- 2012-03-27 BR BR112014002535A patent/BR112014002535A2/en not_active IP Right Cessation
- 2012-03-27 WO PCT/US2012/030642 patent/WO2013028234A1/en active Application Filing
- 2012-03-27 EP EP12825852.2A patent/EP2748644B1/en active Active
-
2013
- 2013-07-22 NO NO13745518A patent/NO2888204T3/no unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020099504A1 (en) * | 1999-01-29 | 2002-07-25 | Cross Timothy A. | Method of predicting three-dimensional stratigraphy using inverse optimization techniques |
US6771800B2 (en) * | 2000-04-26 | 2004-08-03 | Elf Exploration Production | Method of chrono-stratigraphic interpretation of a seismic cross section or block |
CN102066980A (en) * | 2008-05-22 | 2011-05-18 | 埃克森美孚上游研究公司 | Seismic horizon skeletonization |
US20100185422A1 (en) * | 2009-01-20 | 2010-07-22 | Chevron U,S,A., Inc. | Stochastic inversion of geophysical data for estimating earth model parameters |
CN102147479A (en) * | 2011-01-11 | 2011-08-10 | 中国海洋石油总公司 | Modelling method of reservoir space physical property parameters |
Non-Patent Citations (3)
Title |
---|
DANIEL RAHON,ET AL.: "Identification of Geological Shapes in Reservoir Engineering By History Matching Production Data", 《SPE RESERVOIR EVAL. & ENG》 * |
H.W.POSAMENTIER,ET AL.: "Seismic geomorphology-an overview", 《GEOLOGICAL SOCIETY》 * |
徐琳 等: "地震地貌学在隐蔽油气藏勘探中的应用", 《内蒙古石油化工》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106415321A (en) * | 2014-06-23 | 2017-02-15 | 雪佛龙美国公司 | Instantaneous isochron attribute-based geobody identification for reservoir modeling |
CN107870360A (en) * | 2016-09-28 | 2018-04-03 | 中国石油化工股份有限公司 | Earthquake sedimentary evolution animation producing method and device |
Also Published As
Publication number | Publication date |
---|---|
WO2013028234A1 (en) | 2013-02-28 |
EP2748644B1 (en) | 2017-09-20 |
AU2012299424B2 (en) | 2014-12-04 |
BR112014002535A2 (en) | 2017-03-14 |
CA2846110A1 (en) | 2013-02-28 |
EP2748644A1 (en) | 2014-07-02 |
US8843353B2 (en) | 2014-09-23 |
AU2012299424A1 (en) | 2014-02-20 |
US20130054201A1 (en) | 2013-02-28 |
RU2014111160A (en) | 2015-09-27 |
EP2748644A4 (en) | 2015-10-28 |
NO2888204T3 (en) | 2018-06-30 |
CN103765245B (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103765245B (en) | Hybrid Deterministic-Geostatistical Earth Model | |
US8861309B2 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
US9121968B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US8838391B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US8972195B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US9015010B2 (en) | Systems and methods for subsurface electromagnetic mapping | |
US20120197613A1 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
WO2018229469A1 (en) | A method for validating geological model data over corresponding original seismic data | |
AU2012212520B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
WO2017016895A1 (en) | Assignment of systems tracts | |
AU2012260680A1 (en) | A method to aid in the exploration, mine design, evaluation and/or extraction of metalliferous mineral and/or diamond deposits | |
CN104520733A (en) | Seismic Orthogonal Decomposition Properties | |
EP3253946A1 (en) | Seismic attributes derived from the relative geological age property of a volume-based model | |
CA3092287A1 (en) | System and method for assessing the presence of hydrocarbons in a subterranean reservoir based on seismic inversions | |
US9063246B2 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
CN103299214B (en) | Method and system for improving earth model, velocity model and image volume accuracy | |
US10718876B2 (en) | System and method for assessing the presence of hydrocarbons in a subterranean reservoir based on seismic inversions | |
US20190146108A1 (en) | System and method for assessing the presence of hydrocarbons in a subterranean reservoir based on seismic data | |
Grover et al. | A Unified Modelling Approach using AI based Probabilistic Method to Address Structural Uncertainty in Carbonate Reservoirs | |
Burns et al. | Facts from fiction: 4D seismic model-based interpretation | |
Nurhono et al. | Multidisciplinary and Integrated Methodology for Deep Water Thinly Bedded Reservoirs Characterization | |
Thenin et al. | Estimating subsurface uncertainties by combining seismic interpretation with earth modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161012 Termination date: 20180327 |