CN103762574A - Double-circuit line non-same-name-phase overline grounded impedance distance protection method - Google Patents

Double-circuit line non-same-name-phase overline grounded impedance distance protection method Download PDF

Info

Publication number
CN103762574A
CN103762574A CN201410054043.8A CN201410054043A CN103762574A CN 103762574 A CN103762574 A CN 103762574A CN 201410054043 A CN201410054043 A CN 201410054043A CN 103762574 A CN103762574 A CN 103762574A
Authority
CN
China
Prior art keywords
mrow
msub
mover
mfrac
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410054043.8A
Other languages
Chinese (zh)
Other versions
CN103762574B (en
Inventor
林富洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Fujian Electric Power Co Ltd
Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Fujian Electric Power Co Ltd
Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Fujian Electric Power Co Ltd, Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201410054043.8A priority Critical patent/CN103762574B/en
Publication of CN103762574A publication Critical patent/CN103762574A/en
Application granted granted Critical
Publication of CN103762574B publication Critical patent/CN103762574B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

The invention discloses a double-circuit line non-same-name-phase overline grounded impedance distance protection method. The method includes the steps that the fault phase voltage, the fault phase current and the zero-sequence current of a protecting and installing position of a circuit line I of a double-circuit line on the same tower are measured; the phase angle of the zero-sequence current of a circuit line II of the double-circuit line on the same tower is calculated, and the zero-sequence current of the circuit line II of the double-circuit line on the same tower is calculated; then line fault impedance from the protecting and installing position of the circuit line I of the double-circuit line on the same tower to a grounded fault point is calculated; whether the amplitude of the line fault impedance is smaller than a set impedance amplitude or not is judged, and if yes, a tripping-off signal is sent out. Only single-end single-circuit line electric amount is used without introducing the electric amount of the other circuit line, and measurement results are not affected by changes of operation modes of the electric power system. Influence of zero-sequence mutual inductance between the lines and the voltage of the grounded fault point is considered, and the influence on the motion performance of on-the-same-tower double-circuit line non-same-name-phase overline grounded impedance distance protection by the zero-sequence mutual inductance between the lines, transition resistance and a load current is eliminated.

Description

Double-circuit line non-same-name-phase overline grounding impedance distance protection method
Technical Field
The invention relates to the technical field of relay protection of power systems, in particular to a double-circuit line non-homonymous phase overline grounding impedance distance protection method.
Background
The double-circuit line on the same tower has the advantages of small occupied area, low manufacturing cost and stable and reliable operation of connecting a power grid, and becomes a common power transmission line connecting mode of a power system. Zero sequence mutual inductance exists between double-circuit lines on the same tower, the zero sequence mutual inductance influences zero sequence compensation coefficients, additional impedance is further generated, the additional impedance caused by the zero sequence mutual inductance can cause the fault impedance measured by a protection device to be larger than the actual fault impedance, and when ground fault occurs at the position close to a protection setting range in a protection area of the double-circuit lines on the same tower, the protection is rejected, and the safe and stable operation of a power grid is not good.
Even if the double-circuit line on the same tower is directly grounded through a tower, the transition resistance is near 10 omega in the area with lower soil resistivity; the transition resistance may reach 30 omega, or even higher, where the resistivity is higher. The transition resistance is not zero so that the fault impedance calculated by the protection device comprises an additional impedance generated by the transition resistance in addition to a fault impedance component reflecting the real fault distance. The additional impedance generated by the transition resistance is resistive-inductive or resistive-capacitive, which easily causes the earth impedance distance protection to reject or exceed a steady state. Protection malfunction or failure brings great loss to the safe operation of the power system, and even possibly threatens the stability of the power system.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provide a grounding impedance distance method which has the action performance not influenced by zero sequence mutual inductance between lines, transition resistance and load current and is suitable for non-same-name-phase overline grounding faults of double-circuit lines.
In order to achieve the purpose, the invention adopts the following technical scheme:
the method for protecting the distance between the two-circuit line non-homonymous phase overline grounding impedance is characterized by comprising the following steps in sequence:
(1) the protection device measures the fault phase voltage at the protection installation position of the I-loop circuit of the double-loop circuit on the same tower
Figure BDA0000466711700000011
Fault phase current
Figure BDA0000466711700000012
And zero sequence current
Figure BDA0000466711700000013
Wherein phi is the phase A of the I-loop circuit, the phase B of the I-loop circuit or the phase C of the I-loop circuit;
(2) the protection device calculates the zero-sequence current phase angle alpha of the II-loop line of the double-loop line on the same tower:
α=r1+r2-π-β
wherein, <math> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> <math> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>|</mo> <mo>;</mo> </mrow> </math> <math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>Arg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Zmzero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved; zI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi = I loop line A phase, I loop line B phase, I loop line C phase;
(3) the protection device calculates the zero sequence current of the II-loop line of the double-loop line on the same tower
(4) The protection device calculates the line fault impedance Z from the I-loop line protection installation position to the ground fault point of the double-loop line on the same towerφ
<math> <mrow> <msub> <mi>Z</mi> <mi>&phi;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>{</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
Wherein Z isI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is a phase A of the loop circuit, a phase B of the loop circuit I or a phase C of the loop circuit I; zmZero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved;
(5) protection device judgment
Figure BDA0000466711700000026
If yes, judging that the ground fault point is located in the I-loop circuit protection setting range of the double-loop circuit on the same tower, and sending an action trip signal by the protection device; wherein lsetProtecting and setting a range for a circuit I of a double-circuit line on the same tower; l is the length of the I loop of the double-loop line on the same tower.
The invention has the characteristics and technical achievements that:
the method comprises the steps of firstly measuring fault phase voltage, fault phase current and zero sequence current at the protection installation position of the same-tower double-circuit line I loop, calculating a zero sequence current phase angle of the same-tower double-circuit line II loop, calculating the zero sequence current of the same-tower double-circuit line II loop, then calculating the line fault impedance from the protection installation position of the same-tower double-circuit line I loop to a ground fault point, judging whether the line fault impedance amplitude is smaller than the setting impedance amplitude, and if so, sending an action trip signal.
The method only uses the single-end single-loop line electric quantity, does not need to introduce another loop line electric quantity, has no influence on the action performance by the operation mode of the power system, and has strong adaptability when the operation mode of the power system is greatly changed. The method of the invention takes the influence of zero sequence mutual inductance between lines and the voltage of a ground fault point into consideration, eliminates the influence of the zero sequence mutual inductance between the lines, the transition resistance and the load current on the non-same-name-phase overline ground impedance distance protection action performance of the double-circuit lines on the same tower, and has stable and reliable protection range.
Drawings
Fig. 1 is a schematic diagram of a double-circuit power transmission system on the same tower and with the application of the invention.
Detailed Description
The invention is further illustrated by the following figures and examples.
Fig. 1 is a schematic diagram of a double-circuit power transmission system on the same tower and with the application of the invention. The protection device measures the fault phase voltage at the protection installation position of the I-loop circuit of the double-loop circuit on the same tower
Figure BDA0000466711700000031
Fault phase current
Figure BDA0000466711700000032
And zero sequence currentWherein φ is the phase A of the I-loop circuit, the phase B of the I-loop circuit or the phase C of the I-loop circuit.
The protection device calculates the zero-sequence current phase angle alpha of the II-loop line of the double-loop line on the same tower:
α=r1+r2-π-β
wherein, <math> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> <math> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>|</mo> <mo>;</mo> </mrow> </math> <math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>Arg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Zmzero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved; zI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is phase A of the I-loop circuit, phase B of the I-loop circuit or phase C of the I-loop circuit.
The protection device calculates the zero sequence current of the II-loop line of the double-loop line on the same tower
Figure BDA0000466711700000037
The protection device calculates the line fault impedance Z from the I-loop line protection installation position to the ground fault point of the double-loop line on the same towerφ
<math> <mrow> <msub> <mi>Z</mi> <mi>&phi;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>{</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
Wherein Z isI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is phase A of the I-loop circuit, phase B of the I-loop circuit or phase C of the I-loop circuit; zmZero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved;
protection device judgment
Figure BDA0000466711700000041
If yes, judging that the ground fault point is located in the I-loop circuit protection setting range of the double-loop circuit on the same tower, and sending an action trip signal by the protection device; wherein lsetProtection setting range for I-loop circuit of double-loop circuit on same tower(ii) a l is the length of the I loop of the double-loop line on the same tower.
The method comprises the steps of firstly measuring fault phase voltage, fault phase current and zero sequence current at the protection installation position of the same-tower double-circuit line I loop, calculating a zero sequence current phase angle of the same-tower double-circuit line II loop, calculating the zero sequence current of the same-tower double-circuit line II loop, then calculating the line fault impedance from the protection installation position of the same-tower double-circuit line I loop to a ground fault point, judging whether the line fault impedance amplitude is smaller than the setting impedance amplitude, and if so, sending an action trip signal.
The method only uses the single-end single-loop line electric quantity, does not need to introduce another loop line electric quantity, has no influence on the action performance by the operation mode of the power system, and has strong adaptability when the operation mode of the power system is greatly changed. The method of the invention takes the influence of zero sequence mutual inductance between lines and the voltage of a ground fault point into consideration, eliminates the influence of the zero sequence mutual inductance between the lines, the transition resistance and the load current on the non-same-name-phase overline ground impedance distance protection action performance of the double-circuit lines on the same tower, and has stable and reliable protection range.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope of the present invention are included in the scope of the present invention.

Claims (1)

1. The method for protecting the distance of the non-homonymous phase overline grounding impedance of the double-circuit line comprises the following steps in sequence:
(1) the protection device measures the fault phase voltage at the protection installation position of the I-loop circuit of the double-loop circuit on the same tower
Figure FDA0000466711690000017
Fault phase current
Figure FDA0000466711690000018
And zero sequence current
Figure FDA0000466711690000019
Wherein phi is the phase A of the I-loop circuit, the phase B of the I-loop circuit or the phase C of the I-loop circuit;
(2) the protection device calculates the zero-sequence current phase angle alpha of the II-loop line of the double-loop line on the same tower:
α=r1+r2-π-β
wherein, <math> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>10</mn> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>|</mo> <mo>;</mo> </mrow> </math>
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>Arg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Zmzero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved; zI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is phase A of the I-loop circuit, phase B of the I-loop circuit or phase C of the I-loop circuit;
(3) the protection device calculates the zero sequence current of the II-loop line of the double-loop line on the same tower
Figure FDA0000466711690000014
(4) Protective device calculates double-circuit line on same towerLine fault impedance Z from line I loop line protection installation to ground fault pointφ
<math> <mrow> <msub> <mi>Z</mi> <mi>&phi;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>{</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>)</mo> </mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>Im</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>I&phi;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>Z</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>I</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>Z</mi> <mi>m</mi> </msub> <msub> <mrow> <mn>3</mn> <mi>Z</mi> </mrow> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> </mfrac> <msub> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>II</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
Wherein Z isI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi = I loop line A phase or I loop line B phase or I loop line C phase; zmZero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved;
(5) protection device judgment
Figure FDA0000466711690000016
If yes, judging that the ground fault point is located in the I-loop circuit protection setting range of the double-loop circuit on the same tower, and sending an action trip signal by the protection device; wherein lsetProtecting and setting a range for a circuit I of a double-circuit line on the same tower; l is the length of the I loop of the double-loop line on the same tower.
CN201410054043.8A 2014-02-18 2014-02-18 The non-same famous prime minister's cross-line impedance ground distance protecting method of double-circuit line Active CN103762574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410054043.8A CN103762574B (en) 2014-02-18 2014-02-18 The non-same famous prime minister's cross-line impedance ground distance protecting method of double-circuit line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410054043.8A CN103762574B (en) 2014-02-18 2014-02-18 The non-same famous prime minister's cross-line impedance ground distance protecting method of double-circuit line

Publications (2)

Publication Number Publication Date
CN103762574A true CN103762574A (en) 2014-04-30
CN103762574B CN103762574B (en) 2016-06-29

Family

ID=50529764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410054043.8A Active CN103762574B (en) 2014-02-18 2014-02-18 The non-same famous prime minister's cross-line impedance ground distance protecting method of double-circuit line

Country Status (1)

Country Link
CN (1) CN103762574B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049180A (en) * 2014-07-04 2014-09-17 国家电网公司 Double-circuit line non-in-phase jumper wire earth fault single-end distance measurement method
CN104049181A (en) * 2014-07-04 2014-09-17 国家电网公司 Double-circuit line non-synonymous cross-line grounding fault discrimination method
CN104950225A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit line different phase overline grounding fault direction decision method
CN104950224A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit line different phase overline grounding fault single-terminal location method
CN104950228A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit parallel transmission line single phase grounding fault point transition resistance value measuring method
CN104950223A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit non-homonymous phase interline high-resistance grounding fault identification method based on grounding resistance actual measurement
CN105024362A (en) * 2015-07-01 2015-11-04 国家电网公司 Method for eliminating single-phase grounding transitional resistance of double loops of same tower

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588729A (en) * 2004-10-14 2005-03-02 南京南瑞继保电气有限公司 Re-switch on method for electric tansmission device
CN101593964A (en) * 2009-06-30 2009-12-02 许继电气股份有限公司 The method for longitudinal zero-sequence power direction protection of double-circuit lines on the same pole

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588729A (en) * 2004-10-14 2005-03-02 南京南瑞继保电气有限公司 Re-switch on method for electric tansmission device
CN101593964A (en) * 2009-06-30 2009-12-02 许继电气股份有限公司 The method for longitudinal zero-sequence power direction protection of double-circuit lines on the same pole

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘为雄等: "基于相分量模型考虑零序互感线路的跨线故障计算方法", 《电网技术》, vol. 30, no. 8, 30 April 2006 (2006-04-30), pages 13 - 18 *
李伟等: "同杆双回线跨线接地故障的距离保护算法研究", 《中国电机工程学报》, vol. 33, no. 7, 5 March 2013 (2013-03-05), pages 131 - 138 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049180A (en) * 2014-07-04 2014-09-17 国家电网公司 Double-circuit line non-in-phase jumper wire earth fault single-end distance measurement method
CN104049181A (en) * 2014-07-04 2014-09-17 国家电网公司 Double-circuit line non-synonymous cross-line grounding fault discrimination method
CN104950225A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit line different phase overline grounding fault direction decision method
CN104950224A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit line different phase overline grounding fault single-terminal location method
CN104950228A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit parallel transmission line single phase grounding fault point transition resistance value measuring method
CN104950223A (en) * 2015-06-17 2015-09-30 国家电网公司 Double-circuit non-homonymous phase interline high-resistance grounding fault identification method based on grounding resistance actual measurement
CN104950224B (en) * 2015-06-17 2018-07-24 国家电网公司 The non-same famous prime minister's cross-line earth fault method of single end distance measurement of double-circuit line
CN105024362A (en) * 2015-07-01 2015-11-04 国家电网公司 Method for eliminating single-phase grounding transitional resistance of double loops of same tower
CN105024362B (en) * 2015-07-01 2018-11-30 国家电网公司 A method of for eliminating common-tower double-return line single-phase earthing transition resistance

Also Published As

Publication number Publication date
CN103762574B (en) 2016-06-29

Similar Documents

Publication Publication Date Title
CN103762574B (en) The non-same famous prime minister&#39;s cross-line impedance ground distance protecting method of double-circuit line
CN103762560B (en) The non-same famous prime minister&#39;s cross-line earthing reactance distance protecting method of double-circuit line
CN103207352B (en) Route selection impedance magnitude characteristic is utilized to realize wire selection method for power distribution network single phase earthing failure
CN101813736B (en) Distance protection measurement method of double-circuit line on the same pole
CN104035006B (en) Double-circuit line non-in-phase cross-line earth fault judgment method based on trigonometric function
CN103219711B (en) A kind of analyses for double circuits on same tower earth fault distance protecting method
CN104092200A (en) Double-circuit-line non-same-name phase overline ground fault single-ended electrical quantity steady state protection method
CN104049180A (en) Double-circuit line non-in-phase jumper wire earth fault single-end distance measurement method
CN104062539B (en) Single-ended distance measuring method for double-circuit line non-same-name phase crossover line ground fault
CN104767183A (en) Method for recognizing different-phase cross-line ground fault of double-circuit lines based on actual measurement of voltage of different-phase cross-line grounding point
CN103166207B (en) Based on the single-phase line earth fault relay protection method of voltage-drop characteristic along the line
CN103199508A (en) Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter
CN104049182A (en) Same-tower double-circuit line single-phase grounded fault type diagnostic method
CN103227455A (en) Single-phase line earth fault relay protection method based on fault impedance phase characteristic
CN104035005A (en) Double-circuit line non-same-phase overline earth fault locating method
CN104052035B (en) Same-tower double-circuit line single-phase grounded reactance relay
CN104950210B (en) Based on the non-same famous prime minister&#39;s cross-line ground fault recognition method of virtual impedance imaginary part amplitude characteristic double-circuit line
CN105896486A (en) Composite voltage protection method for non-phase interline earth fault of double-circuit lines based on zero sequence current actual measurement of adjacent lines
CN103760458A (en) Single-phase grounding fault direction discriminating method of double-circuit lines on the same tower
CN104049181A (en) Double-circuit line non-synonymous cross-line grounding fault discrimination method
CN103227458B (en) Based on the single-phase line earth fault relay protection method of voltage drop phase characteristic
CN104950228A (en) Double-circuit parallel transmission line single phase grounding fault point transition resistance value measuring method
CN104078947A (en) Method for judging cross-line ground fault of non-homonymous phases of double-circuit line on basis of zero sequence compensation
CN104950226A (en) Double-circuit non-homonymous phase interline grounding fault identification method based on position relative coefficient direction features
CN105203920B (en) The non-same famous prime minister&#39;s cross-line earth fault distance measurement method of double-circuit line is surveyed based on fault point voltage Sudden Changing Rate amplitude

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100031 West Chang'an Avenue, Xicheng District, Xicheng District, Beijing

Co-patentee after: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Patentee after: STATE GRID CORPORATION OF CHINA

Co-patentee after: STATE GRID PUTIAN ELECTRIC POWER SUPPLY Co.

Address before: 100031 West Chang'an Avenue, Xicheng District, Xicheng District, Beijing

Co-patentee before: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Patentee before: State Grid Corporation of China

Co-patentee before: STATE GRID PUTIAN ELECTRIC POWER SUPPLY Co.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 351100 No. 999, South Garden Road, Xia Lin Street, Chengxiang District, Putian, Fujian

Co-patentee after: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Patentee after: STATE GRID PUTIAN ELECTRIC POWER SUPPLY Co.

Co-patentee after: STATE GRID CORPORATION OF CHINA

Address before: 100031 West Chang'an Avenue, Xicheng District, Xicheng District, Beijing

Co-patentee before: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Patentee before: State Grid Corporation of China

Co-patentee before: STATE GRID PUTIAN ELECTRIC POWER SUPPLY Co.