CN103728648A - Method and equipment for determining background of uranium hexafluoride gas uranium abundance measuring device - Google Patents
Method and equipment for determining background of uranium hexafluoride gas uranium abundance measuring device Download PDFInfo
- Publication number
- CN103728648A CN103728648A CN201310700404.7A CN201310700404A CN103728648A CN 103728648 A CN103728648 A CN 103728648A CN 201310700404 A CN201310700404 A CN 201310700404A CN 103728648 A CN103728648 A CN 103728648A
- Authority
- CN
- China
- Prior art keywords
- gas
- uranium
- background
- count rate
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 158
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 158
- SANRKQGLYCLAFE-UHFFFAOYSA-H uranium hexafluoride Chemical compound F[U](F)(F)(F)(F)F SANRKQGLYCLAFE-UHFFFAOYSA-H 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000005259 measurement Methods 0.000 claims abstract description 112
- 230000005251 gamma ray Effects 0.000 claims abstract description 100
- 238000004364 calculation method Methods 0.000 claims abstract description 31
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 272
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
Abstract
本发明提供了确定六氟化铀气体铀丰度测量装置本底的方法和设备。所述方法包括:流动步骤,其使同一种UF6气体流入或流出测量容器;封闭步骤,其封闭测量容器,使测量容器内的UF6气体停止流动;测量步骤,其在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、压力值和温度值;以及计算步骤,在重复执行流动步骤、封闭步骤和测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个压力值和n个温度值的情况下,计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个压力值和n个温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。
The invention provides a method and equipment for determining the background of a device for measuring the uranium abundance of uranium hexafluoride gas. The method comprises: a flowing step, which makes the same UF6 gas flow into or out of the measuring container; a sealing step, which closes the measuring container, so that the UF6 gas in the measuring container stops flowing; a measuring step, which makes the UF6 gas in the measuring container After the pressure of the 6 gas is stable, measure the total count rate value, pressure value and temperature value of the gamma ray interval of interest of the UF 6 gas; and the calculation step, repeat the flow step, the sealing step and the measurement step n times to obtain n gamma In the case of the total count rate value, n pressure values and n temperature values in the ray interest interval, the calculation step uses the measured n gamma ray interest interval total count rate values, n pressure values and n temperature values to calculate the background count rate value of the γ-ray interest interval of the UF 6 gas uranium abundance measuring device, where n is an integer greater than or equal to 2.
Description
技术领域technical field
本发明涉及六氟化铀气体铀丰度测量装置,尤其涉及确定六氟化铀气体铀丰度测量装置本底的方法和设备。The invention relates to a device for measuring the uranium abundance of uranium hexafluoride gas, in particular to a method and equipment for determining the background of the device for measuring the uranium abundance of uranium hexafluoride gas.
背景技术Background technique
铀浓缩厂是进行铀浓缩活动的核设施,是军控核查和保障监督重点关注的对象之一。铀浓缩厂均采用质谱计来监测管道中UF6(六氟化铀)气体中的铀(235U)丰度,此技术精度高,但操作复杂,耗费高,分析周期长,需配备专业人员。在线铀丰度技术包括两部分:235U量的测量和UF6气体中铀总量的测量。235U量的测量是利用测量其发射的185.7keV特征γ射线的强度来确定的。A uranium enrichment plant is a nuclear facility that conducts uranium enrichment activities, and is one of the key objects of arms control inspection and safeguard supervision. Uranium enrichment plants all use mass spectrometers to monitor the abundance of uranium ( 235 U) in UF 6 (uranium hexafluoride) gas in pipelines. This technology has high precision, but the operation is complex, costly, and the analysis period is long. Professionals are required . The online uranium enrichment technology includes two parts: the measurement of 235 U and the measurement of the total amount of uranium in UF 6 gas. The measurement of 235 U is determined by measuring the intensity of the 185.7keV characteristic γ-ray emitted by it.
图1示出了一种相关技术的UF6气体铀丰度测量装置,用于离心浓缩厂管道中UF6气体铀丰度的测量。UF6气体铀丰度测量装置主要用于铀浓缩厂生产工艺监控领域以及军控核查、国际核保障领域。该装置能对铀浓缩厂工艺管线中的UF6气体中的铀丰度进行在线实时监测,并能及时迅速地反映铀浓缩厂生产工艺状况,对铀浓缩厂生产工艺的监制和正常运行具有重要的实际意义和推广应用价值。Fig. 1 shows a related art UF 6 gas uranium abundance measuring device, which is used to measure the UF 6 gas uranium abundance in the pipeline of a centrifugal enrichment plant. The UF 6 gas uranium abundance measuring device is mainly used in the field of production process monitoring in uranium enrichment plants, arms control verification, and international nuclear safeguards. The device can monitor the uranium abundance in the UF 6 gas in the process pipeline of the uranium enrichment plant on-line and in real time, and can promptly and quickly reflect the production process status of the uranium enrichment plant, which is of great importance to the supervision and normal operation of the production process of the uranium enrichment plant. The practical significance and promotion and application value.
图1所示的UF6气体铀丰度测量装置采用旁路的形式接入铀浓缩厂工艺管线,工艺管线中的UF6气体流经该装置,通过对气体压力、温度以及γ射线强度的测定来得到UF6气体中的铀丰度。图1所示的UF6气体铀丰度测量装置包括第一阀门1、第二阀门2、第三阀门3、第四阀门4、第五阀门5和第六阀门6,还包括第一电磁阀11和第二电磁阀12。图1所示的UF6气体铀丰度测量装置还包括压力传感器P和温度传感器T。压力传感器P测量UF6气体的压力,而温度传感器T测量UF6气体的温度。The UF 6 gas uranium abundance measurement device shown in Figure 1 is connected to the process pipeline of the uranium enrichment plant in the form of a bypass, and the UF 6 gas in the process pipeline flows through the device, and the gas pressure, temperature and γ-ray intensity are measured to get the uranium abundance in UF 6 gas. The UF 6 gas uranium abundance measuring device shown in Fig. 1 includes a
装置的“本底”是指进行射线测量时,除了所要测量的容器内UF6气体所产生的对感兴趣区间射线测量的贡献之外的其它因素所导致的对感兴趣区间射线测量的贡献。例如,“本底”包括由于铀在UF6气体铀丰度测量装置中的沉积所导致的其对射线测量的贡献。装置的本底对丰度测量结果有直接的影响。装置一旦确定后,其相应的刻度系数也就固定。实验发现,丰度值在一定时期后会偏离实际值,导致丰度值偏离实际值的主要原因是本底的变化,例如,由于铀在测量装置中的沉积累积引起的本底的变化。实际测量发现本底变化很大,随时间增长。因此,需对装置本底进行准确监测。The "background" of the device refers to the contribution to the ray measurement of the region of interest caused by factors other than the contribution to the ray measurement of the region of interest produced by the UF 6 gas in the container to be measured when the ray measurement is performed. For example, "background" includes the radiometric contribution of uranium due to its deposition in the UF 6 gas uranium abundance measurement device. The background of the device has a direct impact on the abundance measurements. Once the device is determined, its corresponding scale factor is also fixed. Experiments have found that the abundance value will deviate from the actual value after a certain period of time, and the main reason for the deviation of the abundance value from the actual value is the change of the background, for example, the change of the background caused by the deposition and accumulation of uranium in the measuring device. Actual measurements found that the background varied greatly and increased over time. Therefore, accurate monitoring of the device background is required.
当前采用的本底测量方法是将六氟化铀气体铀丰度测量装置与工艺管道断开,然后对六氟化铀气体铀丰度测量装置中的UF6进行冷凝、回收,将系统抽真空,然后对本底进行长时间测量得到射线测量的感兴趣区间本底计数率SB。这种方法操作繁杂、耗费时间长(每次测量至少3小时),需人为干预,测量误差大,与装置实际运行条件不符(装置是在有气体情况下运行测量,而该本底是在无气体时测量)。The current background measurement method is to disconnect the UF6 gas uranium abundance measurement device from the process pipeline, then condense and recycle the UF 6 in the UF6 gas uranium abundance measurement device, and then vacuumize the system , and then measure the background for a long time to obtain the background count rate S B of the interval of interest in the ray measurement. This method is complicated to operate, takes a long time (at least 3 hours for each measurement), requires human intervention, has large measurement errors, and does not conform to the actual operating conditions of the device (the device is measured in the presence of gas, and the background is in the absence of gas measurement).
发明内容Contents of the invention
本发明的目的是提供确定六氟化铀气体铀丰度测量装置本底的方法和设备,所述方法和设备在六氟化铀气体铀丰度测量装置保持正常工作的状态下即可方便快捷地准确测定该六氟化铀气体铀丰度测量装置的本底。The purpose of the present invention is to provide a method and equipment for determining the background of a UF6 gas uranium abundance measuring device, and the method and device can be convenient and quick when the UF6 gas uranium abundance measuring device maintains a normal working state The background of the UF6 gas uranium abundance measuring device can be accurately determined.
一方面,本发明实施方式提供了一种确定六氟化铀气体铀丰度测量装置本底的方法,其包括以下步骤:流动步骤,该步骤使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;封闭步骤,该步骤封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;测量步骤,该步骤在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算步骤,在重复执行所述流动步骤、所述封闭步骤和所述测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。In one aspect, an embodiment of the present invention provides a method for determining the background of a UF6 gas uranium abundance measuring device, which includes the following steps: a flow step, which allows the same UF6 gas to flow into or out of the The measuring container of the gas uranium abundance measuring device; the sealing step, the step is to close the measuring container, so that the UF6 gas in the measuring container stops flowing; the measuring step, the step is to seal the UF6 gas in the measuring container After the pressure of the uranium gas is stable, measure the total count rate value, gas pressure value and gas temperature value of the gamma ray interest interval of the uranium hexafluoride gas; and the calculation step, after repeatedly performing the flow step, the sealing step and In the case where the measuring step is n times to obtain the total count rate value of n gamma ray intervals of interest, n gas pressure values and n gas temperature values, the calculation step uses the measured n gamma ray interest The total count rate value of the interval, n gas pressure values and n gas temperature values are used to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measuring device, wherein, n is greater than or equal to 2 an integer of .
根据本发明的一方面,所述计算步骤利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:According to one aspect of the present invention, the calculation step uses the following formula to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device:
在该式中:En为第n次执行所述测量步骤时的所述六氟化铀气体中的铀丰度;Sn为第n次执行所述测量步骤时测量到的γ射线感兴趣区间总计数率值;SB n为第n次执行所述测量步骤时的γ射线感兴趣区间本底计数率值;Pn为第n次执行所述测量步骤时测量到的气体压力值;Tn为第n次执行所述测量步骤时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the uranium hexafluoride gas when the measurement step is performed for the nth time; S n is the gamma ray measured when the measurement step is performed for the nth time. The total count rate value of the interval; S B n is the background count rate value of the gamma ray interval of interest when the measurement step is performed for the nth time; P n is the gas pressure value measured when the measurement step is performed for the nth time; T n is the gas temperature value measured when the measuring step is performed for the nth time; and K is the calibration coefficient of the UF 6 gas uranium abundance measuring device.
根据本发明的一方面,所述计算步骤根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,由于所述六氟化铀气体为同种六氟化铀气体,因此n次执行所述测量步骤时的n个六氟化铀气体中的铀丰度值E1…En相等。According to one aspect of the present invention, the calculating step calculates the uranium hexafluoride gas according to the characteristic that the background count rate value of the gamma-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device remains unchanged for a certain period of time. The background count rate value of the gamma-ray interest interval of the uranium gas uranium abundance measurement device, wherein, since the UF6 gas is the same UF6 gas, n times when the measurement step is performed n times The uranium abundance values E 1 ... E n in UF6 gas are equal.
根据本发明的一方面,所述计算步骤根据下式计算在执行所述流动步骤、所述封闭步骤和所述测量步骤n次时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n:According to an aspect of the present invention, the calculation step calculates the background count rate value S B of the gamma-ray interval of interest that remains unchanged when the flow step, the sealing step and the measurement step are performed n times according to the following formula 1 ... S B n :
根据本发明的一方面,
根据本发明的一方面,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算步骤针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。According to one aspect of the present invention, under the condition that the temperature of the UF6 gas in the measurement container remains constant, the calculation step is based on the total count rate value of the n gamma ray intervals of interest and the n gas pressure values for fitting.
根据本发明的一方面,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。According to one aspect of the present invention, when the fitting is performed, the total count rate value of the γ-ray interval of interest when the gas pressure value is 0 is the value of the uranium abundance measuring device for UF6 gas. The background count rate value of the gamma-ray interval of interest.
另一方面,本发明实施方式提供了一种确定六氟化铀气体铀丰度测量装置本底的设备,其包括:流动模块,该模块使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;封闭模块,该模块封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;测量模块,该模块在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算模块,在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算模块利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。In another aspect, an embodiment of the present invention provides a device for determining the background of a UF6 gas uranium abundance measurement device, which includes: a flow module, which allows the same UF6 gas to flow into or out of the gas The measuring container of the uranium abundance measuring device; the sealing module, which closes the measuring container, so that the flow of UF6 gas in the measuring container is stopped; After the pressure of the uranium gas is stable, measure the total count rate value, gas pressure value and gas temperature value of the γ-ray interest interval of the UF6 gas; and a calculation module, in the flow module, the closed module and the measurement When the module repeats operations n times to obtain the total count rate value of n gamma-ray intervals of interest, n gas pressure values and n gas temperature values, the calculation module uses the measured n gamma-ray interest The total count rate value of the interval, n gas pressure values and n gas temperature values are used to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measuring device, wherein, n is greater than or equal to 2 an integer of .
根据本发明的另一方面,所述计算模块利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:According to another aspect of the present invention, the calculation module uses the following formula to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device:
在该式中:En为所述测量模块进行第n次操作时的所述六氟化铀气体中的铀丰度;Sn为所述测量模块进行第n次操作时测量到的γ射线感兴趣区间总计数率值;SB n为所述测量模块进行第n次操作时的γ射线感兴趣区间本底计数率值;Pn为所述测量模块进行第n次操作时测量到的气体压力值;Tn为所述测量模块进行第n次操作时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the UF6 gas when the measurement module performs the nth operation; S n is the gamma ray measured when the measurement module performs the nth operation The total count rate value of the interval of interest; S B n is the background count rate value of the gamma ray interval of interest when the measurement module performs the nth operation; P n is measured when the measurement module performs the nth operation gas pressure value; T n is the gas temperature value measured when the measurement module performs the nth operation; and K is the scale factor of the UF 6 gas uranium abundance measuring device.
根据本发明的另一方面,所述计算模块根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,由于所述六氟化铀气体为同种六氟化铀气体,因此所述测量模块进行n次操作时的n个六氟化铀气体中的铀丰度值E1…En相等。According to another aspect of the present invention, the calculation module calculates the uranium hexafluoride gas uranium abundance measurement device according to the characteristic that the background count rate value of the gamma ray interval of interest remains unchanged for a certain period of time. The background count rate value of the gamma-ray interest interval of the uranium fluoride gas uranium abundance measuring device, wherein, since the uranium hexafluoride gas is the same kind of uranium hexafluoride gas, when the measurement module performs n operations The uranium abundance values E 1 ... E n in n UF6 gases are equal.
根据本发明的另一方面,所述计算模块根据下式计算在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n:According to another aspect of the present invention, the calculation module calculates the background count rate in the interval of interest of gamma rays that remains unchanged when the flow module, the closure module and the measurement module are repeatedly operated n times according to the following formula Values S B 1 ...S B n :
根据本发明的另一方面,
根据本发明的另一方面,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算模块针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。According to another aspect of the present invention, under the condition that the temperature of the UF6 gas in the measurement container remains constant, the calculation module calculates the total count rate value of the n gamma-ray intervals of interest and the The above n gas pressure values are used for fitting.
根据本发明的另一方面,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。According to another aspect of the present invention, in the case of performing the fitting, the total count rate value of the γ-ray interval of interest when the gas pressure value is 0 is the uranium abundance measuring device for the UF6 gas The background count rate value of the γ-ray interval of interest.
根据本发明的确定六氟化铀气体铀丰度测量装置本底的方法和设备不用将六氟化铀气体铀丰度测量装置与工艺管道断开即可快捷准确测地定该六氟化铀气体铀丰度测量装置的本底。这种方法操作简便,耗费时间短,不需人为干预,测量误差小,与六氟化铀气体铀丰度测量装置实际运行条件相符。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数,也可求出γ射线感兴趣区间本底计数率值。According to the method and equipment for determining the background of the UF6 gas uranium abundance measuring device of the present invention, the UF6 gas can be quickly and accurately measured without disconnecting the UF6 gas uranium abundance measuring device from the process pipeline Background of gas uranium abundance measurement device. The method is simple to operate, takes short time, does not require human intervention, has small measurement errors, and is consistent with the actual operating conditions of the uranium abundance measuring device for uranium hexafluoride gas. Moreover, it is not necessary to know the calibration coefficient of the UF 6 gas uranium abundance measuring device, and the value of the background count rate in the interval of interest of the gamma ray can also be obtained.
附图说明Description of drawings
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some implementations of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.
图1示出了一种相关技术的UF6气体铀丰度测量装置。Fig. 1 shows a related art UF 6 gas uranium abundance measuring device.
图2示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法。Fig. 2 shows a method for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention.
图3示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法测量到的UF6气体的γ射线感兴趣区间总计数率值和压力值曲线图。Fig. 3 shows a curve diagram of the total count rate and pressure value of the γ-ray interest interval of UF 6 gas measured according to the method for determining the background of the UF 6 gas uranium abundance measuring device of the present invention.
图4示出了根据本发明的确定UF6气体铀丰度测量装置本底的设备。Fig. 4 shows a device for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention.
具体实施方式Detailed ways
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the implementation manners in the present invention, all other implementation manners obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present invention.
图2示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法200。FIG. 2 shows a
图2所示的确定UF6气体铀丰度测量装置本底的方法200包括以下步骤:流动步骤S201,该步骤使同一种UF6气体流入或流出气体铀丰度测量装置的测量容器;封闭步骤S202,该步骤封闭测量容器,使测量容器内的UF6气体停止流动;测量步骤S203,该步骤在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算步骤S204,在重复执行流动步骤、封闭步骤和测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。The
在图2所示的确定UF6气体铀丰度测量装置本底的方法200中,计算步骤S204利用式(1)来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:In the
在式(1)中:En为第n次执行测量步骤S203时的UF6气体中的铀丰度;Sn为第n次执行测量步骤S203时测量到的γ射线感兴趣区间总计数率值;SB n为第n次执行测量步骤S203时的γ射线感兴趣区间本底计数率值;Pn为第n次执行测量步骤S203时测量到的气体压力值;Tn为第n次执行测量步骤S203时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In formula (1): E n is the uranium abundance in UF 6 gas when the measurement step S203 is performed for the nth time; S n is the total count rate of the γ-ray interest interval measured when the measurement step S203 is performed for the nth time Value; S B n is the background count rate value of the γ-ray interval of interest when the nth execution of the measurement step S203; P n is the gas pressure value measured when the nth execution of the measurement step S203; T n is the nth time The gas temperature value measured when performing the measuring step S203; and K is the calibration factor of the UF 6 gas uranium abundance measuring device.
要注意的是,En和SB n都不是在执行测量步骤S203时测量到的物理量,而是在执行测量步骤S203时已经存在的物理量。另外,根据本发明,不需要实际求出UF6气体中的铀丰度En,而且不需要知道UF6气体铀丰度测量装置的刻度系数K,即可根据Sn、Pn和Tn来求出SB n。It should be noted that both E n and S B n are not physical quantities measured when the measuring step S203 is performed, but existing physical quantities when the measuring step S203 is performed. In addition, according to the present invention, there is no need to actually find out the uranium abundance E n in UF 6 gas, and it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the to find S B n .
根据实际经验可知,UF6气体铀丰度测量装置的本底在相当长的之间内可以被看做是恒定的。例如,实际运行的UF6气体铀丰度测量装置的本底变化可以被认为在几天内不会对丰度的测量产生影响。因此,计算步骤S204根据UF6气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段(例如,3天)保持不变的特性来计算所述UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。尤其是,由于被测量的UF6气体为同种UF6气体,因此n次执行测量步骤S203时的n个UF6气体中的铀丰度值E1…En相等。According to practical experience, the background of the UF 6 gas uranium abundance measurement device can be regarded as constant within a relatively long period of time. For example, the background change of the UF 6 gas uranium abundance measurement device in actual operation can be considered to have no influence on the abundance measurement within a few days. Therefore, the calculation step S204 calculates the
即,计算步骤S204根据式(2)计算在执行流动步骤、所述封闭步骤和所述测量步骤n次时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n:That is, the calculation step S204 calculates the background count rate values S B 1 ... S B n of the gamma-ray interval of interest that remain unchanged when the flowing step, the sealing step and the measuring step are performed n times according to formula (2):
在式(2)中,全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n相等。In formula (2) , the background count rate values S B 1 .
即,根据式(2)可得到如下式(3):That is, according to formula (2), the following formula (3) can be obtained:
由此可见,根据式(3),可以求得全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数K,也可求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。It can be seen that, according to the formula (3), the background count rate values S B 1 ..., S B n of the gamma-ray interval of interest during all n measurements can be obtained. Moreover, it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the background count rate values S B 1 ..., S B n of the γ-ray interest interval during all n measurements can also be obtained.
由于UF6气体铀丰度测量装置的刻度系数K、n次执行测量步骤S203测量到的γ射线感兴趣区间总计数率值S1…Sn、气体压力P1…Pn和气体温度T1…Tn已知,因此可以求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB n。另外,从式(2)可知即使不知道UF6气体铀丰度测量装置的刻度系数K,也可以求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB n。Due to the scale factor K of the UF 6 gas uranium abundance measuring device, the total count rate value S 1 ... S n of the γ-ray interval of interest measured by performing the measurement step S203 n times, the gas pressure P 1 ... P n and the gas temperature T 1 ...T n is known, so the background count rate values S B 1 ...S B n of the γ-ray interval of interest during all n measurements can be obtained. In addition, it can be seen from formula (2) that even if the calibration coefficient K of the UF 6 gas uranium abundance measuring device is not known, the background count rate value S B 1 ... S B of the γ-ray interest interval during all n measurements can be obtained n .
作为示例,可以针对图1中所示的UF6气体铀丰度测量装置执行根据本发明的确定UF6气体铀丰度测量装置本底的方法。在确定本底时,图1中所示的UF6气体铀丰度测量装置的全部阀门中除第二手动阀门2、第三手动阀门3、第五手动阀门5和第六手动阀门6关闭外,其余的第一手动阀门1、第四手动阀门4、第一电磁阀11和第二电磁阀12均为开启状态。在本发明的确定UF6气体铀丰度测量装置本底的方法开始时,UF6气体以自流形式流入测量容器,然后自动关闭第一电磁阀11和第二电磁阀12。待气体压力平稳后,自动对装置中的UF6气体进行测量。此时,测量容器中的UF6气体中的铀丰度由下式决定。一次流动步骤S201、封闭步骤S202、测量步骤S203和计算步骤S204完毕后,自动开启第二电磁阀12或第一电磁阀11,从而让系统中的UF6气体流出一部份或者进入一部分后关闭。然后再进行测量,如此循环。这样就改变了每次所测量的UF6气体的量,而UF6气体中的铀丰度不变。这样,就可以根据以上式(1)和(2)计算γ射线感兴趣区间本底计数率值。As an example, the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention can be implemented for the UF 6 gas uranium abundance measuring device shown in FIG. 1 . When determining the background, all valves of the UF 6 gas uranium abundance measuring device shown in Fig. 1 except the second manual valve 2, the third
在另一示例中,除了利用以上式(1)和(2)计算γ射线感兴趣区间本底计数率值之外,本发明的UF6气体铀丰度测量装置本底的方法还可以在将测量容器内的UF6气体的温度保持为不变的情况下,通过针对n个γ射线感兴趣区间总计数率值和n个气体压力值进行拟合来求出γ射线感兴趣区间本底计数率值。具体而言,当气体压力值为0时的γ射线感兴趣区间总计数率值是所述UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。In another example, in addition to using the above formulas (1) and (2) to calculate the background count rate value of the γ-ray interest interval, the method for the background of the UF 6 gas uranium abundance measuring device of the present invention can also be used in the When the temperature of the UF 6 gas in the measurement container remains constant, the background count of the gamma-ray interval of interest is calculated by fitting the total count rate value of n gamma-ray intervals of interest and n gas pressure values rate value. Specifically, when the gas pressure value is 0, the total count rate value of the γ-ray interest interval is the background count rate value of the γ-ray interest interval of the UF 6 gas uranium abundance measuring device.
图3示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法测量到的UF6气体的γ射线感兴趣区间总计数率值和压力值曲线图。Fig. 3 shows a curve diagram of the total count rate and pressure value of the γ-ray interest interval of UF 6 gas measured according to the method for determining the background of the UF 6 gas uranium abundance measuring device of the present invention.
在图3中,横坐标为UF6气体铀丰度测量装置的测量容器内的气体压力值,纵坐标为UF6气体的γ射线感兴趣区间总计数率值。如图3所示,纵坐标为UF6气体的γ射线感兴趣区间总计数率值和气体压力值呈线性关系。因此,通过对γ射线感兴趣区间总计数率值和气体压力值进行拟合,当气体压力为0时的截距即为感兴趣区间的γ射线本底计数率。即,该值表示在没有UF6气体的情况下的UF6气体铀丰度测量装置的测量容器内γ射线计数率。In Fig. 3, the abscissa is the gas pressure value in the measuring container of the UF 6 gas uranium abundance measuring device, and the ordinate is the total count rate value of the γ-ray interest interval of the UF 6 gas. As shown in Fig. 3, the y-coordinate is the total count rate value of the gamma-ray interest interval of UF 6 gas and the gas pressure value has a linear relationship. Therefore, by fitting the total count rate value and the gas pressure value of the γ-ray interval of interest, the intercept when the gas pressure is 0 is the background count rate of the γ-ray interval of interest. That is, this value represents the gamma ray count rate in the measurement container of the UF 6 gas uranium abundance measuring device in the absence of UF 6 gas.
作为另一示例,将确定UF6气体铀丰度测量装置本底的方法应用于图1所示的UF6气体铀丰度测量装置的基本过程如下:As another example, the basic process of applying the method for determining the background of the UF6 gas uranium abundance measuring device to the UF6 gas uranium abundance measuring device shown in Figure 1 is as follows:
1)首先关闭第二电磁阀12,让测量容器内UF6气体的压力升高,再关闭第一电磁阀11,测量γ射线感兴趣区间计数率S1和容器内压力P1;1) First close the second solenoid valve 12 to increase the pressure of UF 6 gas in the measurement container, then close the first solenoid valve 11 to measure the count rate S 1 of the gamma-ray interesting interval and the pressure P 1 in the container;
2)然后,打开第二电磁阀12放气,使测量容器内的气压稍降低一些,关闭第二电磁阀12,测量γ射线感兴趣区间计数率S2和容器内压力P2;2) Then, open the second electromagnetic valve 12 to deflate, so that the air pressure in the measurement container is slightly lowered, close the second electromagnetic valve 12, and measure the count rate S 2 of the gamma ray interval of interest and the pressure P 2 in the container;
3)然这样进行多次(如n次)循环反复,直至容器内压力降到较低,从而可获得一系列Sn和Pn;3) Repeat this for many times (such as n times) until the pressure in the container drops to a low level, so that a series of S n and P n can be obtained;
4)在n次测量之后对Sn和Pn进行拟合,可获得n个γ射线感兴趣区间计数率S1…Sn与气体压力P1…Pn的拟合曲线(见图3);4) Fitting S n and P n after n measurements can obtain the fitting curves of counting rate S 1 ... S n and gas pressure P 1 ... P n in n gamma-ray intervals of interest (see Figure 3) ;
5)确定在截距对应为P=0时的γ射线感兴趣区间计数率,即本底SB。5) Determine the count rate of the γ-ray interval of interest when the intercept corresponds to P=0, that is, the background S B .
应该注意,以上仅描述了通过多次放气(UF6气体流出)操作来测量不同的γ射线感兴趣区间计数率S和容器内压力P的情况,但本发明不限于此。根据说明书,本领域技术人员可以通过使UF6气体流入或流出测量容器来进行测量以确定UF6气体铀丰度测量装置的本底。It should be noted that the above only describes the case of measuring different gamma ray intervals of interest count rate S and container internal pressure P through multiple deflation (UF 6 gas outflow) operations, but the present invention is not limited thereto. According to the specification, those skilled in the art can measure by making UF 6 gas flow into or out of the measuring container to determine the background of the UF 6 gas uranium abundance measuring device.
另外,根据本发明的确定UF6气体铀丰度测量装置本底的方法不限于确定图1所示的UF6气体铀丰度测量装置的本底,而是可用于确定各种UF6气体铀丰度测量装置的本底。In addition, the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention is not limited to determining the background of the UF 6 gas uranium abundance measuring device shown in Figure 1, but can be used to determine various UF 6 gas uranium The background of the abundance measurement device.
图4示出了根据本发明的确定UF6气体铀丰度测量装置本底的设备400。FIG. 4 shows a
图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400包括:流动模块401,该模块使同一种UF6气体流入或流出气体铀丰度测量装置的测量容器;封闭模块402,该模块封闭测量容器,使测量容器内的UF6气体停止流动;测量模块403,该模块在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算模块404,在流动模块、封闭模块和测量模块重复进行n次操作以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,计算模块利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。The
在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404利用式(2)来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:In the
在式(1)中:En为测量模块进行第n次操作时的UF6气体中的铀丰度;Sn为测量模块进行第n次操作时测量到的γ射线感兴趣区间总计数率值;SB n为测量模块进行第n次操作时的γ射线感兴趣区间本底计数率值;Pn为测量模块进行第n次操作时测量到的气体压力值;Tn为测量模块进行第n次操作时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In formula (1): E n is the uranium abundance in UF 6 gas when the measurement module performs the nth operation; S n is the total count rate of the γ-ray interest interval measured by the measurement module when the nth operation is performed S B n is the background count rate value of the gamma ray interval of interest when the measurement module performs the nth operation; P n is the gas pressure value measured when the measurement module performs the nth operation; T n is the measurement module. The gas temperature value measured during the nth operation; and K is the calibration coefficient of the UF 6 gas uranium abundance measuring device.
要注意的是,En和SB n都不是测量模块403测量到的物理量,而是测量模块403在测量Sn、Pn和Tn时已经存在的物理量。另外,根据本发明,不需要实际求出UF6气体中的铀丰度En,而且不需要知道UF6气体铀丰度测量装置的刻度系数K,即可根据Sn、Pn和Tn来求出SB n。It should be noted that neither E n nor S B n is a physical quantity measured by the measurement module 403 , but a physical quantity that already exists when the measurement module 403 measures S n , P n and T n . In addition, according to the present invention, there is no need to actually find out the uranium abundance E n in UF 6 gas, and it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the to find S B n .
在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404根据UF6气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。尤其是,由于UF6气体为同种UF6气体,因此测量模块403进行n次测量时的n个UF6气体中的铀丰度值E1…En相等。In the
要注意的是,En和SB n都不是处理模块403测量到的物理量,而是在处理模块403进行测量时已经存在的物理量。另外,根据本发明,并不需要实际求出UF6气体中的铀丰度En,即可根据Sn、Pn和Tn来求出SB n。It should be noted that neither E n nor S B n is a physical quantity measured by the processing module 403 , but a physical quantity that already exists when the processing module 403 performs the measurement. In addition, according to the present invention, S B n can be calculated from S n , P n and T n without actually calculating the uranium abundance E n in UF 6 gas.
在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404根据式(2)计算在流动模块、封闭模块和测量模块重复进行n次操作时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n:In the
在式(2)中,全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB n相等。In the formula (2), the background count rate values S B 1 ... S B n of the gamma-ray interval of interest during all n measurements are equal.
即,根据式(2)可得到如下式(3):That is, according to formula (2), the following formula (3) can be obtained:
由此可见,根据式(3),可以求得全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数K,也可求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。It can be seen that, according to the formula (3), the background count rate values S B 1 ..., S B n of the gamma-ray interval of interest during all n measurements can be obtained. Moreover, it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the background count rate values S B 1 ..., S B n of the γ-ray interest interval during all n measurements can also be obtained.
在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,在测量容器内的UF6气体的温度保持为不变的情况下,计算模块404针对n个γ射线感兴趣区间总计数率值和n个气体压力值来进行拟合。尤其是,在进行拟合的情况下,当气体压力值为0时的γ射线感兴趣区间总计数率值是UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。In the
根据本发明的确定UF6气体铀丰度测量装置本底的设备不限于确定图1所示的UF6气体铀丰度测量装置的本底,而是可用于确定各种UF6气体铀丰度测量装置的本底。The device for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention is not limited to determining the background of the UF 6 gas uranium abundance measuring device shown in Figure 1, but can be used to determine various UF 6 gas uranium abundances The background of the measuring device.
本发明还提供一种存储有用于执行根据本发明的确定UF6气体铀丰度测量装置本底的方法200的指令的计算机可读存储介质。The present invention also provides a computer-readable storage medium storing instructions for executing the
通过根据本发明的确定UF6气体铀丰度测量装置本底的方法,可进行多次测量来减少测量结果的统计误差,不需人工操作,方便快捷,测量误差小。经测试,结果显示该方法测量的本底精度在1%左右,其对丰度结果的影响相对误差不高于0.3%。Through the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention, multiple measurements can be performed to reduce the statistical error of the measurement result, no manual operation is required, the method is convenient and fast, and the measurement error is small. After testing, the results show that the background accuracy of this method is about 1%, and the relative error of its influence on the abundance results is not higher than 0.3%.
而且,根据本发明的确定UF6气体铀丰度测量装置本底的方法和设备不用将UF6气体铀丰度测量装置与工艺管道断开即可快捷准确测地定该UF6气体铀丰度测量装置的本底。这种方法操作简便,耗费时间短,不需人为干预,测量误差小,与六氟化铀气体铀丰度测量装置实际运行条件相符。Moreover, the method and equipment for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention can quickly and accurately determine the UF 6 gas uranium abundance without disconnecting the UF 6 gas uranium abundance measuring device from the process pipeline The background of the measuring device. The method is simple to operate, takes short time, does not require human intervention, has small measurement errors, and is consistent with the actual operating conditions of the uranium abundance measuring device for uranium hexafluoride gas.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310700404.7A CN103728648B (en) | 2013-12-18 | 2013-12-18 | Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310700404.7A CN103728648B (en) | 2013-12-18 | 2013-12-18 | Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103728648A true CN103728648A (en) | 2014-04-16 |
CN103728648B CN103728648B (en) | 2015-12-09 |
Family
ID=50452801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310700404.7A Active CN103728648B (en) | 2013-12-18 | 2013-12-18 | Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103728648B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107807145A (en) * | 2016-09-09 | 2018-03-16 | 中核兰州铀浓缩有限公司 | It is a kind of to detect UF without heat source type6The sensor of dielectric gas flow direction |
CN109100001A (en) * | 2018-08-22 | 2018-12-28 | 中国原子能科学研究院 | A kind of UF6The verification measurement method of uranium quality in big tank |
CN110308474A (en) * | 2019-07-02 | 2019-10-08 | 中国原子能科学研究院 | A small monitoring device for online measurement of gas uranium abundance |
US11131628B1 (en) | 2020-05-12 | 2021-09-28 | Savannah River Nuclear Solutions, Llc | Spectroscopic methods and systems for isotopic analysis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1090647A (en) * | 1993-02-05 | 1994-08-10 | 河南菲尼科技实业公司 | Overcome the method for nuclear fuel uranium dioxide age to the influence of its uranium-235 abundance On line inspection |
CN1295256A (en) * | 1999-08-18 | 2001-05-16 | 上海伽玛射线技术有限公司 | Specific radioactivity measuring method and equipment |
RU2330308C1 (en) * | 2006-11-03 | 2008-07-27 | Федеральное государственное унитарное предприятие "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" | Method of control of mass fraction of uranium-235 isotope in gaseous phase of uranium hexafluoride and system of measurement for implementation of this method |
-
2013
- 2013-12-18 CN CN201310700404.7A patent/CN103728648B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1090647A (en) * | 1993-02-05 | 1994-08-10 | 河南菲尼科技实业公司 | Overcome the method for nuclear fuel uranium dioxide age to the influence of its uranium-235 abundance On line inspection |
CN1295256A (en) * | 1999-08-18 | 2001-05-16 | 上海伽玛射线技术有限公司 | Specific radioactivity measuring method and equipment |
RU2330308C1 (en) * | 2006-11-03 | 2008-07-27 | Федеральное государственное унитарное предприятие "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" | Method of control of mass fraction of uranium-235 isotope in gaseous phase of uranium hexafluoride and system of measurement for implementation of this method |
Non-Patent Citations (2)
Title |
---|
WALTER LIGGETT: "Calibration for measurements with background correction applied to uranium-235 enrichment", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH》 * |
吕学升等: "铀浓缩厂铀丰度在线监测装置研制", 《原子能科学技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107807145A (en) * | 2016-09-09 | 2018-03-16 | 中核兰州铀浓缩有限公司 | It is a kind of to detect UF without heat source type6The sensor of dielectric gas flow direction |
CN109100001A (en) * | 2018-08-22 | 2018-12-28 | 中国原子能科学研究院 | A kind of UF6The verification measurement method of uranium quality in big tank |
CN110308474A (en) * | 2019-07-02 | 2019-10-08 | 中国原子能科学研究院 | A small monitoring device for online measurement of gas uranium abundance |
US11131628B1 (en) | 2020-05-12 | 2021-09-28 | Savannah River Nuclear Solutions, Llc | Spectroscopic methods and systems for isotopic analysis |
Also Published As
Publication number | Publication date |
---|---|
CN103728648B (en) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111948702B (en) | Calibration device and calibration method for radioactive gas measurement equipment | |
CN103969673B (en) | Closed loop measures the method for precipitation rate of radon continuously | |
CN102128666B (en) | Method for calibrating Coriolis mass flowmeter | |
US8793082B2 (en) | Upstream volume mass flow verification systems and methods | |
CN103728648B (en) | Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas | |
CN204085645U (en) | With the gas flow standard device of self calibration structure | |
CN116147724B (en) | Metering method suitable for ultrasonic water meter | |
CN103064101A (en) | Gama scanning measuring method through adoption of asymmetrical standard sample calibration | |
CN109141770A (en) | A method of reducing leak detector state change influences helium mass spectrum suction gun backing space technique | |
CN105021357A (en) | Air preheater air leakage rate determination method and device | |
CN106093313B (en) | The silica of nuclear power station water filter filter core separates out the detection method and its dedicated test system of performance | |
CN108955837B (en) | Method for determining online system error of mass flowmeter and application thereof | |
CN103697974B (en) | A kind of liquid metal flowmeter method of calibration | |
CN101718636A (en) | Full-height fan flow rate-pressure rise test device and test method | |
CN104458149A (en) | Air preheater air leakage calculation method | |
CN108072410A (en) | Air flow meter detecting system | |
CN113899431B (en) | A mobile flow online calibration system | |
RU135795U1 (en) | INSTALLATION FOR VERIFICATION AND CALIBRATION OF METERS, FLOW METERS AND FLOW METERS-GAS METERS | |
CN111017878A (en) | For preparing equilibrium state H2-HD-D2Apparatus and method for standard gas | |
CN106569252A (en) | Method of correcting consistency of gamma total amount measurement type active carbon emanometer | |
CN105606771A (en) | Full-automatic gas distribution system and manner for constant-volume premixed gas experiment | |
CN104806889A (en) | Monitoring method and monitoring device for pipeline transmission loss of gas long-distance transmission pipeline | |
US3525258A (en) | Well analysis method and system | |
CN104280199A (en) | Mass spectrograph linear section testing method | |
CN112115654B (en) | Pipeline flow field pressure distribution evaluation method and device integrating measured data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |