CN103743111B - 一种功率可调的液体加热设备 - Google Patents
一种功率可调的液体加热设备 Download PDFInfo
- Publication number
- CN103743111B CN103743111B CN201310724747.7A CN201310724747A CN103743111B CN 103743111 B CN103743111 B CN 103743111B CN 201310724747 A CN201310724747 A CN 201310724747A CN 103743111 B CN103743111 B CN 103743111B
- Authority
- CN
- China
- Prior art keywords
- power
- triode
- switch
- relay
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 123
- 239000007788 liquid Substances 0.000 title claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 109
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 13
- 230000005611 electricity Effects 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 4
- 238000009835 boiling Methods 0.000 abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 230000003020 moisturizing effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- -1 when in inner bag Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Control Of Resistance Heating (AREA)
- Control Of Temperature (AREA)
Abstract
本发明专利公开了一种功率可调的液体加热装置及其功率控制电路,应用于电开水器及电热水器等液体加热器领域。本发明能够根据装置在不同的加热阶段智能自动调整功率。通过将电路板上的一组继电器和一组三端双向可控硅开关并联,根据嵌入式芯片计算结果在所述液体加热装置所处的加热的各个阶段智能控制三端双向可控硅和继电器的切换和交替使用,使本装置全功率运行时,切换由低成本的继电器控制加热器件的开停,在低功率运行时,切换到小电流的三端双向可控硅控制加热管的开停。通过软件及嵌入式智能芯片和控制电路计算,使装置具有功率可调功能,并使装置具有高可靠性和低成本,降低能耗避免多次沸腾及其产生的重金属析出影响健康。
Description
技术领域
本发明专利涉及一种液体加热器设备,具体地说,涉及一种可以通过继电器和三段双向可控硅组合成功率控制组,在不同的加热运行阶段进行智能调整功率的电开水机、饮水机及其控制电路和控制方法。
背景技术
目前的电开水机、饮水机等液体加热器工作状态一般分为加热阶段和保温阶段。在加热阶段,水加热达到最高设置温度停机,并进入保温阶段。在保温阶段通过控制加热器件发热或停止发热保持水温在规定的范围内。目前该类产品不论是加热阶段还是保温阶段,电加热元件都是以功率最大值即100%功率进行加热。
但是,该类产品在加热过程中,如果设定温度大于90度,或者接近沸点温度时,会产生大量蒸汽,并排放装置之外,浪费胆量能源,也使内胆水箱里的水过度沸腾和多次沸腾,析出重金属等有害健康的物质。
在保温过程中,实际只需要较小能量,但该类产品仍使用100%功率加热,尽管加热时间短暂,但是满功率加热仍会再次使水沸腾,形成千沸水,产生蒸汽,消耗大量电能。
电开水器和饮水机功率都较高,低的800W左右,高的采用3相交流电电源供电功率可达到10KW以上,甚至更高。
如果直接采用三端双向可控硅控制功率的调整,需要的控制电路载荷较大,散热面积需要设计的很大。通过高功率三端双向可控硅电路控制加热器件,由于满功率时所控制的电流大而运行易出故障,而且也需要更大的元器件产生高昂的电路成本。
发明内容
本发明旨在提供一种成本低廉,利用小电流的三端双向可控硅和继电器并联,通过嵌入式芯片智能控制所述液体加热装置在步进水加热的各个阶段的三端双向可控硅和继电器的切换与交替使用,从而低成本而高可靠性的实现可调功率的一种步进水液体加热设备。
本发明可以使所述液体加热设备在加热阶段水温临近设置温度点时,通过运行控制和功率控制电路调整加热功率,从满功率降低到一个较小的功率值,从而降低过度沸腾和蒸汽的产生。在保温阶段将功率降低到一个较低功率值,从而减少能量损耗和多次沸腾。
本发明通过三端双向可控硅和继电器的并联交替使用,使所述液体加热装置在电路中需要大电流时使用继电器元件控制加热器件,而在小功率下使用三端双向可控硅控制加热器件,并通过软件及嵌入式智能芯片和控制电路的控制,使装置具有功率可调功能,并使装置具有高可靠性和低成本。从而具有大批量推广价值。通过可调功率,在加热阶段及保温阶段,低功率工作,降低能耗避免多次沸腾及其产生的重金属析出影响健康。
所述功率可调的液体加热设备,包括外壳、内胆、加热装置、温度传感器、高水位传感器、低水位传感器、电磁阀、电源和信号引线、运行控制与功率控制电路板、继电器、三端双向可控硅等。内胆位于外壳内,加热器件及温度传感器、高水位传感器、低水位传感器安装在内胆里面。
运行控制与功率控制电路板安装在内胆和外壳之间。控制与功率控制电路板上安装有三端双向可控硅、继电器。
加热装置、电磁阀、温度传感器、高水位传感器、低水位传感器通过电源和信号引线与运行控制与功率控制电路板相连,并于外部电源相连接。其中高水位传感器安装于内胆的上部,用于检测设置的高水位。电磁阀通过管路将水从装置外的管道引入内胆。
运行控制与功率控制电路板包括嵌入式电脑芯片,温度检测电路,水位检测电路,一组继电器及一组三端双向可控硅等构成,电脑芯片通过外围电路与所述运行控制与功率控制电路板和继电器及三端双向可控硅相连接。
运行控制与功率控制电路可以是整合在一个电路板上,也可以是功率控制电路与运行控制电路分离,彼此位于不同的电路板上。本发明中的所述继电器其另一种应用形式可以是交流接触器等其他开关元件。本发明中的所述的加热装置,可以是加热管,也可以是加热膜或加热丝;加热管可以包含一只加热丝,也可以包含多只加热丝。
在所述运行控制和功率控制电路板中,将1只继电器和1只三端双向可控硅一一对应在电路中并联组成一个功率控制组;所述运行控制和功率控制电路板可以根据所述液体加热装置具体使用的加热装置数量,设置1个或几个功率控制组。每只加热管或一只加热管上的每根独立的加热丝,其通断均由相互并联的一只继电器和一只三端双向可控硅所组成的1个功率控制组共同控制,该加热丝并通过导线相连与所述功率组和电源串联。在继电器工作时,三端双向可控硅关闭;在三端双向可控硅工作时,继电器关闭。
在加热装置设置有多只加热管或一只加热管多个加热丝的情况下,本发明的另一种方式是运行控制与功率控制电路板上只设置一个功率组,仅控制其中1只单相加热管或所述多只加热丝中的一只,而其他加热管或加热丝通过继电器控制。
嵌入式电脑芯片根据温度检测电路及水位检测电路等及软件程序智能判断所述液体加热装置所处的工作阶段,控制继电器与三端双向可控硅之间的相互切换,同时根据嵌入式电脑芯片中内置设定的功率值,通过信号控制三端双向可控硅的输出功率值智能调整。
内置的软件根据高水位传感器、低水位传感器、温度传感器及温度检测电路、水位检测电路的参数计算并按以下三个阶段进行加热控制:
第一阶段:步进水加热阶段
所述功率可调的液体加热设备,在水位达到低水位位置并被低水位传感器检测到后,电磁阀停止工作,加热器件100%功率即满功率加热。这时电路处于继电器控制加热元件状态,采用继电器控制加热元件的接通,三段双向可控硅控制电路处于关闭状态。当温度传感器检测到水温达到设置温度后,电磁阀打开进水,当内胆内水温低于设置的停止进水温度时,电磁阀关闭,加热器仍以继电器控制满功率加热,如此步进方式循环进水和加热,直到电磁阀打开进水到高水位传感器所处位置,转入第二阶段。
第二阶段:步进水结束加热阶段
当水位进水过程中达到高水位时,加热中水温如升高达到第一个设置温度值时,电路控制按照第一个中间功率控制值功率工作;在达到第二个设置温度时,按照第二个中间功率值加热;达到第三个设置温度时,按照第三个中间功率值加热,依此类推。
具体的方法是:当水位进水过程中达到高水位传感器位置时,加热中水温如达到90至97摄氏度之间的第一个温度设定值时,这个温度值其优选值为97度,电路控制按照设定的功率工作,这个设定功率值作为第一个中间功率控制值,所述的第一个中间功率控制值可以是满功率的0%至99%之间的某个值,其优选值为50%。
在水温继续升高达到90至99度之间的第二个温度设定值,第二个温度设定值高于第一个温度设定值,这个值优选为98摄氏度,电路控制按照设定的第二个中间功率控制值工作,所述的第二个中间功率控制值可以是满功率的0%至99%之间的某个值,但是等于或低于第一个中间功率控制值,其优选值为25%。
在水温继续升高达到90至99度之间的第三个温度设定值时,第三个温度设定值高于第二个温度设定值,这个值优选为99摄氏度,电路控制按照设定的第三个中间功率控制值工作,所述的三个中间功率控制值可以是满功率的0%至97%之间的某个值,但是等于或低于第二个中间功率控制值,其优选值为10%。
这个阶段电路切断继电器工作,切换到三端双向可控硅控制状态,控制加热器件工作,并通过运行控制和功率控制电路板的嵌入式电脑芯片、电路和软件智能调整本阶段所述不同温度区间时需要的功率值,控制三端双向可控硅的占空比,从而控制加热器件的输出功率。
第三阶段:保温阶段
当水位经水位电路检测达到高水位传感器位置并达到设定的最高温度后,本发明所述装置即进入保温状态阶段。这时,加热功率控制值是满功率的0%至50%之间的某个值,作为保温功率值,其优选值为10%。
此阶段仍切断继电器,由三端双向可控硅控制加热器件输出功率。
如用户取水,内胆水位将脱离高水位传感器。如果此时再次打开电磁阀进水补水,则电路切换回继电器工作状态,停止三端双向可控硅的工作,并按照所述液体加热装置所处的加热阶段循环执行以上所述相对应加热阶段的功率控制流程。
附图说明
图1:采用三相380V单只加热管的液体加热设备及其功率控制电路构成图
图2:采用单相220V单只加热管的液体加热设备及其功率控制电路构成图
图3:采用单相380V三只加热管的液体加热设备及其功率控制电路构成图
图4:三个加热阶段温度功率控制方法及流程图
图5:运行控制与功率控制电路板电路示意图:三相380V电源方式
图6:运行控制与功率控制电路板电路示意图:220V单相电源方式一
图7:运行控制与功率控制电路板电路示意图:220V单相电源方式二
1 外壳
2 内胆
3 加热装置
4 电磁阀
5 电源和信号引线
6 运行控制与功率控制电路板
7 高水位传感器
8 低水位传感器
9 温度传感器
10 继电器
11. 三端双向可控硅
具体实施方式
实施例一:
所述功率可调的液体加热设备,包括外壳1、内胆2、加热装置3、电磁阀4、电源和信号引线5、运行控制与功率控制电路板6、高水位传感器7、低水位传感器8、温度传感器9等。
内胆2位于外壳1内,加热装置3及高水位传感器7、低水位传感器8、温度传感器9安装在内胆2里面。电磁阀4、电源和信号引线5、运行控制与功率控制电路板6安装在外壳1和内胆2之间。
加热装置3和电磁阀4通过电源和信号引线5与运行控制与功率控制电路板6相连。温度传感器9和高水位传感器7、低水位传感器8通过电源和信号引线5与运行控制与功率控制板6相连。其中高水位传感器7安装于内胆2的上部,用于检测设置的高水位。
运行控制与功率控制电路板6包括嵌入式电脑芯片、温度检测电路、水位检测电路、一组继电器10及一组三端双向可控硅11等构成,电脑芯片通过外围电路及电源和信号引线5与温度检测电路、水位检测电路等相连,并和继电器10及三端双向可控硅11相连接。
图5、图6、图7所示为所述运行控制和功率控制电路板6的功率控制部分的电气原理图。RA1、RA2、RA3、RA4、RA5、RA6分别为与设置在运行控制与功率控制电路板6上的运行控制部分的嵌入式电脑芯片相连的I/O口。
如图5、图6、图7所示,在所述运行控制和功率控制电路板6中,将1只继电器10和1只三端双向可控硅11一一对应在电路中并联组成1个功率控制组;所述运行控制和功率控制电路板6可以根据所述液体加热装置具体使用的加热装置3数量,设置1个或几个功率控制组。
运行控制与功率控制电路板6可以是整合在一个电路板上,也可以是功率控制电路与运行控制电路分离,彼此位于不同的电路板上。
本发明中的所述继电器10其另一种应用形式可以是交流接触器等其他开关元件。
本发明中的所述的加热装置3,可以是加热管,也可以是加热膜或加热丝;加热器件3可以是单只电加热管,也可以是多只电加热管;还可以是分布多个彼此独立的加热电阻丝的一只电加热管。
如图5、图6和图7,加热器件3的每只加热管或一只加热管上的每根独立的加热丝,其通断均由相互并联的一只继电器10和一只三端双向可控硅11所组成的1个功率控制组共同控制,该加热丝并通过导线相连与所述功率组和电源串联。在继电器10工作时,三端双向可控硅11关闭;在三端双向可控硅11工作时,继电器10关闭。如图6和图7所示装置采用的电源可以是220V单相交流电,这样采用的加热装置3可能是1只加热管,如图示2所示;本发明的另一种实施方式是数只并联的加热管,如图3所示。
如图1和图5所示,装置采用的电源也可以是三相380V交流电,采用的加热装置3可能是1只加热管,并在该加热管上分布3只加热丝通过三角或星型接法连接到控制器件和电源。根据功率及负荷需要,也可以是数只加热管并联使用。
在加热装置3设置有多只加热管或一只加热管多个加热丝的情况下,本发明的另一种实施方式是运行控制与功率控制电路板6上仅设置一个功率组,仅控制其中控制器件3的其中1只单相加热管或所述多只加热丝中的一只,而其他加热管或加热丝通过继电器10控制。
如图5、图6、图7所示,嵌入式电脑芯片根据温度检测电路及水位检测电路等及软件程序智能判断本液体加热装置所处的工作阶段,通过所述的各个I/O口信号控制继电器10与三端双向可控硅11之间的相互切换,同时根据嵌入式电脑芯片中内置设定的功率值,通过信号智能控制三端双向可控硅11进而控制加热装置3的输出功率值。
如图4所示,内置的软件根据高水位传感器7、低水位传感器8、温度传感器9及温度检测电路、水位检测电路的参数计算并按以下三个加热阶段进行加热控制:
第一阶段:步进水加热阶段
所述液体加热设备,在水位达到低水位位置并被低水位传感器8检测到后,电磁阀4停止工作,加热装置3以100%功率即满功率加热。这时电路处于继电器10控制加热器件3状态,采用继电器10控制加热器件3的接通,三段双向可控硅11控制电路处于关闭状态。当温度传感器9检测到水温达到设置温度后,电磁阀4打开进水,当内胆2内水温低于设置的停止进水温度时,电磁阀4关闭,加热装置3仍以继电器10控制满功率加热,如此步进方式加热,直到电磁阀4打开进水到高水位传感器7所处位置,转入第二阶段。
第二阶段:步进水结束加热阶段
当水位进水过程中达到高水位传感器7位置时,加热中水温如达到90至97摄氏度之间的第一个温度设定值时,这个温度值其优选值为97度,电路控制按照设定的功率工作,这个设定功率值作为第一个中间功率控制值,所述的第一个中间功率控制值可以是满功率的0%至99%之间的某个值,其优选值为50%。
在水温继续升高达到90至99度之间的第二个温度设定值,第二个温度设定值高于第一个温度设定值,这个值优选为98摄氏度,电路控制按照设定的第二个中间功率控制值工作,所述的第二个中间功率控制值可以是满功率的0%至99%之间的某个值,但是等于或低于第一个中间功率控制值,其优选值为25%。
在水温继续升高达到90至99度之间的第三个温度设定值时,第三个温度设定值高于第二个温度设定值,这个值优选为99摄氏度,电路控制按照设定的第三个中间功率控制值工作,所述的三个中间功率控制值可以是满功率的0%至97%之间的某个值,但是等于或低于第二个中间功率控制值,其优选值为10%。
本阶段电路切断继电器10工作,切换到三端双向可控硅11控制状态,控制加热装置3工作,并通过运行控制和功率控制电路板6的嵌入式电脑芯片、电路和软件智能调整本阶段所述不同温度区间时需要的功率值,控制三端双向可控硅11的占空比,从而控制加热装置3的输出功率。
第三阶段:保温阶段
当水位经水位电路检测达到高水位传感器位置并达到设定的最高温度后,本发明所述装置即进入保温状态阶段。这时,加热功率控制值是满功率的0%至50%之间的某个值,其优选值为10%。
此阶段仍切断继电器10,由三端双向可控硅11控制加热装置3输出功率。
如用户取水,内胆2内水位将脱离高水位传感器7。如果此时再次打开电磁阀4进水补水,则电路切换回继电器10工作状态,停止三端双向可控硅11的工作,并按照所述液体加热装置所处的加热阶段循环执行以上所述相对应装置加热的第一、第二或第三阶段的功率控制流程。
实施例二:上述的继电器10是交流接触器或者三端双向可控硅。
实施例三:上述的三端双向可控硅11是功率值不可调的三端双向可控硅。
实施例四:所述的运行控制与功率控制电路板6,其运行控制电路板与功率控制电路板6是两块独立分离的电路板,共同组成运行控制与功率控制电路板6。
实施例五:内置的软件根据高水位传感器7、低水位传感器8、温度传感器9及温度检测电路、水位检测电路的参数计算并控制:
所述的第一阶段步进水加热阶段、第二阶段步进水加热结束阶段及第三阶段保温阶段的温度设定值,其每个阶段的温度设定值可以是1个,也可以是2个、3个,也可以是3个以上多个温度设定值,并根据温度设定值的数量设置对应的多个中间功率控制值通过三段双向可控硅11控制加热或者满功率通过继电器10控制加热。
本发明可广泛应用于电开水器、饮水机等液体加热器领域,本发明的发明点在于继电器10和三端双向可控硅11并联并组成交替工作的一个或多个功率控制组,联合控制加热器件的发热,内胆2内的水在不同的加热阶段通过可调功率控制电路调整加热装置3输出功率值的大小。同时,根据加热阶段及保温阶段的本装置加热特点,通过功率控制组,分别设定和控制输出不同的功率值,以达到使用低成本高可靠性的小功率三段双向可控硅智能控制可调功率加热的目的,从而减少过度或多次沸腾产生的能耗和水质卫生风险。
Claims (10)
1.一种功率可调的液体加热设备,包括外壳、内胆、加热装置、电磁阀、电源和信号引线、高水位传感器、低水位传感器、温度传感器;内胆位于外壳内,加热装置及高水位传感器、低水位传感器、温度传感器安装在内胆里面,还具有一个运行控制与功率控制电路,与电磁阀、电源和信号引线安装在外壳和内胆之间,通过电源和信号引线与加热装置、水位与温度传感器、电磁阀相连,运行控制与功率控制电路包括嵌入式电脑芯片、温度检测电路、水位检测电路、一组继电器及一组三端双向可控硅,电脑芯片通过电路与检测电路及继电器和三端双向可控硅相连接,其特征在于:所述嵌入式电脑芯片根据温度检测电路及水位检测电路智能判断加热装置所处的加热阶段,控制继电器与三端双向可控硅的切换,同时根据嵌入式电脑芯片中内置确定的控制功率值,通过信号控制三端双向可控硅输出信号进而控制加热装置的输出功率值。
2.根据权利要求1所述的液体加热设备,其特征在于:加热装置可以是一只或多只加热管;加热管内可以包含一只或多只加热丝,每只加热管均由相互并联的一只继电器和一只三端双向可控硅所组成的功率控制组所控制,并与该继电器和三端双向可控硅通过导线相连,在继电器工作时,三端双向可控硅关闭,在三端双向可控硅工作时,继电器关闭。
3.根据权利要求2所述的液体加热设备,其特征在于:所述加热装置采用三相380V电源,设有1根加热管,其包含3只加热丝,每根加热丝均由相互并联的一只继电器和一只三端双向可控硅所组成的功率控制组所控制,该加热管3只加热丝与3组继电器和三端双向可控硅所构成的功率控制组分别通过导线相连;在继电器工作时,三端双向可控硅关闭;在三端双向可控硅工作时,继电器关闭。
4.根据权利要求2所述的液体加热设备,其特征在于:所述加热装置采用三相380V电源,设有三根加热管,每根加热管均由相互并联的一只继电器和一只三端双向可控硅所组成的功率控制组所控制,并分别通过导线相连;在继电器工作时,三端双向可控硅关闭,在三端双向可控硅工作时,继电器关闭。
5.根据权利要求2所述的液体加热设备,其特征在于:所述加热装置采用单相220V电源,设有1根加热管或多根加热管并联,每根加热管均由相互并联的一只继电器和一只三端双向可控硅所组成的功率控制组所控制,并分别通过导线相连;在继电器工作时,三端双向可控硅关闭;在三端双向可控硅工作时,继电器关闭。
6.根据权利要求2所述的液体加热设备,其特征在于:加热装置采用单相220V电源,设有多根并联加热管,其中的1只加热管由相互并联的一只继电器和一只三端双向可控硅所组成的功率控制组所控制,并通过导线相连;在继电器工作时,三端双向可控硅关闭;在三端双向可控硅工作时,继电器关闭,其他加热管通过继电器控制。
7.根据权利要求1所述的液体加热设备,其特征在于:所述电脑芯片根据水位传感器、温度传感器及温度及水位检测电路的参数计算,控制在加热接近最高设定温度时,切换到三端双向可控硅,并向下调整功率到0到最高功率之间的一个中间功率控制值,并关闭继电器的控制。
8.根据权利要求1所述液体加热设备,其特征在于:所述电脑芯片根据水位传感器、温度传感器及温度及水位检测电路的参数计算,控制在液体加热设备处于保温状态阶段时,切换到三端双向可控硅控制,同时关闭继电器的控制,并向下调整加热装置功率到0到最高功率之间的保温功率控制值。
9.根据权利要求7所述的液体加热设备,其特征在于:所述的中间功率控制值可以是1个值,也可以是随着温度不断升高,按照不同的温度分别设置的多个功率控制值。
10.根据权利要求8所述的液体加热设备,其特征在于:所述的保温功率控制值可以是1个值,也可以是随着温度不断升高,按照不同的温度分别设置的多个功率控制值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310724747.7A CN103743111B (zh) | 2013-12-17 | 2013-12-17 | 一种功率可调的液体加热设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310724747.7A CN103743111B (zh) | 2013-12-17 | 2013-12-17 | 一种功率可调的液体加热设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103743111A CN103743111A (zh) | 2014-04-23 |
CN103743111B true CN103743111B (zh) | 2017-02-08 |
Family
ID=50500159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310724747.7A Active CN103743111B (zh) | 2013-12-17 | 2013-12-17 | 一种功率可调的液体加热设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103743111B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105371501B (zh) * | 2015-11-30 | 2018-05-18 | 上海浩泽净水科技发展有限公司 | 一种即热式开水机控制装置及其方法 |
CN105496215A (zh) * | 2016-02-02 | 2016-04-20 | 曾繁广 | 电热加热水装置 |
CN109154516B (zh) * | 2016-03-30 | 2021-04-23 | 江森自控科技公司 | 液体检测系统 |
CN106618183A (zh) * | 2016-12-12 | 2017-05-10 | 广州市吉谷电器科技有限公司 | 一种电热壶的加热控制系统和方法 |
CN107065974A (zh) * | 2017-06-19 | 2017-08-18 | 无锡新辉龙科技有限公司 | 一种用于半导体管道加热器的温度控制器 |
CN107238125A (zh) * | 2017-06-28 | 2017-10-10 | 广东美的环境电器制造有限公司 | 电暖器及其控制方法、系统 |
CN107843017A (zh) * | 2017-12-05 | 2018-03-27 | 莱克电气股份有限公司 | 一种带预加热功能的净水器以及净水器预加热的方法 |
CN110613359A (zh) * | 2018-06-20 | 2019-12-27 | 广东美的生活电器制造有限公司 | 食品料理机及其加热装置和加热方法 |
CN108880524A (zh) * | 2018-07-11 | 2018-11-23 | 小熊电器股份有限公司 | 可控硅控制电路及实现方法 |
CN109991904B (zh) * | 2019-04-12 | 2022-07-12 | 李玲 | 一种带自保护的调压电路及其控制系统 |
CN111110048A (zh) * | 2020-01-14 | 2020-05-08 | 江门市品高电器实业有限公司 | 一种加热装置及应用该加热装置的饮水机 |
CN111928492A (zh) * | 2020-08-27 | 2020-11-13 | 广东维宁科技有限公司 | 一种电加热装置控制方法及电路 |
DE102022104244A1 (de) * | 2022-02-23 | 2023-08-24 | Stiebel Eltron Gmbh & Co. Kg | Leistungselektronikbaugruppe und Haustechnikgerät, insbesondere Kochendwasserspeicher |
CN116804863B (zh) * | 2023-05-30 | 2024-01-30 | 苏州贝茵科技股份有限公司 | 一种自由切换输出功能的方法及控制器装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2418422Y (zh) * | 2000-02-24 | 2001-02-07 | 申国太 | 电加热锅炉 |
CN101832649A (zh) * | 2010-02-03 | 2010-09-15 | 杨友林 | 快热式电热水器无级调温集成功率控制模块 |
CN201945075U (zh) * | 2011-02-24 | 2011-08-24 | 卢欣 | 一种太阳能即热续能装置 |
CN101762020B (zh) * | 2009-12-24 | 2011-09-14 | 商少清 | 一种流动式即热电热水器的加热电路 |
CN202769969U (zh) * | 2012-07-23 | 2013-03-06 | 青岛吉之美商用设备有限公司 | 沸点自动监测校准的饮水加热装置 |
CN203785271U (zh) * | 2013-12-17 | 2014-08-20 | 青岛吉之美商用设备有限公司 | 一种功率可调的液体加热设备 |
-
2013
- 2013-12-17 CN CN201310724747.7A patent/CN103743111B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2418422Y (zh) * | 2000-02-24 | 2001-02-07 | 申国太 | 电加热锅炉 |
CN101762020B (zh) * | 2009-12-24 | 2011-09-14 | 商少清 | 一种流动式即热电热水器的加热电路 |
CN101832649A (zh) * | 2010-02-03 | 2010-09-15 | 杨友林 | 快热式电热水器无级调温集成功率控制模块 |
CN201945075U (zh) * | 2011-02-24 | 2011-08-24 | 卢欣 | 一种太阳能即热续能装置 |
CN202769969U (zh) * | 2012-07-23 | 2013-03-06 | 青岛吉之美商用设备有限公司 | 沸点自动监测校准的饮水加热装置 |
CN203785271U (zh) * | 2013-12-17 | 2014-08-20 | 青岛吉之美商用设备有限公司 | 一种功率可调的液体加热设备 |
Also Published As
Publication number | Publication date |
---|---|
CN103743111A (zh) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103743111B (zh) | 一种功率可调的液体加热设备 | |
CN203785271U (zh) | 一种功率可调的液体加热设备 | |
CN202361651U (zh) | 一种即热恒温电热水器 | |
CN110440443A (zh) | 一种热水器系统 | |
CN104188528A (zh) | 一种即热式饮水机及其控制方法 | |
CN103673295A (zh) | 直热式水箱加热水流路系统及其控制方法 | |
US20200080730A1 (en) | System and method of controlling a mixing valve of a heating system | |
US20170328599A1 (en) | System and method of controlling a mixing valve of a heating system | |
CN105066433B (zh) | 热水系统、恒温装置及恒温装置的控制方法 | |
CN204187834U (zh) | 一种水箱及热泵热水器 | |
CN100498108C (zh) | 加热饮水机 | |
CN106016764A (zh) | 一种电器盒的温度调节装置、电器盒及空气能热水器 | |
CN107990572A (zh) | 太阳能热水器及其控制方法 | |
CN205783734U (zh) | 新型节能热水器 | |
CN205980350U (zh) | 一种带增容功能的热水器电路结构 | |
CN104833101B (zh) | 一种热水器用恒定水温调节器的实现方法 | |
CN203785252U (zh) | 循环式热泵热水器 | |
CN103196236B (zh) | 基于预测控制的即热式加热体控制方法 | |
CN208075359U (zh) | 太阳能热水器 | |
CN100501265C (zh) | 新型加热饮水机 | |
CN204033118U (zh) | 一种即热式饮水机 | |
CN111526618A (zh) | 一种电加热器及其控制方法 | |
CN2934994Y (zh) | 加热饮水机 | |
CN214199174U (zh) | 一种带电即热功能的燃气热水器 | |
CN205919534U (zh) | 一种电器盒的温度调节装置、电器盒及空气能热水器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |