CN103712939B - 一种基于紫外可见光谱的污染物浓度拟合方法 - Google Patents
一种基于紫外可见光谱的污染物浓度拟合方法 Download PDFInfo
- Publication number
- CN103712939B CN103712939B CN201310746841.2A CN201310746841A CN103712939B CN 103712939 B CN103712939 B CN 103712939B CN 201310746841 A CN201310746841 A CN 201310746841A CN 103712939 B CN103712939 B CN 103712939B
- Authority
- CN
- China
- Prior art keywords
- matrix
- wavelength
- data
- component
- omega
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 44
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 44
- 238000002371 ultraviolet--visible spectrum Methods 0.000 title claims abstract description 16
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 17
- 230000002068 genetic effect Effects 0.000 claims abstract description 15
- 238000001228 spectrum Methods 0.000 claims abstract description 11
- 238000010521 absorption reaction Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 42
- 230000003595 spectral effect Effects 0.000 claims description 20
- 108090000623 proteins and genes Proteins 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000013598 vector Substances 0.000 claims description 11
- 238000000547 structure data Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 9
- 230000035772 mutation Effects 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000009395 breeding Methods 0.000 claims description 3
- 230000001488 breeding effect Effects 0.000 claims description 3
- 238000002835 absorbance Methods 0.000 abstract description 5
- 230000002452 interceptive effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 238000004611 spectroscopical analysis Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000012544 monitoring process Methods 0.000 description 11
- 239000000356 contaminant Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000010183 spectrum analysis Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 238000001675 atomic spectrum Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000010238 partial least squares regression Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310746841.2A CN103712939B (zh) | 2013-12-30 | 2013-12-30 | 一种基于紫外可见光谱的污染物浓度拟合方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310746841.2A CN103712939B (zh) | 2013-12-30 | 2013-12-30 | 一种基于紫外可见光谱的污染物浓度拟合方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103712939A CN103712939A (zh) | 2014-04-09 |
CN103712939B true CN103712939B (zh) | 2016-07-20 |
Family
ID=50406087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310746841.2A Active CN103712939B (zh) | 2013-12-30 | 2013-12-30 | 一种基于紫外可见光谱的污染物浓度拟合方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103712939B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104730025B (zh) * | 2015-04-01 | 2017-04-26 | 河南工业大学 | 一种基于太赫兹光谱的混合物定量分析方法 |
CN105181619A (zh) * | 2015-08-31 | 2015-12-23 | 深圳华中科技大学研究院 | 一种具有变量选择功能的红外光谱定量分析方法 |
CN106153561A (zh) * | 2016-06-21 | 2016-11-23 | 中南大学 | 基于波长筛选的紫外可见光谱多金属离子检测方法 |
CN109459398B (zh) * | 2018-12-26 | 2021-02-23 | 南京波思途智能科技股份有限公司 | 一种光谱水质总氮指标检测方法 |
CN110210127B (zh) * | 2019-05-31 | 2020-11-06 | 山东大学 | 焊接工艺参数与焊道成型参数相关模型建立方法及系统 |
CN111487211B (zh) * | 2020-05-11 | 2022-09-30 | 安徽理工大学 | 非相干宽带腔增强吸收光谱拟合波段选择方法 |
CN112014344B (zh) * | 2020-08-21 | 2022-11-22 | 浙江全世科技有限公司 | 一种污水在线监测方法 |
CN112147895B (zh) * | 2020-09-23 | 2024-04-05 | 天津大学 | 外源干扰下的水动力循环智能反馈实时控制系统及方法 |
CN112365274B (zh) * | 2020-12-01 | 2022-08-23 | 苏州深蓝空间遥感技术有限公司 | 一种基于多源数据的高精度水污染溯源方法 |
CN112986169A (zh) * | 2021-03-11 | 2021-06-18 | 广东新一代工业互联网创新技术有限公司 | 一种基于采样轮廓波变换的紫外光谱污染物分类检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0694586A (ja) * | 1992-09-10 | 1994-04-05 | Masahiro Hori | 汚染物質サンプリング装置及び汚染物質平均濃度測定方法 |
US5371367A (en) * | 1993-04-13 | 1994-12-06 | Envirotest Systems Corp. | Remote sensor device for monitoring motor vehicle exhaust systems |
RU2059226C1 (ru) * | 1994-07-11 | 1996-04-27 | Акционерное общество закрытого типа "МЕЛДОК" | Спектральный коррелятор |
CN101275912A (zh) * | 2008-05-08 | 2008-10-01 | 中国农业大学 | 一种液体食品褐变检测方法 |
CN101349641A (zh) * | 2008-08-28 | 2009-01-21 | 南京大学 | 一种动态监测有机污染物的紫外光电方法和装置 |
CN101776590A (zh) * | 2010-02-01 | 2010-07-14 | 中国海洋大学 | 土壤中石油含量紫外分光光度测定方法 |
CN102305772A (zh) * | 2011-07-29 | 2012-01-04 | 江苏大学 | 基于遗传核偏最小二乘法的近红外光谱特征波长筛选方法 |
-
2013
- 2013-12-30 CN CN201310746841.2A patent/CN103712939B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0694586A (ja) * | 1992-09-10 | 1994-04-05 | Masahiro Hori | 汚染物質サンプリング装置及び汚染物質平均濃度測定方法 |
US5371367A (en) * | 1993-04-13 | 1994-12-06 | Envirotest Systems Corp. | Remote sensor device for monitoring motor vehicle exhaust systems |
RU2059226C1 (ru) * | 1994-07-11 | 1996-04-27 | Акционерное общество закрытого типа "МЕЛДОК" | Спектральный коррелятор |
CN101275912A (zh) * | 2008-05-08 | 2008-10-01 | 中国农业大学 | 一种液体食品褐变检测方法 |
CN101349641A (zh) * | 2008-08-28 | 2009-01-21 | 南京大学 | 一种动态监测有机污染物的紫外光电方法和装置 |
CN101776590A (zh) * | 2010-02-01 | 2010-07-14 | 中国海洋大学 | 土壤中石油含量紫外分光光度测定方法 |
CN102305772A (zh) * | 2011-07-29 | 2012-01-04 | 江苏大学 | 基于遗传核偏最小二乘法的近红外光谱特征波长筛选方法 |
Non-Patent Citations (5)
Title |
---|
"Genetic Algorithm Interval Partial Least Squares Regression Combined Successive Projections Algorithm for Variable Selection in Near-Infrared Quantitative Analysis of Pigment in Cucumber Leaves";ZOU XIAOBO et al.;《Society for Applied Spectroscopy》;20101231;第64卷(第7期);第786-794页 * |
"偏最小二乘法回归(Partial Least Squares Regression)";JerryLead;《http://www.cnblogs.com/jerrylead/archive/2011/08/21/2148625.html》;20110821;网页上"[pdf 版本]偏最小二乘法回归.pdf"、网页上第2-4部分 * |
"基于迭代初始化遗传算法的光谱波段选择及其在感冒液多组分测定中的应用";成飙 等;《光谱学与光谱分析》;20061031;第26卷(第10期);第1923-1926页第1-5部分 * |
"用遗传算法快速提取近红外光谱特征区域和特征波长";邹小波 等;《光学学报》;20070731;第27卷(第7期);第1316-1321页 * |
"遗传算法用于偏最小二乘方法建模中的变量筛选";褚小立 等;《分析化学(FENXI HUAXUE)研究简报》;20010430;第29卷(第4期);第437-442页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103712939A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103712939B (zh) | 一种基于紫外可见光谱的污染物浓度拟合方法 | |
CN109060760B (zh) | 分析模型建立方法、气体分析装置及方法 | |
CN101915753A (zh) | 基于遗传神经网络的激光诱导击穿光谱定量分析方法 | |
CN105447248B (zh) | 基于金属定量构效关系的海水急性基准预测方法 | |
CN105486655A (zh) | 基于红外光谱智能鉴定模型的土壤有机质快速检测方法 | |
CN111766210B (zh) | 一种近岸复杂海水硝酸盐氮多光谱测量方法 | |
CN117686442B (zh) | 一种氯离子扩散浓度检测方法、系统、介质及设备 | |
CN115221927A (zh) | 一种紫外-可见光谱的溶解有机碳检测方法 | |
CN115236044A (zh) | 荧光光谱法计算水环境中溶解性有机碳浓度的方法和装置 | |
Yang et al. | Teacher–Student Uncertainty Autoencoder for the Process-Relevant and Quality-Relevant Fault Detection in the Industrial Process | |
CN118380066A (zh) | 基于梯度提升集成学习算法与三维荧光的水质氨氮快速检测方法及设备 | |
Liu et al. | Detection of Apple Taste Information Using Model Based on Hyperspectral Imaging and Electronic Tongue Data. | |
CN111794744A (zh) | 一种井下实时监测地层水污染程度的方法 | |
CN109145403B (zh) | 一种基于样本共识的近红外光谱建模方法 | |
CN115165770B (zh) | 基于宽光谱及bpnn的水体cod与浊度同时检测方法 | |
CN114354666A (zh) | 基于波长频次选择的土壤重金属光谱特征提取、优化方法 | |
Tang et al. | Quantitative spectral analysis of dissolved gas in transformer oil based on the method of optimal directions | |
Zhang et al. | A deep spectral prediction network to quantitatively determine heavy metal elements in soil by X-ray fluorescence | |
Benjathapanun et al. | Binary encoded 2nd-differential spectrometry using UV-Vis spectral data and neural networks in the estimation of species type and concentration | |
CN118549367B (zh) | 一种基于改进最小二乘法的海水硝酸盐浓度测量方法 | |
Aguilera et al. | PLS and PCR methods in the assessment of coastal water quality | |
Johnson et al. | Assessing the use of RIVPACS-derived invertebrate taxonomic predictions for river management | |
CN113686823B (zh) | 基于透射光谱和PLS-Elman神经网络的水体亚硝酸盐含量估算方法 | |
Shan et al. | Quantitative near-infrared spectroscopic analysis of trimethoprim by artificial neural networks combined with modified genetic algorithm | |
Wu et al. | Classification and Quantitative Modeling Analysis of Groundwater Hardness based on Ultraviolet Absorption Spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: QIAN YUMIN SHANGHAI ZEAN INDUSTRY CO., LTD. Free format text: FORMER OWNER: QIAN YUMIN Effective date: 20150604 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20150604 Address after: 201599, No. 388, FA FA Road, Zhu Jing industrial area, Shanghai, Jinshan District Applicant after: Zhang Xianchao Applicant after: Qian Yumin Applicant after: Shanghai Zean Industrial Co., Ltd. Address before: 201599, No. 388, FA FA Road, Zhu Jing industrial area, Shanghai, Jinshan District Applicant before: Zhang Xianchao Applicant before: Qian Yumin |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200911 Address after: 201599 Shanghai city Jinshan District zhujingzhen in Road No. 388 Building 2 floor Room 102 Patentee after: SHANGHAI SUPRATEC MEMBRANE SCIENCE AND TECHNOLOGY Co.,Ltd. Address before: 201599, No. 388, FA FA Road, Zhu Jing industrial area, Shanghai, Jinshan District Co-patentee before: Qian Yumin Patentee before: Zhang Xianchao Co-patentee before: SHANGHAI ZEAN INDUSTRIAL Co.,Ltd. |