CN103714262B - 一种基于缓冲块时序设计的热工软测量模型更新方法 - Google Patents
一种基于缓冲块时序设计的热工软测量模型更新方法 Download PDFInfo
- Publication number
- CN103714262B CN103714262B CN201410024860.9A CN201410024860A CN103714262B CN 103714262 B CN103714262 B CN 103714262B CN 201410024860 A CN201410024860 A CN 201410024860A CN 103714262 B CN103714262 B CN 103714262B
- Authority
- CN
- China
- Prior art keywords
- model
- sample
- buffer stopper
- update method
- update
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Feedback Control In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明提供一种基于缓冲块时序设计的热工软测量模型更新方法,属于热工技术和人工智能交叉技术领域。该方法选择辅助变量作为模型的输入,要预测的关键变量作为模型的输出,选取历史运行数据建立初始软测量模型;利用缓冲块来设计更新时序,将最新采样的数据样本暂存入缓冲块中,当缓冲块存储满后,再判断模型性能,决定是否进行更新模型;在模型更新时并非针对当前时刻的样本进行,而是对缓冲块中的样本进行逐个更新。本发明提出的缓冲块时序设计更新方法,减少了测量噪声以及离群样本对模型性能的影响,从而避免因采集样本中的噪声和干扰而触发模型更新,同时使更新模块在实际工程中应用成为可能,而且也降低了更新频率,减少了计算时间。
Description
技术领域:
本发明涉及一种热工软测量模型更新方法,特别是基于缓冲块时序设计的热工软测量模型更新方法,属于热工技术和人工智能交叉技术领域。
背景技术:
为了保证电站锅炉的安全和优化运行,常常需要获取一些关键热工参数的相关信息。目前,这些参数常利用硬件传感器来测量,例如:常常需要获取锅炉尾部烟气中飞灰含碳量和NOx排放等参数的相关信息。目前,这些参数常利用飞灰测碳仪和烟气连续监测系统(continuous emission monitoring system,CEMS)等硬件传感器来测量,但是这些仪器的安装和维护成本较高,而且由于工作环境恶劣,经常需要离线维修。因此,基于运行数据利用偏最小二乘回归、神经网络和支持向量机等方法对这些关键变量进行软测量预测,具有重要的工程意义。在选取具有代表性的数据建立初始软测量模型后,由于热工过程特性的变迁会使模型的预测精度逐渐下降,需要采用更新策略来改善其预测性能。软测量模型的更新时序对模型性能的改善有着重大的影响,常用的更新方法是采集到新样本时立刻执行模型更新策略,但在实际工程应用中,这种更新方法存在着很大问题,在对模型实施更新之前需要先对新样本进行预处理,去除离群点的影响。离群点不仅会引起模型的误更新,而且还会误导模型的改善精度的预测方向,迅速恶化模型的预测性能。然而,只根据当前单个样本无法判断该样本是属于正常工况还是离群点。针对上述问题,本发明提出缓冲块的概念,设计一种基于缓冲块时序的软测量模型更新方法。本发明中热工领域的主要应用对象是火力发电站。
发明内容:
本发明为了保证电站锅炉的安全和优化运行,其目的在于设计一种基于缓冲块时序的模型更新方法,提出利用缓冲块来暂时存储最新收集的样本,当缓冲块存储满后,再判断模型性能,决定是否进行更新模型;在模型更新时并非针对当前时刻的样本进行,而是对缓冲块中的样本进行更新。
缓冲块唯一的属性就是缓冲块宽度L,宽度L越大,则更新的频率越慢,计算量越小,同时在缓冲块内对离群样本的预处理就越好,然而缓冲块宽度越大,会使更新不及时,从而会使模型的预测精度降低。
模型详细的更新时序如附图1所示,在t1时刻,采集当前样本后正好使缓冲块存储满,此时开始检测模型的性能,判断是否需要更新。若预测精度超过给定的阈值便开始执行更新策略,同时新样本采集后继续存入下一缓冲块。当更新完成时(t2时刻),下一缓冲块尚未存储满(更新耗费时间小于样本存储满所需的时间),并继续存储新的样本,直至其存储满后再一次执行更新策略。可以看出,模型的更新结合了块式更新和性能监测方法,当缓冲块收集满后进行性能判断。这样,通过数据缓冲块的缓冲作用,减少了测量噪声以及离群样本对模型性能的影响,从而避免因采集样本中的噪声和干扰而触发模型更新。
本发明提出了基于缓冲块时序设计的热工软测量模型更新方法,使更新模块在实际热工工程中应用成为可能,而且也降低了更新频率,减少了计算时间,使模型能够迅速地完成自学习和自适应过程。
基于缓冲块时序设计的热工软测量模型更新方法,该方法步骤为:
步骤1:收集初始训练样本来构建初始模型,其中:选择辅助变量作为模型的输入,要预测的关键变量(待预测变量y)作为模型的输出,从历史运行数据库中选取覆盖范围大且具有代表性的若干段工况作为初始训练样本,记为其中xi∈Rp表示第i组输入变量样本,yi∈R为第i组输出样本,n为样本数量,利用训练样本构建初始软测量模型,这里构建初始模型可以采用偏最小二乘回归、神经网络或支持向量机等数据建模方法,将建立的初始模型记为:
y=h(x) (1)
将此模型作为当前模型对关键变量进行预测,也即将传感器新测得的辅助变量数据作为输入变量xn+1,利用上式得到关键变量的预测值
步骤2:当实际关键变量的传感器测量值yn+1采集到后,将新得到的数据样本(xn+1,yn+1)存入缓冲块B中,这里给定缓冲块宽度为L;
步骤3:判断当前缓冲块是否存储满,存储满后的缓冲块数据集应为若未存储满,则继续执行步骤2,否则执行步骤4;
步骤4:对缓冲块的数据样本(xq,yq),利用当前模型h(x)计算对应的预测值
步骤5:计算样本(xq,yq)的预测误差Er:
步骤6:判断预测误差:若Er>Δ,Δ为误差阈值,则执行步骤7,否则执行步骤8;
步骤7:选择合适的更新策略,更新当前模型h(x),这里更新策略可以采用增量更新和递归更新等方法;
步骤8:判断当前样本是否为当前缓冲块最后一个样本,若不是则执行步骤4,处理缓冲块中下一个数据样本,继续进行模型更新和关键变量的预测;否则执行步骤9;
步骤9:判断测试样本是否结束,若结束则停止程序,否则执行步骤2,对下一缓冲块进行操作处理。
本发明提出的基于缓冲块的模型更新方法具有以下显著优势:
1)本发明提出的缓冲块更新时序适用于偏最小二回归、神经网络以及支持向量机等多种数据建模方法;
2)通过数据块的缓冲作用,降低了更新的频率,而且还减少了测量噪声以及离群样本对模型性能的影响;
3)应用本发明,不增加任何硬件,而且易于工程现场应用,能够对电站锅炉,包括锅炉烟气各成分进行精确地预测。
附图说明:
图1是本发明中基于缓冲块设计的模型更新时序图;
图2是利用本发明进行软测量更新的一个流程图。
具体实施方式:
以下内容将结合附图2对本发明的实施过程作详细说明,具体步骤是:
步骤1:收集初始训练样本来构建初始模型,其中:选择辅助变量作为模型的输入(例如,辅助变量是通过传感器测量发电机功率、各磨煤机给煤量、各磨煤机入口一次风量、各层二次风和燃尽风风门开度信号),要预测的关键变量(例如是预测的烟气成分含量)作为模型的输出,从历史运行数据库中选取覆盖范围大且具有代表性的若干段工况作为初始训练样本,记为其中xi∈Rp表示第i组输入变量样本,yi∈R为第i组输出样本,n为样本数量,利用训练样本构建初始软测量模型,这里构建模型可以采用偏最小二乘回归、神经网络或支持向量机等数据建模方法,将建立的初始模型记为:
y=h(x) (3)
在进行模型更新之前,一直利用此模型作为当前模型对关键变量进行预测,也即将传感器新测得的辅助变量数据作为输入变量xn+1,利用上式得到关键变量的预测值
步骤2:当实际关键变量的传感器测量值yn+1采集到后,将新采样的数据样本(xn+1,yn+1)存入缓冲块B中,这里给定缓冲块宽度为L;
步骤3:判断当前缓冲块是否存储满,存储满后的缓冲块数据集应为若未存储满,则继续执行步骤2,否则执行步骤4;
步骤4:对缓冲块的数据样本(xq,yq),利用当前模型h(x)计算对应的预测值
步骤5:计算样本(xq,yq)的预测误差Er:
步骤6:判断预测误差:若Er>Δ,Δ为误差阈值,则执行步骤7,否则执行步骤8;
步骤7:选择合适的更新策略,更新当前模型h(x);
步骤8:判断当前样本是否为当前缓冲块最后一个样本,若不是则执行步骤4,处理缓冲块中下一个数据样本,继续进行模型更新和关键变量的预测;否则执行步骤9;
步骤9:判断测试样本是否结束,若结束则停止程序,否则执行步骤2,对下一缓冲块进行操作处理。
本发明提出的基于缓冲块的模型更新方法具有以下显著优势:本发明提出的缓冲块更新时序适用于偏最小二回归、神经网络以及支持向量机等多种数据建模方法;通过数据块的缓冲作用,降低了更新的频率,而且还减少了测量噪声以及离群样本对模型性能的影响;应用本发明,不增加任何硬件,而且易于工程现场应用,能够对电站锅炉,包括锅炉烟气各成分进行精确地预测。
Claims (5)
1.一种基于缓冲块时序设计的热工软测量模型更新方法,所述更新方法选择传感器测量的辅助变量作为模型的输入,要预测的关键变量作为模型的输出,选取历史运行数据建立初始软测量模型,其特征在于,所述更新方法利用缓冲块来设计更新时序,将最新采样的数据样本暂存入缓冲块中,当缓冲块存储满后,再判断模型性能,决定是否进行更新模型;在模型更新时并非针对当前时刻的样本进行,而是对缓冲块中的样本进行逐个更新;
所述方法包括以下步骤:
1)收集初始训练样本来构建初始模型h(x),将此模型作为当前模型来预测关键变量;
2)当实际关键变量的传感器测量值yn+1采集到后,将新得到的数据样本(xn+1,yn+1)存入缓冲块B中,设给定缓冲块宽度为L;
3)判断当前缓冲块是否存储满,存储满后的缓冲块数据集应为若未存储满,则继续执行步骤2,否则执行步骤4;
4)对缓冲块的数据样本(xq,yq),利用当前模型h(x)计算对应的预测值
5)计算样本(xq,yq)的预测误差Er;
6)判断预测误差:若Er>Δ,Δ为误差阈值,则执行步骤7,否则执行步骤8;
7)选择合适的更新策略,更新当前模型h(x);
8)判断当前样本是否为当前缓冲块最后一个样本,若不是则执 行步骤4),处理缓冲块中下一个数据样本,继续进行模型更新和关键变量的预测;否则执行步骤9);
9)判断测试样本是否结束,若结束则停止程序,否则执行步骤2,对下一缓冲块进行操作处理;
所述步骤1)具体是:选择辅助变量作为模型的输入,要预测的关键变量作为模型的输出,从历史运行数据库中选取覆盖范围大且具有代表性的若干段工况作为初始训练样本,记为其中xi∈Rp表示第i组输入变量样本,yi∈R为第i组输出样本,n为样本数量,利用训练样本构建初始软测量模型,将建立的软测量初始模型记为:y=h(x)。
2.根据权利要求1所述的更新方法,其特征在于,所述步骤1)中的构建模型的方法包括偏最小二乘回归、神经网络或支持向量机的数据建模方法。
3.根据权利要求1所述的更新方法,其特征在于,传感器新测得的辅助变量数据作为输入变量xn+1,利用y=h(x)得到关键变量的预测值。
4.根据权利要求1所述的更新方法,其特征在于,步骤5)中的预测误差是
5.根据权利要求1所述的更新方法,其特征在于,步骤7)中的更新策略包括增量更新和递归更新的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024860.9A CN103714262B (zh) | 2014-01-20 | 2014-01-20 | 一种基于缓冲块时序设计的热工软测量模型更新方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024860.9A CN103714262B (zh) | 2014-01-20 | 2014-01-20 | 一种基于缓冲块时序设计的热工软测量模型更新方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103714262A CN103714262A (zh) | 2014-04-09 |
CN103714262B true CN103714262B (zh) | 2016-08-10 |
Family
ID=50407228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410024860.9A Expired - Fee Related CN103714262B (zh) | 2014-01-20 | 2014-01-20 | 一种基于缓冲块时序设计的热工软测量模型更新方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103714262B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107316083B (zh) * | 2017-07-04 | 2021-05-25 | 北京百度网讯科技有限公司 | 用于更新深度学习模型的方法和装置 |
CN107330522B (zh) * | 2017-07-04 | 2021-06-08 | 北京百度网讯科技有限公司 | 用于更新深度学习模型的方法、装置及系统 |
CN111078659B (zh) * | 2019-12-20 | 2023-04-21 | 腾讯科技(深圳)有限公司 | 模型更新方法、装置、计算机可读存储介质和计算机设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101051032A (zh) * | 2006-04-06 | 2007-10-10 | 华北电力大学 | 大型锅炉排烟含氧量软测量方法 |
CN101916394A (zh) * | 2010-08-25 | 2010-12-15 | 清华大学 | 一种基于知识融合的在线软测量方法 |
CN102778538A (zh) * | 2012-07-06 | 2012-11-14 | 广东电网公司电力科学研究院 | 一种基于改进支持向量机的锅炉飞灰含碳量软测量方法 |
-
2014
- 2014-01-20 CN CN201410024860.9A patent/CN103714262B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101051032A (zh) * | 2006-04-06 | 2007-10-10 | 华北电力大学 | 大型锅炉排烟含氧量软测量方法 |
CN101916394A (zh) * | 2010-08-25 | 2010-12-15 | 清华大学 | 一种基于知识融合的在线软测量方法 |
CN102778538A (zh) * | 2012-07-06 | 2012-11-14 | 广东电网公司电力科学研究院 | 一种基于改进支持向量机的锅炉飞灰含碳量软测量方法 |
Non-Patent Citations (4)
Title |
---|
一种基于时序误差补偿的动态软测量建模方法;杜文莉等;《化工学报》;20100228;第61卷(第2期);439-443 * |
基于最小二乘支持向量机的软测量建模及在电厂烟气含氧量测量中的应用;王勇等;《微计算机信息(测控自动化)》;20061123;第22卷(第28期);241-243,290 * |
基于滑动时间窗的支持向量机软测量建模研究;薄翠梅等;《自动化仪表》;20060131;第27卷(第1期);45-48 * |
移动窗递推PLS软测量建模及其工业应用;徐欧官等;《高校化学工程学报》;20091231;第23卷(第6期);1044-1050 * |
Also Published As
Publication number | Publication date |
---|---|
CN103714262A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103728879B (zh) | 一种电站锅炉烟气软测量方法 | |
Zhao et al. | Factors influencing CO2 emissions in China's power industry: Co-integration analysis | |
CN109583585B (zh) | 一种电站锅炉壁温预测神经网络模型的构建方法 | |
JP4423617B2 (ja) | プラント制御装置 | |
CN102778538B (zh) | 一种基于改进支持向量机的锅炉飞灰含碳量软测量方法 | |
CN103729569B (zh) | 一种基于lssvm及在线更新的电站锅炉烟气软测量系统 | |
CN109443364A (zh) | 基于a*算法的路径规划方法 | |
CN104573851A (zh) | 一种基于气象温度预报的建筑逐时负荷预测方法 | |
CN102880795A (zh) | 一种锅炉优化运行经济参数目标值获取方法 | |
CN103714262B (zh) | 一种基于缓冲块时序设计的热工软测量模型更新方法 | |
CN107291944A (zh) | 锅炉主要受热面超前诊断分析方法及系统 | |
CN107763655B (zh) | 一种降低排放污染的ge燃机燃烧调整的方法 | |
CN102840571A (zh) | 基于子空间辨识的火力电站锅炉输出过热蒸汽的预报方法 | |
CN111242469B (zh) | 锅炉或窑炉超低排放与高效节能耦合运行的方法及系统 | |
CN113095591A (zh) | 一种用于火电机组运行参数自寻优的耗差分析方法 | |
CN103246801A (zh) | 一种基于改进案例推理的竖炉炉况故障预报方法 | |
CN112016754A (zh) | 基于神经网络的电站锅炉排烟温度超前预测系统及方法 | |
CN116341203A (zh) | 基于人工智能的热力管线无人化巡检及检修方法、系统 | |
CN107977527A (zh) | 一种确定火电机组标杆值数据的方法与装置 | |
CN111952965B (zh) | 一种基于预测控制与区间规划的cchp系统优化运行方法 | |
CN103729567B (zh) | 一种基于缓冲块时序设计的热工软测量模型更新系统 | |
CN115965177A (zh) | 基于注意力机制改进的自回归误差补偿风电功率预测方法 | |
CN110460085A (zh) | 一种考虑风电和负荷特性对电力系统影响的方法 | |
CN112101608A (zh) | 一种海上风电场选址方法及装置 | |
CN104515591A (zh) | 一种高精度的磨煤机振动检测工艺方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160810 Termination date: 20190120 |
|
CF01 | Termination of patent right due to non-payment of annual fee |