CN103757315A - Method for leaching positive pole material of waste nickel-metal hydride battery - Google Patents
Method for leaching positive pole material of waste nickel-metal hydride battery Download PDFInfo
- Publication number
- CN103757315A CN103757315A CN201310736507.9A CN201310736507A CN103757315A CN 103757315 A CN103757315 A CN 103757315A CN 201310736507 A CN201310736507 A CN 201310736507A CN 103757315 A CN103757315 A CN 103757315A
- Authority
- CN
- China
- Prior art keywords
- leaching
- nickel
- sulfuric acid
- positive electrode
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002386 leaching Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000002699 waste material Substances 0.000 title claims abstract description 10
- 229910052987 metal hydride Inorganic materials 0.000 title abstract description 10
- 239000000463 material Substances 0.000 title description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 40
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 19
- 239000007774 positive electrode material Substances 0.000 claims abstract description 18
- 235000013162 Cocos nucifera Nutrition 0.000 claims abstract description 12
- 244000060011 Cocos nucifera Species 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000011259 mixed solution Substances 0.000 claims abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- 239000010941 cobalt Substances 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000010926 waste battery Substances 0.000 abstract description 6
- 239000010405 anode material Substances 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 2
- 238000005260 corrosion Methods 0.000 abstract description 2
- 239000002253 acid Substances 0.000 description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- -1 nickel metal hydride Chemical class 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- GNMQOUGYKPVJRR-UHFFFAOYSA-N nickel(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Ni+3].[Ni+3] GNMQOUGYKPVJRR-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- PZFKDUMHDHEBLD-UHFFFAOYSA-N oxo(oxonickeliooxy)nickel Chemical compound O=[Ni]O[Ni]=O PZFKDUMHDHEBLD-UHFFFAOYSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明介绍的镍氢废电池正极材料的浸出方法是将从镍氢废电池中分离出的并经焙烧预处理得到的正极材料和椰子壳粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出。The method for leaching the anode material of nickel-metal hydride waste battery introduced in the present invention is to add the positive electrode material and coconut shell powder which are separated from the waste nickel-hydrogen battery and obtained through roasting pretreatment into a pressure-resistant, sulfuric acid and nitric acid corrosion-resistant reaction kettle , adding a mixed solution of sulfuric acid and nitric acid, and stirring and leaching under airtight conditions.
Description
技术领域 technical field
本发明涉及镍氢废电池正极材料的一种浸出方法。 The invention relates to a method for leaching the positive electrode material of nickel-metal hydride batteries.
背景技术 Background technique
镍氢电池是一类广泛使用的电池,该电池使用报废后将产生大量废电池。由于这类电池含有大量重金属,若弃入环境,将对环境产生很大的直接和潜在危害。镍氢废电池正极材料主要含镍和钴,两者的总含量高达50~70%,很具回收价值。目前从镍氢废电池正极材料中回收镍、钴的工艺主要有火法工艺和湿法工艺。火法工艺得到的产品为合金材料,很难获得较纯的镍和钴。湿法工艺比较容易得到较纯的镍和钴。浸出是湿法工艺中必不可少的一个过程。目前镍氢废电池正极材料的浸出方法主要有盐酸浸出法、硫酸浸出法、硝酸浸出法和混酸(硫酸加硝酸)浸出法。盐酸浸出法,设备腐蚀大,酸雾产生量大而污染环境。硫酸浸出法消耗较昂贵的还原剂(如双氧水等),而且浸出速度较慢,酸耗高。硝酸浸出法的硝酸消耗量大,而且会产生大量氮氧化物,污染环境。所有的湿法工艺都存在如何经济地提高浸出速度、提高金属浸出率、降低酸耗和其它辅料消耗的问题。虽然硝酸加工业纯氧浸出法和混酸加工业纯氧浸出法较好地解决了上述问题,但浸出设备较复杂,而且废电池浸出所需工业纯氧量不大,废电池处理企业就地生产工业纯氧自用不经济,工业纯氧的储存、运输和使用比较麻烦。开发设备腐蚀小、浸出速度快、浸出率高、酸耗和其它辅料消耗低、使用方便、基本无环境污染的镍氢废电池正极材料的浸出方法具有较大实用价值。 Ni-MH batteries are a type of batteries widely used, and a large amount of waste batteries will be produced after the batteries are scrapped. Because this type of battery contains a large amount of heavy metals, if it is discarded into the environment, it will cause great direct and potential harm to the environment. The positive electrode material of nickel-metal hydride batteries mainly contains nickel and cobalt, and the total content of the two is as high as 50-70%, which is very valuable for recycling. At present, the processes for recovering nickel and cobalt from the positive electrode materials of nickel-metal hydride batteries mainly include fire process and wet process. The products obtained by the fire process are alloy materials, and it is difficult to obtain relatively pure nickel and cobalt. Wet process is easier to get purer nickel and cobalt. Leaching is an essential process in the wet process. At present, the leaching methods of the positive electrode materials of nickel-metal hydride batteries mainly include hydrochloric acid leaching method, sulfuric acid leaching method, nitric acid leaching method and mixed acid (sulfuric acid plus nitric acid) leaching method. In the hydrochloric acid leaching method, the equipment is corroded, and the acid mist is produced in large quantities, which pollutes the environment. The sulfuric acid leaching method consumes more expensive reducing agents (such as hydrogen peroxide, etc.), and the leaching speed is slow and the acid consumption is high. The consumption of nitric acid in the nitric acid leaching method is large, and a large amount of nitrogen oxides will be produced, which will pollute the environment. All wet processes have the problem of how to economically increase the leaching speed, increase the metal leaching rate, and reduce the consumption of acid and other auxiliary materials. Although the pure oxygen leaching method in the nitric acid processing industry and the pure oxygen leaching method in the mixed acid processing industry have solved the above problems, the leaching equipment is more complicated, and the amount of industrial pure oxygen required for the leaching of waste batteries is not large, and waste battery treatment enterprises produce on-site Industrial pure oxygen is not economical for personal use, and the storage, transportation and use of industrial pure oxygen are troublesome. It is of great practical value to develop a leaching method for nickel metal hydride waste battery anode materials with low equipment corrosion, fast leaching speed, high leaching rate, low consumption of acid and other auxiliary materials, convenient use, and basically no environmental pollution.
发明内容 Contents of the invention
针对目前镍氢废电池正极材料浸出的问题,本发明的目的是寻找一种金属浸出率高,浸出速度快,浸出率高,酸耗和其它辅料消耗低,使用方便,不用昂贵还原剂,基本无环境污染的的镍氢废电池正极材料的浸出方法,其特征在于将从镍氢废电池中分离出的并经焙烧预处理得到的正极材料和≤1.5mm的椰子壳粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出。浸出结束后 进行液固分离,得到所需浸出溶液。反应温度为50℃~80℃, 浸出的硫酸初始浓度为1mol/L~4mol/L, 硝酸的初始浓度为5g/L~10g/L 浸出时间为2h~4h,浸出过程进行搅拌,搅拌速度为30r/min~120r/min。硫酸加入量为加入反应容器的正极材料中全部金属浸出的硫酸理论消耗量的110%~140%。椰子壳粉的加入量以干基计为正极材料中镍、钴总质量的60%~75%。 Aiming at the problem of leaching the positive electrode material of nickel-hydrogen waste batteries at present, the purpose of the present invention is to find a metal with high leaching rate, fast leaching speed, high leaching rate, low acid consumption and other auxiliary material consumption, easy to use, no expensive reducing agent, basically A non-environmentally polluting method for leaching the positive electrode material of waste nickel-hydrogen batteries, which is characterized in that the positive electrode material separated from waste nickel-hydrogen batteries and obtained through roasting pretreatment and coconut shell powder ≤ 1.5 mm are added to withstand pressure and withstand pressure. Add the mixed solution of sulfuric acid and nitric acid into the reaction kettle corroded by sulfuric acid and nitric acid, and carry out stirring and leaching under airtight conditions. After leaching, liquid-solid separation is carried out to obtain the required leaching solution. The reaction temperature is 50 ℃ ~ 80 ℃, the initial concentration of sulfuric acid leached is 1mol/L ~ 4mol/L, the initial concentration of nitric acid is 5g/L ~ 10g/L, the leaching time is 2h ~ 4h, the leaching process is stirred, and the stirring speed is 30r/min~120r/min. The amount of sulfuric acid added is 110% to 140% of the theoretical consumption of sulfuric acid for the leaching of all metals in the positive electrode material added to the reaction vessel. The amount of coconut shell powder added is 60% to 75% of the total mass of nickel and cobalt in the positive electrode material on a dry basis. the
本发明的目的是这样实现的:在密闭并有椰子壳粉和硝酸存在的条件下,硫酸浸出经焙烧预处理后的镍氢废电池正极材料(材料中的镍和钴呈氧化物形态)时,浸出过程发生如下主要化学反应: The object of the present invention is achieved like this: under the condition that airtight and have coconut shell powder and nitric acid to exist, sulfuric acid leaches the waste nickel-hydrogen battery anode material (nickel and cobalt in the material are oxide form) after roasting pretreatment , the following main chemical reactions occur during the leaching process:
NiO + H2SO4 = NiSO4 + H2O NiO + H2SO4 = NiSO4 + H2O
CoO + H2SO4 = CoSO4 + H2O CoO + H2SO4 = CoSO4 + H2O
nC6H10O5 + nH2SO4 =n(C5H11O5)HSO4 nC 6 H 10 O 5 + nH 2 SO 4 =n(C 5 H 11 O 5 )HSO 4
n(C5H11O5)HSO4 + nH2O = nC6H12O6 + nH2SO4 n(C 5 H 11 O 5 )HSO 4 + nH 2 O = nC 6 H 12 O 6 + nH 2 SO 4
C6H12O6 + 8HNO3 = 8NO + 6CO2 + 10H2O C 6 H 12 O 6 + 8HNO 3 = 8NO + 6CO 2 + 10H 2 O
nC6H10O5 + 8nHNO3 = 8nNO + 6nCO2 + 9nH2O nC 6 H 10 O 5 + 8nHNO 3 = 8nNO + 6nCO 2 + 9nH 2 O
3Ni2O3 + 6H2SO4 + 2NO = 6NiSO4 + 2HNO3 + 5H2O 3Ni2O3 + 6H2SO4 + 2NO = 6NiSO4 + 2HNO3 + 5H2O
3Co2O3 + 6H2SO4 + 2NO = 6CoSO4 + 2HNO3 + 5H2O 3Co 2 O 3 + 6H 2 SO 4 + 2NO = 6CoSO 4 + 2HNO 3 + 5H 2 O
Ni2O3和Co2O3的总反应为: The overall reaction of Ni2O3 and Co2O3 is:
12nNi2O3 + nC6H10O5 + 24nH2SO4 = 24nNiSO4 + 6nCO2 + 29nH2O 12nNi 2 O 3 + nC 6 H 10 O 5 + 24nH 2 SO 4 = 24nNiSO 4 + 6nCO 2 + 29nH 2 O
12nCo2O3 + nC6H10O5 + 24nH2SO4 = 24nCoSO4 + 6nCO2 + 29nH2O 12nCo 2 O 3 + nC 6 H 10 O 5 + 24nH 2 SO 4 = 24nCoSO 4 + 6nCO 2 + 29nH 2 O
椰子壳粉中的其它有机物也与硝酸反应生成NO、CO2和H2O,生成的NO与Ni2O3和Co2O3按前述反应生成NiSO4 、CoSO4、HNO3和H2O。 Other organic matter in coconut shell powder also reacts with nitric acid to generate NO, CO 2 and H 2 O, and the generated NO reacts with Ni 2 O 3 and Co 2 O 3 to generate NiSO 4 , CoSO 4 , HNO 3 and H 2 O .
由于硝酸与椰子壳粉的反应速度较快,产生的NO与Ni2O3和Co2O3的反应也较快,由此加快整个浸出过程,并实现Ni2O3和Co2O3较完全浸出。NO可以彻底破坏正极材料中高价氧化物的层状结构,提高有价金属的浸出率。 Because the reaction speed of nitric acid and coconut shell powder is faster, the reaction of produced NO with Ni 2 O 3 and Co 2 O 3 is also faster, thereby speeding up the whole leaching process and realizing the comparison of Ni 2 O 3 and Co 2 O 3 Fully leached. NO can completely destroy the layered structure of high-valent oxides in positive electrode materials and improve the leaching rate of valuable metals.
相对于现有方法,本发明的突出优点是采用椰子壳粉作还原剂,硝酸作浸出加速剂浸出镍氢废电池正极材料,反应速度快,反应酸度较低,硫酸和还原剂的消耗量小,并且椰子壳粉便宜;正极材料中高价氧化物的层状结构破坏彻底,可提高金属浸出率;浸出液后续处理中不需要中和大量的酸,成本较低;浸出液后续处理中产生的废弃物量少,降低了污染治理费用,具有明显的经济效益和环境效益;过程在密闭条件下进行,避免了NO逸出产生的环境污染。 Compared with the existing method, the outstanding advantage of the present invention is that coconut shell powder is used as the reducing agent, and nitric acid is used as the leaching accelerator to leach the positive electrode material of the nickel metal hydride battery, the reaction speed is fast, the reaction acidity is low, and the consumption of sulfuric acid and reducing agent is small , and coconut shell powder is cheap; the layered structure of high-valent oxides in the positive electrode material is completely destroyed, which can increase the metal leaching rate; the subsequent treatment of the leachate does not need to neutralize a large amount of acid, and the cost is low; the waste generated in the subsequent treatment of the leachate The amount is small, which reduces the cost of pollution control, and has obvious economic and environmental benefits; the process is carried out under airtight conditions, which avoids environmental pollution caused by NO escape.
具体实施方法Specific implementation method
实施例1:将100g镍氢废电池正极材料(含镍56.4%,钴5.9%)和≤1.5mm椰子壳粉37.5g加入容积为2L的衬钛压力反应釜中,加入硫酸浓度为1.5mol/L、硝酸浓度为5g/L的混酸溶液850ml,在50℃~60℃下密闭搅拌(搅拌速度80r/min)浸出4.0h,浸出结束后进行液固分离,得到820ml浸出溶液(不含浸出渣洗涤水)。镍和钴的浸出率分别为98.7%和98.4%(按进入浸出溶液和浸出渣洗涤液中的镍和钴计算)。 Example 1: Add 100g of waste nickel-metal hydride battery cathode material (containing 56.4% nickel, 5.9% cobalt) and 37.5g of ≤ 1.5mm coconut shell powder into a titanium-lined pressure reactor with a volume of 2L, and add sulfuric acid at a concentration of 1.5mol/ L. 850ml of mixed acid solution with a concentration of nitric acid of 5g/L, leaching for 4.0h under airtight stirring (stirring speed 80r/min) at 50°C to 60°C, and liquid-solid separation after leaching to obtain 820ml of leaching solution (without leaching residue wash water). The leaching rates of nickel and cobalt are 98.7% and 98.4% respectively (calculated based on nickel and cobalt entering the leaching solution and leaching slag washing solution).
实施例2:将500g镍氢废电池正极材料(含镍56.4%,钴5.9%)和≤1.5mm椰子壳粉230g加入容积为5L的衬钛压力反应釜中,加入硫酸浓度为3.0mol/L、硝酸浓度为10g/L的混酸溶液2500ml,在70℃~80℃下密闭搅拌(搅拌速度70r/min)浸出2.0h,浸出结束后进行液固分离,得到2300ml浸出溶液(不含浸出渣洗涤水)。镍和钴的浸出率分别为99.6%和99.4%(按进入浸出溶液和浸出渣洗涤液中的镍和钴计算)。 Example 2: Add 500g of waste nickel-metal hydride battery positive electrode material (containing 56.4% nickel, 5.9% cobalt) and 230g of ≤1.5mm coconut shell powder into a titanium-lined pressure reactor with a volume of 5L, and add sulfuric acid at a concentration of 3.0mol/L , 2500ml of mixed acid solution with a nitric acid concentration of 10g/L, leaching at 70°C to 80°C with closed stirring (stirring speed 70r/min) for 2.0h, and liquid-solid separation after leaching, to obtain 2300ml of leaching solution (excluding leaching residue washing water). The leaching rates of nickel and cobalt are 99.6% and 99.4% respectively (calculated based on nickel and cobalt entering the leaching solution and leaching slag washing solution).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310736507.9A CN103757315A (en) | 2013-12-29 | 2013-12-29 | Method for leaching positive pole material of waste nickel-metal hydride battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310736507.9A CN103757315A (en) | 2013-12-29 | 2013-12-29 | Method for leaching positive pole material of waste nickel-metal hydride battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103757315A true CN103757315A (en) | 2014-04-30 |
Family
ID=50524629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310736507.9A Pending CN103757315A (en) | 2013-12-29 | 2013-12-29 | Method for leaching positive pole material of waste nickel-metal hydride battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103757315A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624651A (en) * | 2009-06-23 | 2010-01-13 | 四川师范大学 | Method for leaching cathode materials from waste nickel-metal hydrogen batteries |
CN102030375A (en) * | 2010-10-29 | 2011-04-27 | 北京矿冶研究总院 | Method for preparing lithium cobaltate by directly using failed lithium ion battery |
-
2013
- 2013-12-29 CN CN201310736507.9A patent/CN103757315A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624651A (en) * | 2009-06-23 | 2010-01-13 | 四川师范大学 | Method for leaching cathode materials from waste nickel-metal hydrogen batteries |
CN102030375A (en) * | 2010-10-29 | 2011-04-27 | 北京矿冶研究总院 | Method for preparing lithium cobaltate by directly using failed lithium ion battery |
Non-Patent Citations (2)
Title |
---|
张宏雷等: ""从生物质还原的氧化锰矿中回收钴镍的试验研究"", 《稀有金属》 * |
李进中等: ""氧化锰矿还原浸出工艺技术研究进展"", 《中国锰业》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103757322A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757317A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757310B (en) | The leaching method of Ni-MH used battery anode and cathode mixed material | |
CN103757307B (en) | The leaching method of Ni-MH used battery anode and cathode mixed material | |
CN103757263B (en) | The leaching method of anode material of used nickel cadmium battery | |
CN103757315A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757303A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757304A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757297A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757314A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757300A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757305A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757326A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757238A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757328A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757318A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757240A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757308A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757313A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757359A (en) | Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material | |
CN103757309A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757296A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757302A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757338A (en) | Leaching method of nickel-cadmium waste battery positive electrode material | |
CN103757343A (en) | Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140430 |