CN103728648A - Method and equipment for determining background of uranium hexafluoride gas uranium abundance measuring device - Google Patents

Method and equipment for determining background of uranium hexafluoride gas uranium abundance measuring device Download PDF

Info

Publication number
CN103728648A
CN103728648A CN201310700404.7A CN201310700404A CN103728648A CN 103728648 A CN103728648 A CN 103728648A CN 201310700404 A CN201310700404 A CN 201310700404A CN 103728648 A CN103728648 A CN 103728648A
Authority
CN
China
Prior art keywords
gas
uranium
background
count rate
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310700404.7A
Other languages
Chinese (zh)
Other versions
CN103728648B (en
Inventor
刘国荣
吕学升
赵永刚
梁庆雷
李井怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201310700404.7A priority Critical patent/CN103728648B/en
Publication of CN103728648A publication Critical patent/CN103728648A/en
Application granted granted Critical
Publication of CN103728648B publication Critical patent/CN103728648B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本发明提供了确定六氟化铀气体铀丰度测量装置本底的方法和设备。所述方法包括:流动步骤,其使同一种UF6气体流入或流出测量容器;封闭步骤,其封闭测量容器,使测量容器内的UF6气体停止流动;测量步骤,其在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、压力值和温度值;以及计算步骤,在重复执行流动步骤、封闭步骤和测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个压力值和n个温度值的情况下,计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个压力值和n个温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。

Figure 201310700404

The invention provides a method and equipment for determining the background of a device for measuring the uranium abundance of uranium hexafluoride gas. The method comprises: a flowing step, which makes the same UF6 gas flow into or out of the measuring container; a sealing step, which closes the measuring container, so that the UF6 gas in the measuring container stops flowing; a measuring step, which makes the UF6 gas in the measuring container After the pressure of the 6 gas is stable, measure the total count rate value, pressure value and temperature value of the gamma ray interval of interest of the UF 6 gas; and the calculation step, repeat the flow step, the sealing step and the measurement step n times to obtain n gamma In the case of the total count rate value, n pressure values and n temperature values in the ray interest interval, the calculation step uses the measured n gamma ray interest interval total count rate values, n pressure values and n temperature values to calculate the background count rate value of the γ-ray interest interval of the UF 6 gas uranium abundance measuring device, where n is an integer greater than or equal to 2.

Figure 201310700404

Description

确定六氟化铀气体铀丰度测量装置本底的方法和设备Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas

技术领域technical field

本发明涉及六氟化铀气体铀丰度测量装置,尤其涉及确定六氟化铀气体铀丰度测量装置本底的方法和设备。The invention relates to a device for measuring the uranium abundance of uranium hexafluoride gas, in particular to a method and equipment for determining the background of the device for measuring the uranium abundance of uranium hexafluoride gas.

背景技术Background technique

铀浓缩厂是进行铀浓缩活动的核设施,是军控核查和保障监督重点关注的对象之一。铀浓缩厂均采用质谱计来监测管道中UF6(六氟化铀)气体中的铀(235U)丰度,此技术精度高,但操作复杂,耗费高,分析周期长,需配备专业人员。在线铀丰度技术包括两部分:235U量的测量和UF6气体中铀总量的测量。235U量的测量是利用测量其发射的185.7keV特征γ射线的强度来确定的。A uranium enrichment plant is a nuclear facility that conducts uranium enrichment activities, and is one of the key objects of arms control inspection and safeguard supervision. Uranium enrichment plants all use mass spectrometers to monitor the abundance of uranium ( 235 U) in UF 6 (uranium hexafluoride) gas in pipelines. This technology has high precision, but the operation is complex, costly, and the analysis period is long. Professionals are required . The online uranium enrichment technology includes two parts: the measurement of 235 U and the measurement of the total amount of uranium in UF 6 gas. The measurement of 235 U is determined by measuring the intensity of the 185.7keV characteristic γ-ray emitted by it.

图1示出了一种相关技术的UF6气体铀丰度测量装置,用于离心浓缩厂管道中UF6气体铀丰度的测量。UF6气体铀丰度测量装置主要用于铀浓缩厂生产工艺监控领域以及军控核查、国际核保障领域。该装置能对铀浓缩厂工艺管线中的UF6气体中的铀丰度进行在线实时监测,并能及时迅速地反映铀浓缩厂生产工艺状况,对铀浓缩厂生产工艺的监制和正常运行具有重要的实际意义和推广应用价值。Fig. 1 shows a related art UF 6 gas uranium abundance measuring device, which is used to measure the UF 6 gas uranium abundance in the pipeline of a centrifugal enrichment plant. The UF 6 gas uranium abundance measuring device is mainly used in the field of production process monitoring in uranium enrichment plants, arms control verification, and international nuclear safeguards. The device can monitor the uranium abundance in the UF 6 gas in the process pipeline of the uranium enrichment plant on-line and in real time, and can promptly and quickly reflect the production process status of the uranium enrichment plant, which is of great importance to the supervision and normal operation of the production process of the uranium enrichment plant. The practical significance and promotion and application value.

图1所示的UF6气体铀丰度测量装置采用旁路的形式接入铀浓缩厂工艺管线,工艺管线中的UF6气体流经该装置,通过对气体压力、温度以及γ射线强度的测定来得到UF6气体中的铀丰度。图1所示的UF6气体铀丰度测量装置包括第一阀门1、第二阀门2、第三阀门3、第四阀门4、第五阀门5和第六阀门6,还包括第一电磁阀11和第二电磁阀12。图1所示的UF6气体铀丰度测量装置还包括压力传感器P和温度传感器T。压力传感器P测量UF6气体的压力,而温度传感器T测量UF6气体的温度。The UF 6 gas uranium abundance measurement device shown in Figure 1 is connected to the process pipeline of the uranium enrichment plant in the form of a bypass, and the UF 6 gas in the process pipeline flows through the device, and the gas pressure, temperature and γ-ray intensity are measured to get the uranium abundance in UF 6 gas. The UF 6 gas uranium abundance measuring device shown in Fig. 1 includes a first valve 1, a second valve 2, a third valve 3, a fourth valve 4, a fifth valve 5 and a sixth valve 6, and also includes a first solenoid valve 11 and the second solenoid valve 12. The UF 6 gas uranium abundance measuring device shown in FIG. 1 also includes a pressure sensor P and a temperature sensor T. The pressure sensor P measures the pressure of the UF 6 gas, while the temperature sensor T measures the temperature of the UF 6 gas.

装置的“本底”是指进行射线测量时,除了所要测量的容器内UF6气体所产生的对感兴趣区间射线测量的贡献之外的其它因素所导致的对感兴趣区间射线测量的贡献。例如,“本底”包括由于铀在UF6气体铀丰度测量装置中的沉积所导致的其对射线测量的贡献。装置的本底对丰度测量结果有直接的影响。装置一旦确定后,其相应的刻度系数也就固定。实验发现,丰度值在一定时期后会偏离实际值,导致丰度值偏离实际值的主要原因是本底的变化,例如,由于铀在测量装置中的沉积累积引起的本底的变化。实际测量发现本底变化很大,随时间增长。因此,需对装置本底进行准确监测。The "background" of the device refers to the contribution to the ray measurement of the region of interest caused by factors other than the contribution to the ray measurement of the region of interest produced by the UF 6 gas in the container to be measured when the ray measurement is performed. For example, "background" includes the radiometric contribution of uranium due to its deposition in the UF 6 gas uranium abundance measurement device. The background of the device has a direct impact on the abundance measurements. Once the device is determined, its corresponding scale factor is also fixed. Experiments have found that the abundance value will deviate from the actual value after a certain period of time, and the main reason for the deviation of the abundance value from the actual value is the change of the background, for example, the change of the background caused by the deposition and accumulation of uranium in the measuring device. Actual measurements found that the background varied greatly and increased over time. Therefore, accurate monitoring of the device background is required.

当前采用的本底测量方法是将六氟化铀气体铀丰度测量装置与工艺管道断开,然后对六氟化铀气体铀丰度测量装置中的UF6进行冷凝、回收,将系统抽真空,然后对本底进行长时间测量得到射线测量的感兴趣区间本底计数率SB。这种方法操作繁杂、耗费时间长(每次测量至少3小时),需人为干预,测量误差大,与装置实际运行条件不符(装置是在有气体情况下运行测量,而该本底是在无气体时测量)。The current background measurement method is to disconnect the UF6 gas uranium abundance measurement device from the process pipeline, then condense and recycle the UF 6 in the UF6 gas uranium abundance measurement device, and then vacuumize the system , and then measure the background for a long time to obtain the background count rate S B of the interval of interest in the ray measurement. This method is complicated to operate, takes a long time (at least 3 hours for each measurement), requires human intervention, has large measurement errors, and does not conform to the actual operating conditions of the device (the device is measured in the presence of gas, and the background is in the absence of gas measurement).

发明内容Contents of the invention

本发明的目的是提供确定六氟化铀气体铀丰度测量装置本底的方法和设备,所述方法和设备在六氟化铀气体铀丰度测量装置保持正常工作的状态下即可方便快捷地准确测定该六氟化铀气体铀丰度测量装置的本底。The purpose of the present invention is to provide a method and equipment for determining the background of a UF6 gas uranium abundance measuring device, and the method and device can be convenient and quick when the UF6 gas uranium abundance measuring device maintains a normal working state The background of the UF6 gas uranium abundance measuring device can be accurately determined.

一方面,本发明实施方式提供了一种确定六氟化铀气体铀丰度测量装置本底的方法,其包括以下步骤:流动步骤,该步骤使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;封闭步骤,该步骤封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;测量步骤,该步骤在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算步骤,在重复执行所述流动步骤、所述封闭步骤和所述测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。In one aspect, an embodiment of the present invention provides a method for determining the background of a UF6 gas uranium abundance measuring device, which includes the following steps: a flow step, which allows the same UF6 gas to flow into or out of the The measuring container of the gas uranium abundance measuring device; the sealing step, the step is to close the measuring container, so that the UF6 gas in the measuring container stops flowing; the measuring step, the step is to seal the UF6 gas in the measuring container After the pressure of the uranium gas is stable, measure the total count rate value, gas pressure value and gas temperature value of the gamma ray interest interval of the uranium hexafluoride gas; and the calculation step, after repeatedly performing the flow step, the sealing step and In the case where the measuring step is n times to obtain the total count rate value of n gamma ray intervals of interest, n gas pressure values and n gas temperature values, the calculation step uses the measured n gamma ray interest The total count rate value of the interval, n gas pressure values and n gas temperature values are used to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measuring device, wherein, n is greater than or equal to 2 an integer of .

根据本发明的一方面,所述计算步骤利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:According to one aspect of the present invention, the calculation step uses the following formula to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device:

EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno

在该式中:En为第n次执行所述测量步骤时的所述六氟化铀气体中的铀丰度;Sn为第n次执行所述测量步骤时测量到的γ射线感兴趣区间总计数率值;SB n为第n次执行所述测量步骤时的γ射线感兴趣区间本底计数率值;Pn为第n次执行所述测量步骤时测量到的气体压力值;Tn为第n次执行所述测量步骤时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the uranium hexafluoride gas when the measurement step is performed for the nth time; S n is the gamma ray measured when the measurement step is performed for the nth time. The total count rate value of the interval; S B n is the background count rate value of the gamma ray interval of interest when the measurement step is performed for the nth time; P n is the gas pressure value measured when the measurement step is performed for the nth time; T n is the gas temperature value measured when the measuring step is performed for the nth time; and K is the calibration coefficient of the UF 6 gas uranium abundance measuring device.

根据本发明的一方面,所述计算步骤根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,由于所述六氟化铀气体为同种六氟化铀气体,因此n次执行所述测量步骤时的n个六氟化铀气体中的铀丰度值E1…En相等。According to one aspect of the present invention, the calculating step calculates the uranium hexafluoride gas according to the characteristic that the background count rate value of the gamma-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device remains unchanged for a certain period of time. The background count rate value of the gamma-ray interest interval of the uranium gas uranium abundance measurement device, wherein, since the UF6 gas is the same UF6 gas, n times when the measurement step is performed n times The uranium abundance values E 1 ... E n in UF6 gas are equal.

根据本发明的一方面,所述计算步骤根据下式计算在执行所述流动步骤、所述封闭步骤和所述测量步骤n次时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB nAccording to an aspect of the present invention, the calculation step calculates the background count rate value S B of the gamma-ray interval of interest that remains unchanged when the flow step, the sealing step and the measurement step are performed n times according to the following formula 1 ... S B n :

KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno ..

根据本发明的一方面, S B 1 = S B n = P 1 S n T n - P n S 1 T 1 P 1 T n - P n T 1 . According to one aspect of the present invention, S B 1 = S B no = P 1 S no T no - P no S 1 T 1 P 1 T no - P no T 1 .

根据本发明的一方面,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算步骤针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。According to one aspect of the present invention, under the condition that the temperature of the UF6 gas in the measurement container remains constant, the calculation step is based on the total count rate value of the n gamma ray intervals of interest and the n gas pressure values for fitting.

根据本发明的一方面,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。According to one aspect of the present invention, when the fitting is performed, the total count rate value of the γ-ray interval of interest when the gas pressure value is 0 is the value of the uranium abundance measuring device for UF6 gas. The background count rate value of the gamma-ray interval of interest.

另一方面,本发明实施方式提供了一种确定六氟化铀气体铀丰度测量装置本底的设备,其包括:流动模块,该模块使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;封闭模块,该模块封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;测量模块,该模块在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算模块,在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算模块利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。In another aspect, an embodiment of the present invention provides a device for determining the background of a UF6 gas uranium abundance measurement device, which includes: a flow module, which allows the same UF6 gas to flow into or out of the gas The measuring container of the uranium abundance measuring device; the sealing module, which closes the measuring container, so that the flow of UF6 gas in the measuring container is stopped; After the pressure of the uranium gas is stable, measure the total count rate value, gas pressure value and gas temperature value of the γ-ray interest interval of the UF6 gas; and a calculation module, in the flow module, the closed module and the measurement When the module repeats operations n times to obtain the total count rate value of n gamma-ray intervals of interest, n gas pressure values and n gas temperature values, the calculation module uses the measured n gamma-ray interest The total count rate value of the interval, n gas pressure values and n gas temperature values are used to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measuring device, wherein, n is greater than or equal to 2 an integer of .

根据本发明的另一方面,所述计算模块利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:According to another aspect of the present invention, the calculation module uses the following formula to calculate the background count rate value of the γ-ray interest interval of the uranium hexafluoride gas uranium abundance measurement device:

EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno

在该式中:En为所述测量模块进行第n次操作时的所述六氟化铀气体中的铀丰度;Sn为所述测量模块进行第n次操作时测量到的γ射线感兴趣区间总计数率值;SB n为所述测量模块进行第n次操作时的γ射线感兴趣区间本底计数率值;Pn为所述测量模块进行第n次操作时测量到的气体压力值;Tn为所述测量模块进行第n次操作时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the UF6 gas when the measurement module performs the nth operation; S n is the gamma ray measured when the measurement module performs the nth operation The total count rate value of the interval of interest; S B n is the background count rate value of the gamma ray interval of interest when the measurement module performs the nth operation; P n is measured when the measurement module performs the nth operation gas pressure value; T n is the gas temperature value measured when the measurement module performs the nth operation; and K is the scale factor of the UF 6 gas uranium abundance measuring device.

根据本发明的另一方面,所述计算模块根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,由于所述六氟化铀气体为同种六氟化铀气体,因此所述测量模块进行n次操作时的n个六氟化铀气体中的铀丰度值E1…En相等。According to another aspect of the present invention, the calculation module calculates the uranium hexafluoride gas uranium abundance measurement device according to the characteristic that the background count rate value of the gamma ray interval of interest remains unchanged for a certain period of time. The background count rate value of the gamma-ray interest interval of the uranium fluoride gas uranium abundance measuring device, wherein, since the uranium hexafluoride gas is the same kind of uranium hexafluoride gas, when the measurement module performs n operations The uranium abundance values E 1 ... E n in n UF6 gases are equal.

根据本发明的另一方面,所述计算模块根据下式计算在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB nAccording to another aspect of the present invention, the calculation module calculates the background count rate in the interval of interest of gamma rays that remains unchanged when the flow module, the closure module and the measurement module are repeatedly operated n times according to the following formula Values S B 1 ...S B n :

KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno ..

根据本发明的另一方面, S B 1 = S B n = P 1 S n T n - P n S 1 T 1 P 1 T n - P n T 1 . According to another aspect of the present invention, S B 1 = S B no = P 1 S no T no - P no S 1 T 1 P 1 T no - P no T 1 .

根据本发明的另一方面,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算模块针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。According to another aspect of the present invention, under the condition that the temperature of the UF6 gas in the measurement container remains constant, the calculation module calculates the total count rate value of the n gamma-ray intervals of interest and the The above n gas pressure values are used for fitting.

根据本发明的另一方面,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。According to another aspect of the present invention, in the case of performing the fitting, the total count rate value of the γ-ray interval of interest when the gas pressure value is 0 is the uranium abundance measuring device for the UF6 gas The background count rate value of the γ-ray interval of interest.

根据本发明的确定六氟化铀气体铀丰度测量装置本底的方法和设备不用将六氟化铀气体铀丰度测量装置与工艺管道断开即可快捷准确测地定该六氟化铀气体铀丰度测量装置的本底。这种方法操作简便,耗费时间短,不需人为干预,测量误差小,与六氟化铀气体铀丰度测量装置实际运行条件相符。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数,也可求出γ射线感兴趣区间本底计数率值。According to the method and equipment for determining the background of the UF6 gas uranium abundance measuring device of the present invention, the UF6 gas can be quickly and accurately measured without disconnecting the UF6 gas uranium abundance measuring device from the process pipeline Background of gas uranium abundance measurement device. The method is simple to operate, takes short time, does not require human intervention, has small measurement errors, and is consistent with the actual operating conditions of the uranium abundance measuring device for uranium hexafluoride gas. Moreover, it is not necessary to know the calibration coefficient of the UF 6 gas uranium abundance measuring device, and the value of the background count rate in the interval of interest of the gamma ray can also be obtained.

附图说明Description of drawings

为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some implementations of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.

图1示出了一种相关技术的UF6气体铀丰度测量装置。Fig. 1 shows a related art UF 6 gas uranium abundance measuring device.

图2示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法。Fig. 2 shows a method for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention.

图3示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法测量到的UF6气体的γ射线感兴趣区间总计数率值和压力值曲线图。Fig. 3 shows a curve diagram of the total count rate and pressure value of the γ-ray interest interval of UF 6 gas measured according to the method for determining the background of the UF 6 gas uranium abundance measuring device of the present invention.

图4示出了根据本发明的确定UF6气体铀丰度测量装置本底的设备。Fig. 4 shows a device for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention.

具体实施方式Detailed ways

下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the implementation manners in the present invention, all other implementation manners obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present invention.

图2示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法200。FIG. 2 shows a method 200 for determining the background of a UF 6 gas uranium abundance measurement device according to the present invention.

图2所示的确定UF6气体铀丰度测量装置本底的方法200包括以下步骤:流动步骤S201,该步骤使同一种UF6气体流入或流出气体铀丰度测量装置的测量容器;封闭步骤S202,该步骤封闭测量容器,使测量容器内的UF6气体停止流动;测量步骤S203,该步骤在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算步骤S204,在重复执行流动步骤、封闭步骤和测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。The method 200 for determining the background of the UF6 gas uranium abundance measuring device shown in Figure 2 comprises the following steps: a flow step S201, which makes the same UF6 gas flow into or out of the measuring container of the gas uranium abundance measuring device; the sealing step S202, this step seals the measurement container, so that the UF gas in the measurement container stops flowing; measurement step S203, after the pressure of the UF gas in the measurement container is stable, measure the total count of the γ - ray interest interval of the UF gas rate value, gas pressure value and gas temperature value; and calculation step S204, in repeating flow step, sealing step and measurement step n times to obtain n gamma ray interest interval total count rate value, n gas pressure values and n In the case of several gas temperature values, the calculation step uses the measured total count rate values of n gamma ray intervals of interest, n gas pressure values and n gas temperature values to calculate the gamma of the UF 6 gas uranium abundance measuring device The value of the background count rate in the interval of interest of the ray, where n is an integer greater than or equal to 2.

在图2所示的确定UF6气体铀丰度测量装置本底的方法200中,计算步骤S204利用式(1)来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:In the method 200 for determining the background of the UF 6 gas uranium abundance measuring device shown in FIG. 2 , the calculation step S204 uses formula (1) to calculate the background count rate of the γ-ray interest interval of the UF 6 gas uranium abundance measuring device value:

EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno -- -- -- (( 11 ))

在式(1)中:En为第n次执行测量步骤S203时的UF6气体中的铀丰度;Sn为第n次执行测量步骤S203时测量到的γ射线感兴趣区间总计数率值;SB n为第n次执行测量步骤S203时的γ射线感兴趣区间本底计数率值;Pn为第n次执行测量步骤S203时测量到的气体压力值;Tn为第n次执行测量步骤S203时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In formula (1): E n is the uranium abundance in UF 6 gas when the measurement step S203 is performed for the nth time; S n is the total count rate of the γ-ray interest interval measured when the measurement step S203 is performed for the nth time Value; S B n is the background count rate value of the γ-ray interval of interest when the nth execution of the measurement step S203; P n is the gas pressure value measured when the nth execution of the measurement step S203; T n is the nth time The gas temperature value measured when performing the measuring step S203; and K is the calibration factor of the UF 6 gas uranium abundance measuring device.

要注意的是,En和SB n都不是在执行测量步骤S203时测量到的物理量,而是在执行测量步骤S203时已经存在的物理量。另外,根据本发明,不需要实际求出UF6气体中的铀丰度En,而且不需要知道UF6气体铀丰度测量装置的刻度系数K,即可根据Sn、Pn和Tn来求出SB nIt should be noted that both E n and S B n are not physical quantities measured when the measuring step S203 is performed, but existing physical quantities when the measuring step S203 is performed. In addition, according to the present invention, there is no need to actually find out the uranium abundance E n in UF 6 gas, and it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the to find S B n .

根据实际经验可知,UF6气体铀丰度测量装置的本底在相当长的之间内可以被看做是恒定的。例如,实际运行的UF6气体铀丰度测量装置的本底变化可以被认为在几天内不会对丰度的测量产生影响。因此,计算步骤S204根据UF6气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段(例如,3天)保持不变的特性来计算所述UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。尤其是,由于被测量的UF6气体为同种UF6气体,因此n次执行测量步骤S203时的n个UF6气体中的铀丰度值E1…En相等。According to practical experience, the background of the UF 6 gas uranium abundance measurement device can be regarded as constant within a relatively long period of time. For example, the background change of the UF 6 gas uranium abundance measurement device in actual operation can be considered to have no influence on the abundance measurement within a few days. Therefore, the calculation step S204 calculates the UF 6 gas uranium abundance measuring device according to the characteristic that the background count rate value of the gamma ray interest interval of the UF 6 gas uranium abundance measuring device remains unchanged for a certain period of time (for example, 3 days). The background count rate value of the γ-ray interval of interest. In particular, since the UF 6 gas to be measured is the same UF 6 gas, the uranium abundance values E 1 ... E n in the n UF 6 gases are equal when the measurement step S203 is performed n times.

即,计算步骤S204根据式(2)计算在执行流动步骤、所述封闭步骤和所述测量步骤n次时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB nThat is, the calculation step S204 calculates the background count rate values S B 1 ... S B n of the gamma-ray interval of interest that remain unchanged when the flowing step, the sealing step and the measuring step are performed n times according to formula (2):

KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno -- -- -- (( 22 ))

在式(2)中,全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n相等。In formula (2) , the background count rate values S B 1 .

即,根据式(2)可得到如下式(3):That is, according to formula (2), the following formula (3) can be obtained:

SS BB 11 == SS BB nno == PP 11 SS nno TT nno -- PP nno SS 11 TT 11 PP 11 TT nno -- PP nno TT 11 -- -- -- (( 33 ))

由此可见,根据式(3),可以求得全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数K,也可求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB nIt can be seen that, according to the formula (3), the background count rate values S B 1 ..., S B n of the gamma-ray interval of interest during all n measurements can be obtained. Moreover, it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the background count rate values S B 1 ..., S B n of the γ-ray interest interval during all n measurements can also be obtained.

由于UF6气体铀丰度测量装置的刻度系数K、n次执行测量步骤S203测量到的γ射线感兴趣区间总计数率值S1…Sn、气体压力P1…Pn和气体温度T1…Tn已知,因此可以求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB n。另外,从式(2)可知即使不知道UF6气体铀丰度测量装置的刻度系数K,也可以求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB nDue to the scale factor K of the UF 6 gas uranium abundance measuring device, the total count rate value S 1 ... S n of the γ-ray interval of interest measured by performing the measurement step S203 n times, the gas pressure P 1 ... P n and the gas temperature T 1 ...T n is known, so the background count rate values S B 1 ...S B n of the γ-ray interval of interest during all n measurements can be obtained. In addition, it can be seen from formula (2) that even if the calibration coefficient K of the UF 6 gas uranium abundance measuring device is not known, the background count rate value S B 1 ... S B of the γ-ray interest interval during all n measurements can be obtained n .

作为示例,可以针对图1中所示的UF6气体铀丰度测量装置执行根据本发明的确定UF6气体铀丰度测量装置本底的方法。在确定本底时,图1中所示的UF6气体铀丰度测量装置的全部阀门中除第二手动阀门2、第三手动阀门3、第五手动阀门5和第六手动阀门6关闭外,其余的第一手动阀门1、第四手动阀门4、第一电磁阀11和第二电磁阀12均为开启状态。在本发明的确定UF6气体铀丰度测量装置本底的方法开始时,UF6气体以自流形式流入测量容器,然后自动关闭第一电磁阀11和第二电磁阀12。待气体压力平稳后,自动对装置中的UF6气体进行测量。此时,测量容器中的UF6气体中的铀丰度由下式决定。一次流动步骤S201、封闭步骤S202、测量步骤S203和计算步骤S204完毕后,自动开启第二电磁阀12或第一电磁阀11,从而让系统中的UF6气体流出一部份或者进入一部分后关闭。然后再进行测量,如此循环。这样就改变了每次所测量的UF6气体的量,而UF6气体中的铀丰度不变。这样,就可以根据以上式(1)和(2)计算γ射线感兴趣区间本底计数率值。As an example, the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention can be implemented for the UF 6 gas uranium abundance measuring device shown in FIG. 1 . When determining the background, all valves of the UF 6 gas uranium abundance measuring device shown in Fig. 1 except the second manual valve 2, the third manual valve 3, the fifth manual valve 5 and the sixth manual valve 6 are closed Besides, the rest of the first manual valve 1 , the fourth manual valve 4 , the first solenoid valve 11 and the second solenoid valve 12 are all open. At the beginning of the method for determining the background of the UF 6 gas uranium abundance measuring device of the present invention, UF 6 gas flows into the measurement container in a self-flowing form, and then automatically closes the first electromagnetic valve 11 and the second electromagnetic valve 12 . After the gas pressure is stable, the UF 6 gas in the device is automatically measured. At this time, the uranium abundance in the UF 6 gas in the measurement container is determined by the following equation. After the primary flow step S201, the closing step S202, the measuring step S203 and the calculating step S204 are completed, the second solenoid valve 12 or the first solenoid valve 11 is automatically opened, so that a part of the UF 6 gas in the system flows out or enters a part and then closes . Then measure again, and so on. This changes the amount of UF 6 gas measured each time, while the uranium abundance in the UF 6 gas does not change. In this way, the background count rate value of the γ-ray interval of interest can be calculated according to the above formulas (1) and (2).

在另一示例中,除了利用以上式(1)和(2)计算γ射线感兴趣区间本底计数率值之外,本发明的UF6气体铀丰度测量装置本底的方法还可以在将测量容器内的UF6气体的温度保持为不变的情况下,通过针对n个γ射线感兴趣区间总计数率值和n个气体压力值进行拟合来求出γ射线感兴趣区间本底计数率值。具体而言,当气体压力值为0时的γ射线感兴趣区间总计数率值是所述UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。In another example, in addition to using the above formulas (1) and (2) to calculate the background count rate value of the γ-ray interest interval, the method for the background of the UF 6 gas uranium abundance measuring device of the present invention can also be used in the When the temperature of the UF 6 gas in the measurement container remains constant, the background count of the gamma-ray interval of interest is calculated by fitting the total count rate value of n gamma-ray intervals of interest and n gas pressure values rate value. Specifically, when the gas pressure value is 0, the total count rate value of the γ-ray interest interval is the background count rate value of the γ-ray interest interval of the UF 6 gas uranium abundance measuring device.

图3示出了根据本发明的确定UF6气体铀丰度测量装置本底的方法测量到的UF6气体的γ射线感兴趣区间总计数率值和压力值曲线图。Fig. 3 shows a curve diagram of the total count rate and pressure value of the γ-ray interest interval of UF 6 gas measured according to the method for determining the background of the UF 6 gas uranium abundance measuring device of the present invention.

在图3中,横坐标为UF6气体铀丰度测量装置的测量容器内的气体压力值,纵坐标为UF6气体的γ射线感兴趣区间总计数率值。如图3所示,纵坐标为UF6气体的γ射线感兴趣区间总计数率值和气体压力值呈线性关系。因此,通过对γ射线感兴趣区间总计数率值和气体压力值进行拟合,当气体压力为0时的截距即为感兴趣区间的γ射线本底计数率。即,该值表示在没有UF6气体的情况下的UF6气体铀丰度测量装置的测量容器内γ射线计数率。In Fig. 3, the abscissa is the gas pressure value in the measuring container of the UF 6 gas uranium abundance measuring device, and the ordinate is the total count rate value of the γ-ray interest interval of the UF 6 gas. As shown in Fig. 3, the y-coordinate is the total count rate value of the gamma-ray interest interval of UF 6 gas and the gas pressure value has a linear relationship. Therefore, by fitting the total count rate value and the gas pressure value of the γ-ray interval of interest, the intercept when the gas pressure is 0 is the background count rate of the γ-ray interval of interest. That is, this value represents the gamma ray count rate in the measurement container of the UF 6 gas uranium abundance measuring device in the absence of UF 6 gas.

作为另一示例,将确定UF6气体铀丰度测量装置本底的方法应用于图1所示的UF6气体铀丰度测量装置的基本过程如下:As another example, the basic process of applying the method for determining the background of the UF6 gas uranium abundance measuring device to the UF6 gas uranium abundance measuring device shown in Figure 1 is as follows:

1)首先关闭第二电磁阀12,让测量容器内UF6气体的压力升高,再关闭第一电磁阀11,测量γ射线感兴趣区间计数率S1和容器内压力P11) First close the second solenoid valve 12 to increase the pressure of UF 6 gas in the measurement container, then close the first solenoid valve 11 to measure the count rate S 1 of the gamma-ray interesting interval and the pressure P 1 in the container;

2)然后,打开第二电磁阀12放气,使测量容器内的气压稍降低一些,关闭第二电磁阀12,测量γ射线感兴趣区间计数率S2和容器内压力P22) Then, open the second electromagnetic valve 12 to deflate, so that the air pressure in the measurement container is slightly lowered, close the second electromagnetic valve 12, and measure the count rate S 2 of the gamma ray interval of interest and the pressure P 2 in the container;

3)然这样进行多次(如n次)循环反复,直至容器内压力降到较低,从而可获得一系列Sn和Pn3) Repeat this for many times (such as n times) until the pressure in the container drops to a low level, so that a series of S n and P n can be obtained;

4)在n次测量之后对Sn和Pn进行拟合,可获得n个γ射线感兴趣区间计数率S1…Sn与气体压力P1…Pn的拟合曲线(见图3);4) Fitting S n and P n after n measurements can obtain the fitting curves of counting rate S 1 ... S n and gas pressure P 1 ... P n in n gamma-ray intervals of interest (see Figure 3) ;

5)确定在截距对应为P=0时的γ射线感兴趣区间计数率,即本底SB5) Determine the count rate of the γ-ray interval of interest when the intercept corresponds to P=0, that is, the background S B .

应该注意,以上仅描述了通过多次放气(UF6气体流出)操作来测量不同的γ射线感兴趣区间计数率S和容器内压力P的情况,但本发明不限于此。根据说明书,本领域技术人员可以通过使UF6气体流入或流出测量容器来进行测量以确定UF6气体铀丰度测量装置的本底。It should be noted that the above only describes the case of measuring different gamma ray intervals of interest count rate S and container internal pressure P through multiple deflation (UF 6 gas outflow) operations, but the present invention is not limited thereto. According to the specification, those skilled in the art can measure by making UF 6 gas flow into or out of the measuring container to determine the background of the UF 6 gas uranium abundance measuring device.

另外,根据本发明的确定UF6气体铀丰度测量装置本底的方法不限于确定图1所示的UF6气体铀丰度测量装置的本底,而是可用于确定各种UF6气体铀丰度测量装置的本底。In addition, the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention is not limited to determining the background of the UF 6 gas uranium abundance measuring device shown in Figure 1, but can be used to determine various UF 6 gas uranium The background of the abundance measurement device.

图4示出了根据本发明的确定UF6气体铀丰度测量装置本底的设备400。FIG. 4 shows a device 400 for determining the background of a UF 6 gas uranium abundance measurement device according to the present invention.

图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400包括:流动模块401,该模块使同一种UF6气体流入或流出气体铀丰度测量装置的测量容器;封闭模块402,该模块封闭测量容器,使测量容器内的UF6气体停止流动;测量模块403,该模块在测量容器内的UF6气体的压力平稳后,测量UF6气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及计算模块404,在流动模块、封闭模块和测量模块重复进行n次操作以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,计算模块利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,其中,n为大于等于2的整数。The device 400 for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention shown in FIG. 4 includes: a flow module 401, which allows the same UF 6 gas to flow into or out of the measuring container of the gas uranium abundance measuring device; Closing module 402, this module closes the measurement container, so that the UF 6 gas in the measurement container stops flowing; measurement module 403, this module measures the γ-ray interest interval of UF 6 gas after the pressure of the UF 6 gas in the measurement container is stable The total count rate value, the gas pressure value and the gas temperature value; and the calculation module 404, which repeats n times of operations in the flow module, the closed module and the measurement module to obtain the total count rate value of n gamma ray intervals of interest, n gas pressure values In the case of n values and n gas temperature values, the calculation module uses the measured total count rate values of n gamma ray intervals of interest, n gas pressure values and n gas temperature values to calculate the UF 6 gas uranium abundance measurement The background count rate value of the γ-ray interest interval of the device, wherein, n is an integer greater than or equal to 2.

在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404利用式(2)来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:In the device 400 for determining the background of the UF 6 gas uranium abundance measurement device according to the present invention shown in FIG. 4 , the calculation module 404 uses formula (2) to calculate the γ-ray interest interval of the UF 6 gas uranium abundance measurement device Background count rate value:

EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno -- -- -- (( 11 ))

在式(1)中:En为测量模块进行第n次操作时的UF6气体中的铀丰度;Sn为测量模块进行第n次操作时测量到的γ射线感兴趣区间总计数率值;SB n为测量模块进行第n次操作时的γ射线感兴趣区间本底计数率值;Pn为测量模块进行第n次操作时测量到的气体压力值;Tn为测量模块进行第n次操作时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In formula (1): E n is the uranium abundance in UF 6 gas when the measurement module performs the nth operation; S n is the total count rate of the γ-ray interest interval measured by the measurement module when the nth operation is performed S B n is the background count rate value of the gamma ray interval of interest when the measurement module performs the nth operation; P n is the gas pressure value measured when the measurement module performs the nth operation; T n is the measurement module. The gas temperature value measured during the nth operation; and K is the calibration coefficient of the UF 6 gas uranium abundance measuring device.

要注意的是,En和SB n都不是测量模块403测量到的物理量,而是测量模块403在测量Sn、Pn和Tn时已经存在的物理量。另外,根据本发明,不需要实际求出UF6气体中的铀丰度En,而且不需要知道UF6气体铀丰度测量装置的刻度系数K,即可根据Sn、Pn和Tn来求出SB nIt should be noted that neither E n nor S B n is a physical quantity measured by the measurement module 403 , but a physical quantity that already exists when the measurement module 403 measures S n , P n and T n . In addition, according to the present invention, there is no need to actually find out the uranium abundance E n in UF 6 gas, and it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the to find S B n .

在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404根据UF6气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。尤其是,由于UF6气体为同种UF6气体,因此测量模块403进行n次测量时的n个UF6气体中的铀丰度值E1…En相等。In the device 400 for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention shown in FIG. To calculate the background count rate value of the γ-ray interest interval of the UF 6 gas uranium abundance measurement device by keeping the characteristics of the time period constant. In particular, since the UF 6 gas is the same UF 6 gas, the uranium abundance values E 1 . . . E n in the n UF 6 gases are equal when the measurement module 403 performs n measurements.

要注意的是,En和SB n都不是处理模块403测量到的物理量,而是在处理模块403进行测量时已经存在的物理量。另外,根据本发明,并不需要实际求出UF6气体中的铀丰度En,即可根据Sn、Pn和Tn来求出SB nIt should be noted that neither E n nor S B n is a physical quantity measured by the processing module 403 , but a physical quantity that already exists when the processing module 403 performs the measurement. In addition, according to the present invention, S B n can be calculated from S n , P n and T n without actually calculating the uranium abundance E n in UF 6 gas.

在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,计算模块404根据式(2)计算在流动模块、封闭模块和测量模块重复进行n次操作时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB nIn the device 400 for determining the background of the UF 6 gas uranium abundance measuring device shown in FIG. The background count rate values S B 1 ... S B n of the γ-ray interval of interest that remain unchanged:

KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno -- -- -- (( 22 ))

在式(2)中,全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…SB n相等。In the formula (2), the background count rate values S B 1 ... S B n of the gamma-ray interval of interest during all n measurements are equal.

即,根据式(2)可得到如下式(3):That is, according to formula (2), the following formula (3) can be obtained:

SS BB 11 == SS BB nno == PP 11 SS nno TT nno -- PP nno SS 11 TT 11 PP 11 TT nno -- PP nno TT 11 -- -- -- (( 33 ))

由此可见,根据式(3),可以求得全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB n。而且,可以不需要知道UF6气体铀丰度测量装置的刻度系数K,也可求出全部n次测量时的γ射线感兴趣区间本底计数率值SB 1…,SB nIt can be seen that, according to the formula (3), the background count rate values S B 1 ..., S B n of the gamma-ray interval of interest during all n measurements can be obtained. Moreover, it is not necessary to know the calibration coefficient K of the UF 6 gas uranium abundance measuring device, and the background count rate values S B 1 ..., S B n of the γ-ray interest interval during all n measurements can also be obtained.

在图4所示的根据本发明的确定UF6气体铀丰度测量装置本底的设备400中,在测量容器内的UF6气体的温度保持为不变的情况下,计算模块404针对n个γ射线感兴趣区间总计数率值和n个气体压力值来进行拟合。尤其是,在进行拟合的情况下,当气体压力值为0时的γ射线感兴趣区间总计数率值是UF6气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。In the device 400 for determining the background of the UF 6 gas uranium abundance measuring device shown in FIG. The total count rate value of the γ-ray interval of interest and n gas pressure values are used for fitting. In particular, in the case of fitting, the total count rate value of the γ-ray interval of interest when the gas pressure value is 0 is the background count rate value of the γ-ray interval of interest of the UF 6 gas uranium abundance measurement device.

根据本发明的确定UF6气体铀丰度测量装置本底的设备不限于确定图1所示的UF6气体铀丰度测量装置的本底,而是可用于确定各种UF6气体铀丰度测量装置的本底。The device for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention is not limited to determining the background of the UF 6 gas uranium abundance measuring device shown in Figure 1, but can be used to determine various UF 6 gas uranium abundances The background of the measuring device.

本发明还提供一种存储有用于执行根据本发明的确定UF6气体铀丰度测量装置本底的方法200的指令的计算机可读存储介质。The present invention also provides a computer-readable storage medium storing instructions for executing the method 200 for determining the background of a UF 6 gas uranium abundance measuring device according to the present invention.

通过根据本发明的确定UF6气体铀丰度测量装置本底的方法,可进行多次测量来减少测量结果的统计误差,不需人工操作,方便快捷,测量误差小。经测试,结果显示该方法测量的本底精度在1%左右,其对丰度结果的影响相对误差不高于0.3%。Through the method for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention, multiple measurements can be performed to reduce the statistical error of the measurement result, no manual operation is required, the method is convenient and fast, and the measurement error is small. After testing, the results show that the background accuracy of this method is about 1%, and the relative error of its influence on the abundance results is not higher than 0.3%.

而且,根据本发明的确定UF6气体铀丰度测量装置本底的方法和设备不用将UF6气体铀丰度测量装置与工艺管道断开即可快捷准确测地定该UF6气体铀丰度测量装置的本底。这种方法操作简便,耗费时间短,不需人为干预,测量误差小,与六氟化铀气体铀丰度测量装置实际运行条件相符。Moreover, the method and equipment for determining the background of the UF 6 gas uranium abundance measuring device according to the present invention can quickly and accurately determine the UF 6 gas uranium abundance without disconnecting the UF 6 gas uranium abundance measuring device from the process pipeline The background of the measuring device. The method is simple to operate, takes short time, does not require human intervention, has small measurement errors, and is consistent with the actual operating conditions of the uranium abundance measuring device for uranium hexafluoride gas.

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.

Claims (14)

1.一种确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于包括以下步骤:1. A method for determining the background of a uranium hexafluoride gas uranium abundance measuring device, characterized in that it comprises the following steps: 流动步骤,该步骤使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;a flowing step of causing the same UF6 gas to flow into or out of the measuring vessel of the device for measuring the uranium abundance of said gas; 封闭步骤,该步骤封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;a sealing step, which is to seal the measuring container, so that the flow of UF6 gas in the measuring container is stopped; 测量步骤,该步骤在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及A measuring step, which measures the total count rate value, gas pressure value and gas temperature value of the gamma ray interest interval of the UF6 gas after the pressure of the UF6 gas in the measuring container is stable; and 计算步骤,在重复执行所述流动步骤、所述封闭步骤和所述测量步骤n次以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算步骤利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,Calculation step, in the case of repeating the flow step, the sealing step and the measurement step n times to obtain n gamma ray interest interval total count rate values, n gas pressure values and n gas temperature values , the calculating step calculates the gamma ray of the uranium hexafluoride gas uranium abundance measuring device by using the measured total count rate value of n gamma ray intervals of interest, n gas pressure values and n gas temperature values The background count rate value in the interval of interest, 其中,n为大于等于2的整数。Wherein, n is an integer greater than or equal to 2. 2.根据权利要求1所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,所述计算步骤利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:2. The method for determining the background of the UF6 gas uranium abundance measuring device according to claim 1, wherein the calculation step uses the following formula to calculate the UF6 gas uranium abundance measuring device The background count rate value of the gamma-ray interval of interest: EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno 在该式中:En为第n次执行所述测量步骤时的所述六氟化铀气体中的铀丰度;Sn为第n次执行所述测量步骤时测量到的γ射线感兴趣区间总计数率值;SB n为第n次执行所述测量步骤时的γ射线感兴趣区间本底计数率值;Pn为第n次执行所述测量步骤时测量到的气体压力值;Tn为第n次执行所述测量步骤时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the uranium hexafluoride gas when the measurement step is performed for the nth time; S n is the gamma ray measured when the measurement step is performed for the nth time. The total count rate value of the interval; S B n is the background count rate value of the gamma ray interval of interest when the measurement step is performed for the nth time; P n is the gas pressure value measured when the measurement step is performed for the nth time; T n is the gas temperature value measured when the measuring step is performed for the nth time; and K is the calibration coefficient of the UF 6 gas uranium abundance measuring device. 3.根据权利要求2所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,所述计算步骤根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,3. The method for determining the background of the UF6 gas uranium abundance measuring device according to claim 2, wherein the calculation step is based on the gamma-ray interest of the UF6 gas uranium abundance measuring device The interval background count rate value remains unchanged for a certain period of time to calculate the gamma ray interest interval background count rate value of the uranium hexafluoride gas uranium abundance measuring device, 其中,由于所述六氟化铀气体为同种六氟化铀气体,因此n次执行所述测量步骤时的n个六氟化铀气体中的铀丰度值E1…En相等。Wherein, since the UF6 gas is the same UF6 gas, the uranium abundance values E 1 ... E n in the n UF6 gases are equal when the measuring step is performed n times. 4.根据权利要求3所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,所述计算步骤根据下式计算在执行所述流动步骤、所述封闭步骤和所述测量步骤n次时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n4. The method for determining the background of a UF6 gas uranium abundance measuring device according to claim 3, wherein the calculation step is calculated according to the following formula when performing the flow step, the sealing step and the The background count rate value S B 1 ... S B n of the γ-ray interval of interest that remains unchanged when the above measurement steps are n times: KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno .. 5.根据权利要求4所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,5. The method for determining the background of the uranium hexafluoride gas uranium abundance measuring device according to claim 4, characterized in that, SS BB 11 == SS BB nno == PP 11 SS nno TT nno -- PP nno SS 11 TT 11 PP 11 TT nno -- PP nno TT 11 .. 6.根据权利要求1所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算步骤针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。6. The method for determining the background of the UF6 gas uranium abundance measuring device according to claim 1, characterized in that, when the temperature of the UF6 gas in the measuring container remains constant , the calculating step performs fitting on the total count rate values of the n γ-ray intervals of interest and the n gas pressure values. 7.根据权利要求6所述的确定六氟化铀气体铀丰度测量装置本底的方法,其特征在于,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。7. The method for determining the background of a UF6 gas uranium abundance measuring device according to claim 6, characterized in that, in the case of performing the fitting, when the gas pressure value is 0, the γ The total count rate value of the ray interest interval is the background count rate value of the gamma ray interest interval of the uranium hexafluoride gas uranium abundance measuring device. 8.一种确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于包括:8. A device for determining the background of a uranium abundance measuring device for UF6 gas, characterized by comprising: 流动模块,该模块使同一种六氟化铀气体流入或流出所述气体铀丰度测量装置的测量容器;a flow module that causes the same UF6 gas to flow into or out of the measuring vessel of the device for measuring the uranium abundance of said gas; 封闭模块,该模块封闭所述测量容器,使所述测量容器内的六氟化铀气体停止流动;a closing module, which closes the measuring container and stops the flow of UF6 gas in the measuring container; 测量模块,该模块在所述测量容器内的六氟化铀气体的压力平稳后,测量六氟化铀气体的γ射线感兴趣区间总计数率值、气体压力值和气体温度值;以及a measurement module, which measures the total count rate value, gas pressure value and gas temperature value of the γ-ray interest interval of the UF6 gas after the pressure of the UF6 gas in the measurement container is stable; and 计算模块,在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作以得到n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值的情况下,所述计算模块利用所测量到的n个γ射线感兴趣区间总计数率值、n个气体压力值和n个气体温度值来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,A calculation module, repeating n times of operations in the flow module, the closure module and the measurement module to obtain n gamma ray interest interval total count rate values, n gas pressure values and n gas temperature values Next, the calculation module calculates the γ value of the uranium hexafluoride gas uranium abundance measuring device by using the measured total count rate values of n gamma ray intervals of interest, n gas pressure values and n gas temperature values The background count rate value in the interval of interest of the ray, 其中,n为大于等于2的整数。Wherein, n is an integer greater than or equal to 2. 9.根据权利要求8所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,所述计算模块利用下式来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值:9. The device for determining the background of the UF6 gas uranium abundance measuring device according to claim 8, wherein the calculation module uses the following formula to calculate the UF6 gas uranium abundance measuring device The background count rate value of the gamma-ray interval of interest: EE. nno == KK (( SS nno -- SS BB nno )) TT nno PP nno 在该式中:En为所述测量模块进行第n次操作时的所述六氟化铀气体中的铀丰度;Sn为所述测量模块进行第n次操作时测量到的γ射线感兴趣区间总计数率值;SB n为所述测量模块进行第n次操作时的γ射线感兴趣区间本底计数率值;Pn为所述测量模块进行第n次操作时测量到的气体压力值;Tn为所述测量模块进行第n次操作时测量到的气体温度值;并且K为UF6气体铀丰度测量装置的刻度系数。In this formula: E n is the uranium abundance in the UF6 gas when the measurement module performs the nth operation; S n is the gamma ray measured when the measurement module performs the nth operation The total count rate value of the interval of interest; S B n is the background count rate value of the gamma ray interval of interest when the measurement module performs the nth operation; P n is measured when the measurement module performs the nth operation gas pressure value; T n is the gas temperature value measured when the measurement module performs the nth operation; and K is the scale factor of the UF 6 gas uranium abundance measuring device. 10.根据权利要求9所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,所述计算模块根据所述六氟化铀气体铀丰度测量装置γ射线感兴趣区间本底计数率值在一定时间段保持不变的特性来计算所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值,10. The device for determining the background background of the UF6 gas uranium abundance measuring device according to claim 9, characterized in that, the calculation module is interested in gamma rays according to the uranium hexafluoride gas uranium abundance measuring device The interval background count rate value remains unchanged for a certain period of time to calculate the gamma ray interest interval background count rate value of the uranium hexafluoride gas uranium abundance measuring device, 其中,由于所述六氟化铀气体为同种六氟化铀气体,因此所述测量模块进行n次操作时的n个六氟化铀气体中的铀丰度值E1…En相等。Wherein, since the UF6 gas is the same UF6 gas, the uranium abundance values E 1 ... E n in the n UF6 gases are equal when the measurement module performs n operations. 11.根据权利要求10所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,所述计算模块根据下式计算在所述流动模块、所述封闭模块和所述测量模块重复进行n次操作时保持不变的γ射线感兴趣区间本底计数率值SB 1…SB n11. The device for determining the background of a UF6 gas uranium abundance measuring device according to claim 10, wherein the calculation module is calculated according to the following formula in the flow module, the closed module and the The background count rate value S B 1 ... S B n of the γ-ray interval of interest that remains unchanged when the measurement module repeats n operations: KK (( SS 11 -- SS BB 11 )) TT 11 PP 11 == .. .. .. == KK (( SS nno -- SS BB nno )) TT nno PP nno .. 12.根据权利要求11所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,12. The device for determining the background of the UF6 gas uranium abundance measuring device according to claim 11, characterized in that, SS BB 11 == SS BB nno == PP 11 SS nno TT nno -- PP nno SS 11 TT 11 PP 11 TT nno -- PP nno TT 11 .. 13.根据权利要求8所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,在所述测量容器内的六氟化铀气体的温度保持为不变的情况下,所述计算模块针对所述n个γ射线感兴趣区间总计数率值和所述n个气体压力值来进行拟合。13. The device for determining the background of the UF6 gas uranium abundance measuring device according to claim 8, characterized in that, when the temperature of the UF6 gas in the measuring container is kept constant , the calculation module performs fitting for the total count rate values of the n γ-ray intervals of interest and the n gas pressure values. 14.根据权利要求13所述的确定六氟化铀气体铀丰度测量装置本底的设备,其特征在于,在进行所述拟合的情况下,当所述气体压力值为0时的γ射线感兴趣区间总计数率值是所述六氟化铀气体铀丰度测量装置的γ射线感兴趣区间本底计数率值。14. The device for determining the background of the UF6 gas uranium abundance measuring device according to claim 13, characterized in that, in the case of performing the fitting, when the gas pressure value is 0, the γ The total count rate value of the ray interest interval is the background count rate value of the gamma ray interest interval of the uranium hexafluoride gas uranium abundance measuring device.
CN201310700404.7A 2013-12-18 2013-12-18 Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas Active CN103728648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310700404.7A CN103728648B (en) 2013-12-18 2013-12-18 Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310700404.7A CN103728648B (en) 2013-12-18 2013-12-18 Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas

Publications (2)

Publication Number Publication Date
CN103728648A true CN103728648A (en) 2014-04-16
CN103728648B CN103728648B (en) 2015-12-09

Family

ID=50452801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310700404.7A Active CN103728648B (en) 2013-12-18 2013-12-18 Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas

Country Status (1)

Country Link
CN (1) CN103728648B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807145A (en) * 2016-09-09 2018-03-16 中核兰州铀浓缩有限公司 It is a kind of to detect UF without heat source type6The sensor of dielectric gas flow direction
CN109100001A (en) * 2018-08-22 2018-12-28 中国原子能科学研究院 A kind of UF6The verification measurement method of uranium quality in big tank
CN110308474A (en) * 2019-07-02 2019-10-08 中国原子能科学研究院 A small monitoring device for online measurement of gas uranium abundance
US11131628B1 (en) 2020-05-12 2021-09-28 Savannah River Nuclear Solutions, Llc Spectroscopic methods and systems for isotopic analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090647A (en) * 1993-02-05 1994-08-10 河南菲尼科技实业公司 Overcome the method for nuclear fuel uranium dioxide age to the influence of its uranium-235 abundance On line inspection
CN1295256A (en) * 1999-08-18 2001-05-16 上海伽玛射线技术有限公司 Specific radioactivity measuring method and equipment
RU2330308C1 (en) * 2006-11-03 2008-07-27 Федеральное государственное унитарное предприятие "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" Method of control of mass fraction of uranium-235 isotope in gaseous phase of uranium hexafluoride and system of measurement for implementation of this method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090647A (en) * 1993-02-05 1994-08-10 河南菲尼科技实业公司 Overcome the method for nuclear fuel uranium dioxide age to the influence of its uranium-235 abundance On line inspection
CN1295256A (en) * 1999-08-18 2001-05-16 上海伽玛射线技术有限公司 Specific radioactivity measuring method and equipment
RU2330308C1 (en) * 2006-11-03 2008-07-27 Федеральное государственное унитарное предприятие "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" Method of control of mass fraction of uranium-235 isotope in gaseous phase of uranium hexafluoride and system of measurement for implementation of this method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WALTER LIGGETT: "Calibration for measurements with background correction applied to uranium-235 enrichment", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH》 *
吕学升等: "铀浓缩厂铀丰度在线监测装置研制", 《原子能科学技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807145A (en) * 2016-09-09 2018-03-16 中核兰州铀浓缩有限公司 It is a kind of to detect UF without heat source type6The sensor of dielectric gas flow direction
CN109100001A (en) * 2018-08-22 2018-12-28 中国原子能科学研究院 A kind of UF6The verification measurement method of uranium quality in big tank
CN110308474A (en) * 2019-07-02 2019-10-08 中国原子能科学研究院 A small monitoring device for online measurement of gas uranium abundance
US11131628B1 (en) 2020-05-12 2021-09-28 Savannah River Nuclear Solutions, Llc Spectroscopic methods and systems for isotopic analysis

Also Published As

Publication number Publication date
CN103728648B (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN111948702B (en) Calibration device and calibration method for radioactive gas measurement equipment
CN103969673B (en) Closed loop measures the method for precipitation rate of radon continuously
CN102128666B (en) Method for calibrating Coriolis mass flowmeter
US8793082B2 (en) Upstream volume mass flow verification systems and methods
CN103728648B (en) Method and apparatus for determining the background of a device for measuring uranium abundance in uranium hexafluoride gas
CN204085645U (en) With the gas flow standard device of self calibration structure
CN116147724B (en) Metering method suitable for ultrasonic water meter
CN103064101A (en) Gama scanning measuring method through adoption of asymmetrical standard sample calibration
CN109141770A (en) A method of reducing leak detector state change influences helium mass spectrum suction gun backing space technique
CN105021357A (en) Air preheater air leakage rate determination method and device
CN106093313B (en) The silica of nuclear power station water filter filter core separates out the detection method and its dedicated test system of performance
CN108955837B (en) Method for determining online system error of mass flowmeter and application thereof
CN103697974B (en) A kind of liquid metal flowmeter method of calibration
CN101718636A (en) Full-height fan flow rate-pressure rise test device and test method
CN104458149A (en) Air preheater air leakage calculation method
CN108072410A (en) Air flow meter detecting system
CN113899431B (en) A mobile flow online calibration system
RU135795U1 (en) INSTALLATION FOR VERIFICATION AND CALIBRATION OF METERS, FLOW METERS AND FLOW METERS-GAS METERS
CN111017878A (en) For preparing equilibrium state H2-HD-D2Apparatus and method for standard gas
CN106569252A (en) Method of correcting consistency of gamma total amount measurement type active carbon emanometer
CN105606771A (en) Full-automatic gas distribution system and manner for constant-volume premixed gas experiment
CN104806889A (en) Monitoring method and monitoring device for pipeline transmission loss of gas long-distance transmission pipeline
US3525258A (en) Well analysis method and system
CN104280199A (en) Mass spectrograph linear section testing method
CN112115654B (en) Pipeline flow field pressure distribution evaluation method and device integrating measured data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant