Double-circuit line non-same-name-phase overline grounding impedance distance protection method
Technical Field
The invention relates to the technical field of relay protection of power systems, in particular to a double-circuit line non-homonymous phase overline grounding impedance distance protection method.
Background
The double-circuit line on the same tower has the advantages of small occupied area, low manufacturing cost and stable and reliable operation of connecting a power grid, and becomes a common power transmission line connecting mode of a power system. Zero sequence mutual inductance exists between double-circuit lines on the same tower, the zero sequence mutual inductance influences zero sequence compensation coefficients, additional impedance is further generated, the additional impedance caused by the zero sequence mutual inductance can cause the fault impedance measured by a protection device to be larger than the actual fault impedance, and when ground fault occurs at the position close to a protection setting range in a protection area of the double-circuit lines on the same tower, the protection is rejected, and the safe and stable operation of a power grid is not good.
Even if the double-circuit line on the same tower is directly grounded through a tower, the transition resistance is near 10 omega in the area with lower soil resistivity; the transition resistance may reach 30 omega, or even higher, where the resistivity is higher. The transition resistance is not zero so that the fault impedance calculated by the protection device comprises an additional impedance generated by the transition resistance in addition to a fault impedance component reflecting the real fault distance. The additional impedance generated by the transition resistance is resistive-inductive or resistive-capacitive, which easily causes the earth impedance distance protection to reject or exceed a steady state. Protection malfunction or failure brings great loss to the safe operation of the power system, and even possibly threatens the stability of the power system.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provide a grounding impedance distance method which has the action performance not influenced by zero sequence mutual inductance between lines, transition resistance and load current and is suitable for non-same-name-phase overline grounding faults of double-circuit lines.
In order to achieve the purpose, the invention adopts the following technical scheme:
the method for protecting the distance between the two-circuit line non-homonymous phase overline grounding impedance is characterized by comprising the following steps in sequence:
(1) the protection device measures the fault phase voltage at the protection installation position of the I-loop circuit of the double-loop circuit on the same tower
Fault phase current
And zero sequence current
Wherein phi is the phase A of the I-loop circuit, the phase B of the I-loop circuit or the phase C of the I-loop circuit;
(2) the protection device calculates the zero-sequence current phase angle alpha of the II-loop line of the double-loop line on the same tower:
α=r1+r2-π-β
wherein, <math>
<mrow>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<msup>
<mi>sin</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<msqrt>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>r</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<msup>
<mi>sin</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<msqrt>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mn>10</mn>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mn>10</mn>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>=</mo>
<mo>|</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>|</mo>
<mo>;</mo>
</mrow>
</math> <math>
<mrow>
<mi>β</mi>
<mo>=</mo>
<mi>Arg</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
</math>
Zmzero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved; zI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi = I loop line A phase, I loop line B phase, I loop line C phase;
(3) the protection device calculates the zero sequence current of the II-loop line of the double-loop line on the same tower
(4) The protection device calculates the line fault impedance Z from the I-loop line protection installation position to the ground fault point of the double-loop line on the same towerφ:
<math>
<mrow>
<msub>
<mi>Z</mi>
<mi>φ</mi>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<mo>{</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>}</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</math>
Wherein Z isI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is a phase A of the loop circuit, a phase B of the loop circuit I or a phase C of the loop circuit I; zmZero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved;
(5) protection device judgment
If yes, judging that the ground fault point is located in the I-loop circuit protection setting range of the double-loop circuit on the same tower, and sending an action trip signal by the protection device; wherein l
setProtecting and setting a range for a circuit I of a double-circuit line on the same tower; l is the length of the I loop of the double-loop line on the same tower.
The invention has the characteristics and technical achievements that:
the method comprises the steps of firstly measuring fault phase voltage, fault phase current and zero sequence current at the protection installation position of the same-tower double-circuit line I loop, calculating a zero sequence current phase angle of the same-tower double-circuit line II loop, calculating the zero sequence current of the same-tower double-circuit line II loop, then calculating the line fault impedance from the protection installation position of the same-tower double-circuit line I loop to a ground fault point, judging whether the line fault impedance amplitude is smaller than the setting impedance amplitude, and if so, sending an action trip signal.
The method only uses the single-end single-loop line electric quantity, does not need to introduce another loop line electric quantity, has no influence on the action performance by the operation mode of the power system, and has strong adaptability when the operation mode of the power system is greatly changed. The method of the invention takes the influence of zero sequence mutual inductance between lines and the voltage of a ground fault point into consideration, eliminates the influence of the zero sequence mutual inductance between the lines, the transition resistance and the load current on the non-same-name-phase overline ground impedance distance protection action performance of the double-circuit lines on the same tower, and has stable and reliable protection range.
Drawings
Fig. 1 is a schematic diagram of a double-circuit power transmission system on the same tower and with the application of the invention.
Detailed Description
The invention is further illustrated by the following figures and examples.
Fig. 1 is a schematic diagram of a double-circuit power transmission system on the same tower and with the application of the invention. The protection device measures the fault phase voltage at the protection installation position of the I-loop circuit of the double-loop circuit on the same tower
Fault phase current
And zero sequence current
Wherein φ is the phase A of the I-loop circuit, the phase B of the I-loop circuit or the phase C of the I-loop circuit.
The protection device calculates the zero-sequence current phase angle alpha of the II-loop line of the double-loop line on the same tower:
α=r1+r2-π-β
wherein, <math>
<mrow>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<msup>
<mi>sin</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<msqrt>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>r</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<msup>
<mi>sin</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<msqrt>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mn>10</mn>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mn>10</mn>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
<mo>=</mo>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
<mo>=</mo>
<mo>|</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>|</mo>
<mo>;</mo>
</mrow>
</math> <math>
<mrow>
<mi>β</mi>
<mo>=</mo>
<mi>Arg</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
</math>
Zmzero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved; zI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is phase A of the I-loop circuit, phase B of the I-loop circuit or phase C of the I-loop circuit.
The protection device calculates the zero sequence current of the II-loop line of the double-loop line on the same tower
The protection device calculates the line fault impedance Z from the I-loop line protection installation position to the ground fault point of the double-loop line on the same towerφ:
<math>
<mrow>
<msub>
<mi>Z</mi>
<mi>φ</mi>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<mo>{</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>U</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>}</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mrow>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>Re</mi>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mi>Im</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mi>Iφ</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<msub>
<mi>Z</mi>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>I</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mfrac>
<msub>
<mi>Z</mi>
<mi>m</mi>
</msub>
<msub>
<mrow>
<mn>3</mn>
<mi>Z</mi>
</mrow>
<mrow>
<mi>I</mi>
<mn>1</mn>
</mrow>
</msub>
</mfrac>
<msub>
<mover>
<mi>I</mi>
<mo>·</mo>
</mover>
<mrow>
<mi>II</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</math>
Wherein Z isI0Zero sequence impedance of I-loop circuit of double-loop circuit on the same tower; zI1The positive sequence impedance of the I-loop line of the double-loop line on the same tower is obtained; phi is phase A of the I-loop circuit, phase B of the I-loop circuit or phase C of the I-loop circuit; zmZero sequence mutual inductance between the circuit I of the double-circuit line on the same tower and the circuit II of the double-circuit line on the same tower is achieved;
protection device judgment
If yes, judging that the ground fault point is located in the I-loop circuit protection setting range of the double-loop circuit on the same tower, and sending an action trip signal by the protection device; wherein l
setProtection setting range for I-loop circuit of double-loop circuit on same tower(ii) a l is the length of the I loop of the double-loop line on the same tower.
The method comprises the steps of firstly measuring fault phase voltage, fault phase current and zero sequence current at the protection installation position of the same-tower double-circuit line I loop, calculating a zero sequence current phase angle of the same-tower double-circuit line II loop, calculating the zero sequence current of the same-tower double-circuit line II loop, then calculating the line fault impedance from the protection installation position of the same-tower double-circuit line I loop to a ground fault point, judging whether the line fault impedance amplitude is smaller than the setting impedance amplitude, and if so, sending an action trip signal.
The method only uses the single-end single-loop line electric quantity, does not need to introduce another loop line electric quantity, has no influence on the action performance by the operation mode of the power system, and has strong adaptability when the operation mode of the power system is greatly changed. The method of the invention takes the influence of zero sequence mutual inductance between lines and the voltage of a ground fault point into consideration, eliminates the influence of the zero sequence mutual inductance between the lines, the transition resistance and the load current on the non-same-name-phase overline ground impedance distance protection action performance of the double-circuit lines on the same tower, and has stable and reliable protection range.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope of the present invention are included in the scope of the present invention.