CN103762872B - 一种三储能电容双输出z源半桥变换器 - Google Patents

一种三储能电容双输出z源半桥变换器 Download PDF

Info

Publication number
CN103762872B
CN103762872B CN201410043080.9A CN201410043080A CN103762872B CN 103762872 B CN103762872 B CN 103762872B CN 201410043080 A CN201410043080 A CN 201410043080A CN 103762872 B CN103762872 B CN 103762872B
Authority
CN
China
Prior art keywords
electric capacity
switching tube
inductance
source
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410043080.9A
Other languages
English (en)
Other versions
CN103762872A (zh
Inventor
张波
张桂东
丘东元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410043080.9A priority Critical patent/CN103762872B/zh
Publication of CN103762872A publication Critical patent/CN103762872A/zh
Application granted granted Critical
Publication of CN103762872B publication Critical patent/CN103762872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种三储能电容双输出Z源半桥变换器,包括第一电容、第二电容、第三电容、第四电容、第五电容,第一电感、第二电感、第一开关管、第二开关管、第三开关管和二极管;以第一电容、第二电容和第一开关管、第二开关管构成第一个常规半桥变换器,以第二电容、第三电容和第二开关管、第三开关管构成第二个常规半桥变换器,以第四电容、第五电容、第一电感、第二电感,构成Z源阻抗,二极管用于阻断Z源阻抗的电流倒流回电源。本发明只用了三个开关管,实现了双路输出。本发明具有高可靠性、宽输出电压范围和丰富的输出交流脉冲波形,特别适用双输出的场合,如电解电镀等电化学电源装置,以及分布式发电等需要多输出的绿色能源场合。

Description

一种三储能电容双输出Z源半桥变换器
技术领域
本发明涉及电力电子变换器技术领域,具体涉及一种三储能电容双输出Z源半桥变换器。
背景技术
常规的半桥变换器,逆变桥臂直接与直流电压源并联,当逆变桥臂的上、下开关管因误触发而直通时,会流过非常大的电流而使开关管损毁。而且,这类半桥逆变器输出交流电压的幅值只有输入电压的一半,属于降压型逆变器,输出电压的范围比较窄。为了提高输出交流电压的幅值,传统的做法是在逆变器前级加入升压环节,或在输出端接变压器进行升压。在逆变器前级加入升压环节的方案中至少需要多用一个开关管,这增加了功率传递中的开关损耗,也增加了控制的复杂性。在逆变器输出端接变压器虽然可以提高输出电压的幅值,但是当变压器匝比固定时,输出交流电压的幅值是一定值。
目前,有相应专利提出用Z源半桥变换器来解决上述问题,其电路如图1所示。随着新能源技术的市场需求,多电路输出的电路已经变得日益迫切。因此,当需要两路输出的时候,就需要两个Z源半桥变换器。然而,两个Z源半桥变换器,则需要两个电源,四个储能电容,四个开关管,以及两个Z源阻抗。除此,相应的控制会增加成本和控制难度,且系统的稳定性也会降低。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种双输出Z源半桥变换器。本发明只需要一个电源,三个开关管,三个储能电容,以及一个Z源阻抗。比传统的两个Z源半桥变换器,少了一个电源,一个储能电容,一个开关管和一个Z源阻抗,却能达到传统Z源半桥变换器的输出增益,且具有高可靠性、宽输出电压范围和丰富的输出交流脉冲波形,特别适用于需要双输出的新能源电路,以及电解电镀等电化学等电源装置。
本发明通过如下技术方案实现:
一种三储能电容双输出Z源半桥变换器,包括第一电容、第二电容、第三电容、第四电容、第五电容,第一电感、第二电感,第一开关管、第二开关管、第三开关管和二极管。一种双输出Z源半桥变换器以第一电容、第二电容和第一开关管、第二开关管构成第一个常规半桥变换器,以第二电容、第三电容和第二开关管、第三开关管构成第二个常规半桥变换器,以第四电容、第五电容,第一电感、第二电感,构成Z源阻抗,二极管用于阻断Z源阻抗的电流倒流回电源。
所述输入电源的正极、二极管的阳极和第一电容的一端连接于一点,二极管的阴极、第一电感的一端和第四电容的一端连接于一点,第一电感的另外一端、第五电容的一端和第一开关管的漏极连接于一点,第一开关管的源极、第二开关管的漏极和第一负载的一端连接于一点,第二开关管的源极、第三开关管的漏极和第二负载的一端连接于一点,第三开关管的源极、第二电感的一端和第四电容的另外一端连接于一点,第一负载的另外一端、第一电容的另外一端和第二电容的一端连接于一点,第二负载的另外一端、第二电容的另外一端和第三电容的一端连接于一点,第三电容的另外一端、第二电感的另外一端、第五电容的另外一端和电源的负极连接于一点。
与现有技术相比本发明具有如下优点:
本发明只需要一个电源,三个储能电容,三个开关管,以及一个Z源阻抗。比传统的具有两路输出的两个Z源半桥变换器,少了一个电源,一个储能电容,一个开关管和一个Z源阻抗,却能达到比传统Z源半桥变换器的输出增益,且具有高可靠性、宽输出电压范围和丰富的输出交流脉冲波形,特别适用于需要多输出的新能源电路,以及电解电镀等电化学等电源装置。
本发明的变换器可以防止开关管的直通对电路造成的损坏,且开关管直通时能得到较高的输出增益,克服传统的半桥变换器的输出局限于输入电压的缺点。
附图说明
图1是目前已有的一种单输出Z源半桥变换器的电路。
图2是本发明所述的一种双输出Z源半桥变换器的实施例的电路图;
图3a、图3b、图3c、图3d、图3e、图3f分别是图2所示电路图在一个开关周期内的主要工作模态图。
图4为一种双输出Z源半桥变换器的对应主要波形图。
具体实施方式
下面结合实施例及附图,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施案例
如图2所示,一种双输出Z源半桥变换器,包括第一电容Cd1、第二电容Cd2、第三电容Cd3、第四电容C1、第五电容C2,第一电感L1、第二电感L2,第一开关管S1、第二开关管S2、第三开关管S3和二极管D。一种双输出Z源半桥变换器以第一电容Cd1、第二电容Cd2和第一开关管S1、第二开关管S2构成第一个常规半桥变换器,以第二电容Cd2、第三电容Cd3和第二开关管S2、第三开关管S3构成第二个常规半桥变换器,以第四电容C1、第五电容C2,第一电感L1、第二电感L2,构成Z源阻抗,二极管D用于阻断Z源阻抗的电流倒流回电源。
所述的一种双输出Z源半桥变换器,所述输入电源Vd的正极、二极管D的阳极和第一电容Cd1的一端连接于一点,二极管D的阴极、第一电感L1的一端和第四电容C1的一端连接于一点,第一电感L1的另外一端、第五电容C2的一端和第一开关管S1的漏极连接于一点,第一开关管S1的源极、第二开关管S2的漏极和第一负载R1的一端连接于一点,第二开关管S2的源极、第三开关管S3的漏极和第二负载R2的一端连接于一点,第三开关管S3的源极、第二电感L2的一端和第四电容C1的另外一端连接于一点,第一负载R1的另外一端、第一电容Cd1的另外一端和第二电容Cd2的一端连接于一点,第二负载R2的另外一端、第二电容Cd2的另外一端和第三电容Cd3的一端连接于一点,第三电容Cd3的另外一端、第二电感L2的另外一端、第五电容C2的另外一端和电源的负极连接于一点。
如图3a、3b、3c、3d、3e和3f所示,其中图3a是工作模态1的电路图,图3b是工作模态2的电路图,图3c是工作模态3的电路图,图3d是工作模态4的电路图,图3e是工作模态5的电路图,图3f是工作模态6的电路图。图中实线表示变换器中有电流流过的部分,虚线表示变换器中没有电流流过的部分。参考图4对其对应工作模态进行分析如下。其中第一开关管S1、第二开关管S2和第三开关管S3三个开关管依次滞后D1T时间段后开通,每个开关管的导通时间为D2T,T为开关管开关周期。以顺时钟方向为电压的正参考方向。
第一电容Cd1的电压为VCd1、电流为iCd1,第二电容Cd2的电压为VCd2、电流为iCd2,第三电容Cd3的电压为VCd3、电流为iCd3,第四电容C1的电压为VC1,第五电容C2的电压为VC1,第一电感L1的电压为VL1,第二电感L2的电压为VL2,第一负载的电压为vO1、电流为iO1,第二负载的电压为vO2、电流为iO2
工作模态1:
如图4时间段[t0-t1]所示,第一开关管S1、第二开关管S2和第三开关管S3三个开关管都导通,二极管D关断,此时的等效电路图如图3a所示。Z源阻抗给第一负载R1和第二负载R2提供能量。第一电感L1电压为:VL1=VC1=VL2=VC2,第一负载R1的电压vO1=VCd1+VC2-Vd,第二负载R2的电压vO2=VC2-VCd3。此阶段时间为(D1+D2-1)T。
工作模态2:
如图4时间段[t1-t2]所示,第二开关管S2关断,第一开关管S1和第三开关管S3两个开关管都导通,二极管D导通,此时的等效电路图如图4b所示。电源Vd通过二极管D给Z源阻抗提供能量,同时第一电感L1给第一负载R1提供能量,第一电感L1电流下降。第四电容C1和第二电感L2给第二负载R2传输能量,第二电感L2电流下降。第一电感L1电压为:VL1=Vd-VC2,输出电压vO1=VCd1+VC2-Vd,vO2=Vd-VC2-VCd3。此阶段时间为(1-D2)T。
工作模态3:
如图4时间段[t2-t3]所示,第一开关管S1、第二开关管S2和第三开关管S3三个开关管都导通,二极管D关断,此时的等效电路图如图3c所示。此阶段的原理和工作模态1相同。此阶段时间为(D1+D2-1)T。
工作模态4:
如图4时间段[t3-t4]所示,第三开关管S3关断,第一开关管S1和第二开关管S2两个开关管都导通,二极管D导通,此时的等效电路图如图3d所示。电源Vd通过二极管D给Z源阻抗提供能量,第一电感L1给第一负载R1提供能量,第一电感L1电流下降。同时第一电感L1也给第二负载R2提供能量。第一电感L1电压为:VL1=Vd-VC2,输出电压vO1=VCd1+VC2-Vd,vo2=VC2-VCd3。此阶段时间为(1-D2)T。
工作模态5:
如图4时间段[t4-t5]所示第一开关管S1、第二开关管S2和第三开关管S3三个开关管都导通,二极管D关断,此时的等效电路图如图3e所示。此阶段的原理和工作模态1相同。此阶段时间为(D1+D2-1)T。
工作模态6:
如图4时间段[t5-t6]所示,第一开关管S1关断,第二开关管S2和第三开关管S3两个开关管都导通,二极管D导通,此时的等效电路图如图3f所示。电源Vd通过二极管D给Z源阻抗提供能量,同时通过第一电容Cd1和第三电容Cd3给第一负载R1和第二负载R2提供能量,该过程中,第一电感L1和第二电感L2电流下降。第一电感L1电压为:VL1=Vd-VC2,输出电压vo1=VCd1-VC2,vo2=Vd-VC2-VCd3。此阶段时间为(1-D2)T。
综上所描述,在一个开关周期中,根据第一电感L1的伏-秒数守恒,得 ∫ 0 T V L 1 dt = 0 , 3 ( ∫ 0 ( D 2 + D 1 - 1 ) T V C 2 dt + ∫ ( D 2 + D 1 - 1 ) T D 1 T ( V d - V C 2 ) dt ) = 0 , 由此可得到 V C 1 = V C 2 = 1 - D 2 2 - ( D 1 + 2 D 2 ) V d .
综上,可以得到电感表达式和输出电压表达式为:
同理,根据电容Cd1,Cd2,Cd3的安-秒数守恒,得
∫ 0 T i cd 1 dt = ∫ 0 T ( i cd 2 - i o 1 ) dt = ∫ 0 T i o 1 dt = 0 ∫ 0 T i cd 2 dt = 0 ∫ 0 T i cd 3 dt = ∫ 0 T ( i cd 2 + i o 2 ) dt = ∫ 0 T i o 2 dt = 0 , 综上式子可以得到
V Cd 1 + V C 2 - V d R 1 D 2 T + V Cd 1 - V C 2 R 1 ( 1 - D 2 ) T = 0 V C 2 - V Cd 3 R 2 ( 2 D 1 - 1 ) T + V d - V C 2 - V Cd 3 R 2 ( 2 - 2 D 2 ) T = 0 , 综上解方程得到
V Cd 1 = ( 1 - 2 D 2 ) V C 2 + V d D 2 = 1 - D 2 - D 1 D 2 2 - ( D 1 + 2 D 2 ) V d V Cd 3 = V C 2 ( 4 D 2 - 3 ) + V d ( 2 - 2 D 2 ) = ( 1 - D 2 ) ( 1 - 2 D 1 ) 2 - ( D 1 + 2 D 2 ) V d , 代入输出表达式可以得到
Z源阻抗的存在一方面避免了因开关管直通而遭到损毁,另一方面当开关管直通时起到升压的作用。通过控制三个开关管的导通占空比,可以分别控制两路输出的升压和降压,并实现两路输出电压的正负脉冲的对称和不对称。
本发明只需要一个电源,三个开关管,以及一个Z源阻抗。比传统的具有两路输出的两个Z源半桥变换器,少了一个电源,四个储能电容,一个开关管和一个Z源阻抗,却能达到传统Z源半桥变换器的输出增益,且能实现具有高可靠性、宽输出电压范围和丰富的输出交流脉冲波形,特别适用于双输出的新能源电源装置以及电解电镀等电化学电源装置。
本发明的变换器可以防止开关管的直通,且开关管直通时能得到较高的输出增益,克服传统半桥变换器输出局限于输入电压的缺点。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种三储能电容双输出Z源半桥变换器,其特征在于,包括第一电容(Cd1)、第二电容(Cd2)、第三电容(Cd3)、第四电容(C1)、第五电容(C2),第一电感(L1)、第二电感(L2)、第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和二极管(D);其中第一电容(Cd1)、第二电容(Cd2)和第一开关管(S1)、第二开关管(S2)构成第一个半桥变换器;第二电容(Cd2)、第三电容(Cd3)和第二开关管(S2)、第三开关管(S3)构成第二个半桥变换器;第四电容(C1)、第五电容(C2)、第一电感(L1)、第二电感(L2)构成Z源阻抗,二极管(D)用于阻断Z源阻抗的电流倒流回电源;
电源的正极与二极管(D)的阳极和第一电容(Cd1)的一端连接,二极管(D)的阴极与第一电感(L1)的一端和第四电容(C1)的一端连接,第一电感(L1)的另外一端与第五电容(C2)的一端和第一开关管(S1)的漏极连接,第一开关管(S1)的源极与第二开关管(S2)的漏极和第一负载(R1)的一端连接,第二开关管(S2)的源极与第三开关管(S3)的漏极和第二负载(R2)的一端连接,第三开关管(S3)的源极与第二电感(L2)的一端和第四电容(C1)的另外一端连接,第一负载(R1)的另外一端与第一电容(Cd1)的另外一端和第二电容(Cd2)的一端连接,第二负载(R2)的另外一端与第二电容(Cd2)的另外一端和第三电容(Cd3)的一端连接,第三电容(Cd3)的另外一端与第二电感(L2)的另外一端、第五电容(C2)的另外一端和电源的负极连接。
CN201410043080.9A 2014-01-28 2014-01-28 一种三储能电容双输出z源半桥变换器 Active CN103762872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410043080.9A CN103762872B (zh) 2014-01-28 2014-01-28 一种三储能电容双输出z源半桥变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410043080.9A CN103762872B (zh) 2014-01-28 2014-01-28 一种三储能电容双输出z源半桥变换器

Publications (2)

Publication Number Publication Date
CN103762872A CN103762872A (zh) 2014-04-30
CN103762872B true CN103762872B (zh) 2016-06-22

Family

ID=50530053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410043080.9A Active CN103762872B (zh) 2014-01-28 2014-01-28 一种三储能电容双输出z源半桥变换器

Country Status (1)

Country Link
CN (1) CN103762872B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733213A (zh) * 2017-11-07 2018-02-23 广东工业大学 一种高增益半桥阻抗网络变换器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787868B (zh) * 2017-03-13 2019-02-05 广东工业大学 一种基于阻抗网络的半桥逆变器
CN107947622A (zh) * 2017-12-27 2018-04-20 广东工业大学 一种多输出六端子阻抗网络半桥逆变器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058031A (en) * 1997-10-23 2000-05-02 General Electric Company Five level high power motor drive converter and control system
CN101499733A (zh) * 2009-01-20 2009-08-05 华南理工大学 一种z源半桥逆变器
CN202353473U (zh) * 2011-12-14 2012-07-25 深圳市元正能源系统有限公司 一种组合式变换器
CN203827211U (zh) * 2014-01-28 2014-09-10 华南理工大学 一种三储能电容双输出z源半桥变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058031A (en) * 1997-10-23 2000-05-02 General Electric Company Five level high power motor drive converter and control system
CN101499733A (zh) * 2009-01-20 2009-08-05 华南理工大学 一种z源半桥逆变器
CN202353473U (zh) * 2011-12-14 2012-07-25 深圳市元正能源系统有限公司 一种组合式变换器
CN203827211U (zh) * 2014-01-28 2014-09-10 华南理工大学 一种三储能电容双输出z源半桥变换器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733213A (zh) * 2017-11-07 2018-02-23 广东工业大学 一种高增益半桥阻抗网络变换器

Also Published As

Publication number Publication date
CN103762872A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
CN103618470B (zh) 一种基于光伏并网微逆变器的功率解耦控制方法
CN103929064B (zh) 一种隔离双向dc/dc变换器及其控制方法
CN104009645B (zh) 一种串并联混合式双输出llc谐振变换器
CN105281361B (zh) 一种五电平双降压式并网逆变器
CN103780115A (zh) 基于反激变换器的高频隔离式三电平逆变器
CN103856095A (zh) 一种全桥电流源型高频隔离式三电平逆变器
CN107134937A (zh) 一种三电平多脉冲输出无变压器型逆变电路
CN103762872B (zh) 一种三储能电容双输出z源半桥变换器
CN103762875B (zh) 一种非对称型双输出z源半桥变换器
CN106712523B (zh) 一种升压三电平全桥变换器及其控制方法
CN102403920B (zh) 三电平半桥光伏并网逆变器
CN101499733B (zh) 一种z源半桥逆变器
CN206865369U (zh) 三电平多脉冲输出无变压器型逆变电路
CN203827211U (zh) 一种三储能电容双输出z源半桥变换器
CN205725460U (zh) 一种输入并联输出并联的半桥变换器及其均流控制系统
CN201393178Y (zh) 一种z源半桥逆变器
CN106899203A (zh) 正激式五电平逆变器
CN106100403B (zh) 一种多输出z源半桥变换器
CN105226925A (zh) 一种反激式单相逆变器及其控制方法
CN206211839U (zh) 一种对称型双输出z源变换器
CN103762881B (zh) 双输出单相三开关组mmc逆变器及其控制方法
CN203872079U (zh) 一种非对称型双输出z源半桥变换器
CN207782664U (zh) 三电平全桥软开关变流电路、焊机、电解水电源和充电机
CN203933039U (zh) 一种光伏并网逆变器
CN104333229B (zh) 一种移相全桥开关变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant