CN103714258A - Two-valued logic function quick optimization processing method - Google Patents

Two-valued logic function quick optimization processing method Download PDF

Info

Publication number
CN103714258A
CN103714258A CN201410005741.9A CN201410005741A CN103714258A CN 103714258 A CN103714258 A CN 103714258A CN 201410005741 A CN201410005741 A CN 201410005741A CN 103714258 A CN103714258 A CN 103714258A
Authority
CN
China
Prior art keywords
cover
item
designated
redundancy
irredundant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410005741.9A
Other languages
Chinese (zh)
Other versions
CN103714258B (en
Inventor
邱建林
陈建平
顾翔
高凌源
李芬
陈莉
潘阳
杨娜
卞彩峰
陆鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University Technology Transfer Center Co ltd
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201410005741.9A priority Critical patent/CN103714258B/en
Publication of CN103714258A publication Critical patent/CN103714258A/en
Application granted granted Critical
Publication of CN103714258B publication Critical patent/CN103714258B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a two-valued logic function quick optimization processing method. The method comprises the steps of real source item set formation, relatively real implication item set formation, non-redundancy coverage optimization process and optimization result formation. According to the method, on the condition that a function complementary set is not calculated, a smallest special item is selected to solve the real source item set, a remodeling set is used for solving a real implication item set, then, non-redundancy coverage optimization is conducted, and finally the logic function optimization result is obtained after the real source item set is combined with the real implication item set. The method is simple and convenient and improves the efficiency and the accuracy of logic function quick optimization.

Description

A kind of two-valued function function rapid Optimum disposal route
Technical field
The present invention relates to a kind of two-valued function function rapid Optimum disposal route.
Background technology
Logic optimization is the basis of digital circuit Automated Design, digital circuit computer-aided design (CAD) (Computer Aided Design, CAD) development of system has far-reaching influence to the numerous areas of computer science, more and more urgent to the demand of high-speed, high integration, high complexity and high reliability circuit.In the world, the problem of logic optimization is the study hotspot of computer science and association area.Logic optimization is the comprehensive gordian technique of integrated circuit (IC) logic, asks the problem of the optimum logic optimization based on a certain optimization aim to be proved to be a NP difficult problem.There is at present several different methods can realize logical function optimization, the general method of seeking near-optimal that adopts.The gordian technique of integrated circuit (IC) logic optimization is: 1. make in logic optimization result different term “and”s (AND) expression formula sum minimum, reduce AND gate number; 2. reduce the sum of contained variable in term “and” expression formula, even if AND gate circuit input end number is minimum; 3. seek the formalization representation method of logic optimization.
Summary of the invention
The object of the present invention is to provide a kind of easy, effective two-valued function function rapid Optimum disposal route.
Technical solution of the present invention is:
A two-valued function function rapid Optimum disposal route, is characterized in that: comprise the following steps:
(1) formation of essential prime set: essential prime set identification is E;
(1) the generation step of essential prime is as follows:
Irredundant cover is expanded, calculated adjacent common factor mutually, Irredundant cover is designated Q i, adjacent crossing set identifier is: AIC(Q i); If q ifor redundancy, it is concentrated and deleted from conducting; Otherwise by Q ideliver in independent set and E, simultaneously from C dCmiddle deletion Q ithe item containing, redundancy is designated: Ri, conducting set identifier is: C oN, independent set is designated: C dC;
(2) AIC (Q i) computing method:
AIC (Q i) should meet 3 conditions simultaneously: (a) and Q ieach other adjacency and
Figure BDA0000453887500000023
(b) at C dCin with Q iintersect; (c) at C oNin with Q iintersect but do not comprise Q i;
(3) create-rule:
(a) if C oNin a certain item lie in Q iset after expansion, from C oNin by this entry deletion;
(b) if satisfy condition: q ifor essential prime, by Q ideliver to E and C dCin, simultaneously from C oNmiddle by it deletion;
(2) formation of material implicatic item set relatively: material implicatic item set identification is relatively: P *;
(1) the generation step of material implicatic item is described below relatively: material implicatic item is designated relatively: P i *;
(a) find out and C dCc is delivered in crossing set oN; (b) reinvent set---by redundancy from C oNmiddle deletion, to reduce C oNthe scale covering; (c) if C oNin all items not with C dCintersect or C dCduring for sky, select the maximum set of minimum neighbourship degree, it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion, minimum neighbourship degree is designated: DA; If C oNin maximum DA identical, select and C oNin that set of intersecting of other set non-NULL, it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion; (d) to C oNin each P i *if,
Figure BDA0000453887500000031
(C oN∪ C dC#P i *) no more than one of set comprising should reinvent; To P i *after expansion is reinvented, it is moved into C dCand P *in, simultaneously by it from C oNmiddle deletion; Otherwise, if (C oN∪ C dC#P i *) more than one of the set that comprises, select the set of maximum DA to deliver to C dCand P *in, simultaneously by it from C oNmiddle deletion; After executing, go to (c), until C oNfor sky;
(2) create-rule:
To C oNin certain set, if certain subset of this set is neither by other C oNcover, also not by C dCcover, need to expansion, to reinvent P *make it to cover C oNin other set;
(3) irredundant coverage optimization process
(1) irredundant coverage optimization disposal route:
From E, P *with in redundancy set, select a minimum P *, make P *∪ E is still a covering of function; Redundancy set identification is: R is the set of Ri;
(2) create-rule:
Irredundant cover set Q is divided into three mutually disjoint subset Q={E, R, P *; By institute above, in the method for description, form respectively and produce E, R, P *; Ask minimum row to cover, choose minimum P *;
(4) formation of optimum results:
Q=P *∪E。
The present invention is the in the situation that of computing function supplementary set not, by choosing special minterm, solve essential prime set, by reinventing set, solve relative material implicatic item and gather, pass through again irredundant coverage optimization, finally essential prime set is merged and is logical function optimum results with relative material implicatic item set.The inventive method is easy, has improved efficiency and the accuracy of logical function rapid Optimum.
Below in conjunction with drawings and Examples, the invention will be further described.
Fig. 1 is E identifying figure.
Fig. 2 is P *identification schematic diagram.
Fig. 3 is set remodeling process figure
Fig. 4 is relative material implicatic item set P *schematic diagram.
Embodiment
A two-valued function function rapid Optimum disposal route, comprises the following steps:
1 essential prime set (is designated: formation E)
The generation step of 1.1 essential primes is described below:
Irredundant cover (is designated: Q i) expand, calculate adjacent common factor mutually and (be designated: AIC(Q i)).If
Figure BDA0000453887500000041
q ifor redundancy (is designated: Ri), it (is designated: C from conducting collection oN) middle deletion; Otherwise by Q idelivering to independent set (is designated: C dC) and E in, simultaneously from C dCmiddle deletion Q ithe item containing.
1.2AIC (Q i) computing method:
AIC (Q i) should meet 3 conditions simultaneously: (1) and Q ieach other adjacency and
Figure BDA0000453887500000042
(2) at C dCin with Q iintersect; (3) at C oNin with Q iintersect but do not comprise Q i.
1.3 create-rules:
(1) if C oNin a certain item lie in Q iset after expansion, should be from C oNin by this entry deletion; (2) if satisfy condition:
Figure BDA0000453887500000051
q ifor essential prime, should be by Q ideliver to E and C dCin, simultaneously from C oNmiddle by it deletion.
2 relative material implicatic item set (are designated: P *) formation
2.1 relative material implicatic items (are designated: P i *) generation step be described below:
(1) find out and C dCc is delivered in crossing set oN; (2) reinvent set---by redundancy from C oNmiddle deletion, to reduce C oNthe scale covering; (3) if C oNin all items not with C dCintersect or C dCduring for sky, select minimum neighbourship degree (be designated: maximum set DA), it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion; If C oNin maximum DA identical, should select and C oNin that set of intersecting of other set non-NULL, it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion.(4) to C oNin each P i *if,
Figure BDA0000453887500000052
(C oN∪ C dC#P i *) no more than one of set comprising should reinvent.To P i *after expansion is reinvented, it is moved into C dCand P *in, simultaneously by it from C oNmiddle deletion; Otherwise, if
Figure BDA0000453887500000053
(C oN∪ C dC#P i *) more than one of the set that comprises, select the set of maximum DA to deliver to C dCand P *in, simultaneously by it from C oNmiddle deletion.After executing, go to (3), until C oNfor sky.
2.2 create-rules:
To C oNin certain set, if certain subset of this set is neither by other C oNcover, also not by C dCcover, need to expansion, to reinvent P *make it to cover C oNin other set.
3 irredundant coverage optimization processes
3.1 irredundant coverage optimization disposal routes:
From E, P *with in redundancy set (being designated: R is the set of Ri), select a minimum P *, make P *∪ E is still a covering of function.
3.2 create-rules:
Irredundant cover set Q is divided into three mutually disjoint subset Q={E, R, P *.By institute above, in the method for description, form respectively and produce E, R, P *.Ask minimum row to cover, choose minimum P *.
The formation of 4 optimum results:
Q=P *∪E。
Eample Analysis:
Example 1: establish C oN={ 0000,0001,1200,1211,1121}, C dC={ 0102} asks E.
Resolve: (1) works as Q 1=during 0000}:
{ form of 0000} after expansion is { 0202} to ∵
∵ again { 0001 } ⋐ C ON And { 0001 } ⋐ { 0202 }
∴ is by conducting collection C oNin { 0001} deletes
∵AIC={1200,1121,0102}
{ 0202 } ⋐ E , DM={0001}
Figure BDA0000453887500000065
be in independent set, to contain Q 1item { the 0102} comprising
∴ will { it (be C that 0102} deletes from independent set dC#{0102})
(2) work as Q 2=during 1200}:
{ form of 1200} after expansion is { 2200} to ∵
∵ AIC={1121 again, 0202}
Figure BDA0000453887500000071
{ 2200 } ⋐ E , DM={1000}
∴ will { 2200} delivers in E
(3) work as Q 3=during 1211}:
∵ { the form constant (can not be expanded) of 1211} after expansion
∴AIC={1121}
Figure BDA0000453887500000072
{ 1211 } ⋐ E , DM={1011}
∴ will { 1211} delivers in E
(4) work as Q 4=during 1121}:
∵ { the form constant (can not be expanded) of 1121} after expansion
∴AIC={1211,2200,0202}
{ 1121 } ⊂⃒ E
In sum: E={2200,0202,1211}
Example 2: as shown in Figure 2, ask P *.Wherein, E={0120}.
Resolve: (1) reinvents set:
If P 1 *: { 2112}
P 1 *{ 2112} and C dCintersect
∵ again { 0111 } ⋐ P 1 * And { 0111 } ⋐ { C ON ∪ C DC } Not being switched on other concentrated set or independent set covers
∴ is to { 0111} expands, and forms { 2112}
If P 2 *: { 1121}
P 2 *1121} with reinvent set P 1 *{ 2112} intersects
Make P 2 *=1201}, as shown in Figure 3
If P 3 *: { 1002}
∵ P 3 *1002} with reinvent set P 2 *{ 1201} intersects
∴ makes P 3 *=1020}, as in Figure 2-4.
If P 4 *: { 1210}
∵ P 4 *1210} with reinvent set P 3 *{ 1020} intersects
∵ again P 4 * { 1210 } ⋐ ( P 1 * ∪ P 3 * )
∴ is from conducting collection C oNmiddle deletion P 4 *{ 1210}
If P 5 *: { 0021}
∵ P 5 *{ 0021} and conducting other set of concentrating is non-intersect
∴ P 5 *remain unchanged
(2) ∵ { 2112} and C dCintersect
∵ { the subset of 2112} again
Figure BDA0000453887500000081
not capped
∴ chooses the concentrated maximum set of conducting, and { 2112} delivers to independent set C dCand P *in, simultaneously by it from conducting collection C oNmiddle deletion
On inspection, conducting collection C oNin do not exist and { the set that 2112} is crossing
∴ is from conducting collection C oNin P 2 *{ 1201}, P 3 *{ 1020}, P 5 *{ 0021} is maximum set
∵ P 3 *{ 1020}, P 5 *{ 0021} and conducting collection are non-intersect
∴ is by P 5 *{ 0021} delivers to C dCand P *in, and this is gathered from C oNmiddle deletion
∵ is non-intersect for the set nothing to do with collection of conducting collection remainder
∴ delivers to C by remaining set dCand P *in (as shown in Figure 4)
Example 3: for a non-matrix of enumerating the product term set P of multiple-input and multiple-output logical function F completely, ask its optimum covering to gather.
M ( P ) = 002 453 110 544 101 445 100 354 012 344 101 534
The matrix of the product term set P of multiple-input and multiple-output logical function F
Resolve: obtain as requested Irredundant cover M (P) and outlier M (D), the product term set matrix M (G) of logical function after must expanding after product term expansion.
M ( P ) = 002 453 110 544 101 445 100 354 012 344 101 534
M ( D ) = 002 343 110 433 101 334 100 343 101 433
M ( G ) = 002 443 120 344 101 444 102 344 012 344
According to the recognition methods of essential prime, redundancy, relative material implicatic item, obtain again:
M ( G E ) = 002 443 120 344 012 344
M(G R)=φ
M ( G P ) = 101 444 102 344
Again from relative material implicatic item set G pmiddle formation turns meaning matrix
B - = 1 0 1 1
According to minimum row, cover and select again, choose j=1, first row selects material implicatic item set G relatively pthe minimum row of the first behavior cover P *=G p[101 444], so P *∪ G eform optimum covering:
M ( P ) = 002 443 120 344 012 344 101 444
Remarks explanation:
The explanation of the digital 0-5 occurring in set or matrix
0-input variable is mended (instead) code and is occurred, the appearance of 1-input variable source code, and this input variable of 2-do not occur,
In 3-output function, product term occurs, in 4-output function, product term does not occur, in 5-output function, product term is outlier.
Example: the matrix representation of logical function
If F is a multiple output function, contain n input variable and m output variable, P is given product term set.If p kthe vector form of ∈ P is
V ( p k ) = p 1 k p 2 k · · · p n k p n + 1 k p n + 2 k · · · p n + m k ,
Wherein p 1 k p 2 k · · · p n k For input part, p n + 1 k p n + 2 k · · · p n + m k For output.
The representation of importation, i.e. 0 benefit that represents variable, 1 represents former variable, 2 represent that variablees do not occur in product term.Output is defined as follows: if product term p kdo not belong to function f t,
Figure BDA0000453887500000114
be 3, otherwise
Figure BDA0000453887500000115
be 4.If product term p kfor outlier,
Figure BDA0000453887500000116
be 5.Two parts are following formula altogether:
Figure BDA0000453887500000117
Example. one of given function is covered as
f 1 = x 1 x 3 + x 1 x 3 ‾ + x 1 ‾ x 3 + x 1 ‾ x 2 x 3
f 2 = x 1 x 3 + x 1 x 2 x 3 ‾ + x 1 x 2 ‾ + x 1 ‾ x 2 x 3
Its matrix form is
M ( F ) = 121 44 120 43 110 34 102 34 021 43 011 44 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) .

Claims (1)

1. a two-valued function function rapid Optimum disposal route, is characterized in that: comprise the following steps:
(1) formation of essential prime set: essential prime set identification is E;
(1) the generation step of essential prime is as follows:
Irredundant cover is expanded, calculated adjacent common factor mutually, Irredundant cover is designated Q i, adjacent crossing set identifier is: AIC(Q i); If
Figure FDA0000453887490000012
q ifor redundancy, it is concentrated and deleted from conducting; Otherwise by Q ideliver in independent set and E, simultaneously from C dCmiddle deletion Q ithe item containing, redundancy is designated: Ri, conducting set identifier is: C oN, independent set is designated: C dC;
(2) AIC (Q i) computing method:
AIC (Q i) should meet 3 conditions simultaneously: (a) and Q ieach other adjacency and
Figure FDA0000453887490000013
(b) at C dCin with Q iintersect; (c) at C oNin with Q iintersect but do not comprise Q i;
(3) create-rule:
(a) if C oNin a certain item lie in Q iset after expansion, from C oNin by this entry deletion;
(b) if satisfy condition:
Figure FDA0000453887490000011
q ifor essential prime, by Q ideliver to E and C dCin, simultaneously from C oNmiddle by it deletion;
(2) formation of material implicatic item set relatively: material implicatic item set identification is relatively: P *;
(1) the generation step of material implicatic item is described below relatively: material implicatic item is designated relatively: P i *;
(a) find out and C dCc is delivered in crossing set oN; (b) reinvent set---by redundancy from C oNmiddle deletion, to reduce C oNthe scale covering; (c) if C oNin all items not with C dCintersect or C dCduring for sky, select the maximum set of minimum neighbourship degree, it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion, minimum neighbourship degree is designated: DA; If C oNin maximum DA identical, select and C oNin that set of intersecting of other set non-NULL, it is delivered to C dCand P *in, simultaneously by it from C oNmiddle deletion; (d) to C oNin each P i *if, (C oN∪ C dC#P i *) no more than one of set comprising should reinvent; To P i *after expansion is reinvented, it is moved into C dCand P *in, simultaneously by it from C oNmiddle deletion; Otherwise, if
Figure FDA0000453887490000022
(C oN∪ C dC#P i *) more than one of the set that comprises, select the set of maximum DA to deliver to C dCand P *in, simultaneously by it from C oNmiddle deletion; After executing, go to (c), until C oNfor sky;
(2) create-rule:
To C oNin certain set, if certain subset of this set is neither by other C oNcover, also not by C dCcover, need to expansion, to reinvent P *make it to cover C oNin other set;
(3) irredundant coverage optimization process
(1) irredundant coverage optimization disposal route:
From E, P *with in redundancy set, select a minimum P *, make P *∪ E is still a covering of function; Redundancy set identification is: R is the set of Ri;
(2) create-rule:
Irredundant cover set Q is divided into three mutually disjoint subset Q={E, R, P *; By institute above, in the method for description, form respectively and produce E, R, P *; Ask minimum row to cover, choose minimum P *;
(4) formation of optimum results:
Q=P *∪E。
CN201410005741.9A 2014-01-07 2014-01-07 A kind of two-valued function function rapid Optimum processing method Active CN103714258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410005741.9A CN103714258B (en) 2014-01-07 2014-01-07 A kind of two-valued function function rapid Optimum processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410005741.9A CN103714258B (en) 2014-01-07 2014-01-07 A kind of two-valued function function rapid Optimum processing method

Publications (2)

Publication Number Publication Date
CN103714258A true CN103714258A (en) 2014-04-09
CN103714258B CN103714258B (en) 2016-08-17

Family

ID=50407224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410005741.9A Active CN103714258B (en) 2014-01-07 2014-01-07 A kind of two-valued function function rapid Optimum processing method

Country Status (1)

Country Link
CN (1) CN103714258B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447241A (en) * 2015-11-16 2016-03-30 浙江万里学院 ESOP minimization method for logic function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034758A (en) * 2012-12-07 2013-04-10 南通大学 Logic optimizing and parallel processing method of integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034758A (en) * 2012-12-07 2013-04-10 南通大学 Logic optimizing and parallel processing method of integrated circuit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
邱建林等: "一种基于积项扩展的大变量多输出逻辑优化算法的设计与实现", 《江南大学学报(自然科学版)》 *
邱建林等: "大变量多输出逻辑函数实质项识别算法", 《计算机工程》 *
邱建林等: "用二值逻辑对多值逻辑进行优化", 《计算机辅助设计与图形学学报》 *
邱建林等: "逻辑函数求补算法及其改进", 《计算机工程与应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447241A (en) * 2015-11-16 2016-03-30 浙江万里学院 ESOP minimization method for logic function
CN105447241B (en) * 2015-11-16 2018-03-09 浙江万里学院 A kind of ESOP of logical function of Digital Logical Circuits minimizes method

Also Published As

Publication number Publication date
CN103714258B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
Lo et al. A review of digital twin in product design and development
Verma et al. A review of machining feature recognition methodologies
Morato et al. Improving assembly precedence constraint generation by utilizing motion planning and part interaction clusters
CN103473388B (en) The method and device of implementation process figure autoplacement
CN106649988B (en) Maintenance geometrical model key components and parts based on ontology quickly position and display methods
CN101807308A (en) Three-dimensional model segmenting device and method
Vielhaber et al. Product development vs. production development
CN103678828A (en) Automatic layout method and device of flexible cables
Anand et al. Heuristic and genetic approach for nesting of two-dimensional rectangular shaped parts with common cutting edge concept for laser cutting and profile blanking processes
CN103488816B (en) The multilamellar of analog circuit accurately mates wiring method
Bahubalendruni et al. A hybrid conjugated method for assembly sequence generation and explode view generation
Chen et al. Optimization of wind turbine blade airfoils using a multi-objective genetic algorithm
Alfadhlani et al. Automatic Precedence Constraint Generation for Assembly Sequence Planning using a Three-Dimensional Solid Model
CN113721544A (en) Laser cutting punching-free processing path generation method
CN103714258A (en) Two-valued logic function quick optimization processing method
CN105184022A (en) Construction method for multi-layer-chip efficient X-structure obstacle-avoiding router
CN103942365A (en) Associated design method of aircraft assembly jig framework
CN103279608B (en) The fast finding localization method of large complicated part process operation
JP2018028867A (en) Route information generator, route coupling device, method, and program
CN104462829A (en) Handling method of complex multi-region grids in space marching solution
Wang et al. Automated hex meshing for turbomachinery secondary air system
US9002681B2 (en) Computer-assisted method for optimising surfaces of composite-material structures
JP2017167821A (en) Analysis model creation support device and analysis model creation support method
WO2022003828A1 (en) Processing program retrieval device and processing program retrieval method
CN103729519A (en) Method for selecting and processing coverage solution logic function containing items based on minterm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210628

Address after: 226019 No.205, building 6, Nantong University, No.9, Siyuan Road, Nantong City, Jiangsu Province

Patentee after: Center for technology transfer, Nantong University

Address before: 226019 Jiangsu city of Nantong province sik Road No. 9

Patentee before: NANTONG University

TR01 Transfer of patent right
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140409

Assignee: Jiangsu Aosen Intelligent Technology Co.,Ltd.

Assignor: Center for technology transfer, Nantong University

Contract record no.: X2022320000381

Denomination of invention: A Fast Optimization Method for Binary Logic Functions

Granted publication date: 20160817

License type: Common License

Record date: 20230104

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 226001 No.9, Siyuan Road, Chongchuan District, Nantong City, Jiangsu Province

Patentee after: Nantong University Technology Transfer Center Co.,Ltd.

Address before: 226019 No.205, building 6, Nantong University, No.9, Siyuan Road, Nantong City, Jiangsu Province

Patentee before: Center for technology transfer, Nantong University

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140409

Assignee: Yizhong (Nantong) Network Technology Co.,Ltd.

Assignor: Nantong University Technology Transfer Center Co.,Ltd.

Contract record no.: X2023980053327

Denomination of invention: A Fast Optimization Method for Binary Logic Functions

Granted publication date: 20160817

License type: Common License

Record date: 20231221