CN103691895B - 一种半固态金属的振动蛇形通道制备方法及装置 - Google Patents

一种半固态金属的振动蛇形通道制备方法及装置 Download PDF

Info

Publication number
CN103691895B
CN103691895B CN201310701547.XA CN201310701547A CN103691895B CN 103691895 B CN103691895 B CN 103691895B CN 201310701547 A CN201310701547 A CN 201310701547A CN 103691895 B CN103691895 B CN 103691895B
Authority
CN
China
Prior art keywords
serpentine channel
solid
semi
metal
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310701547.XA
Other languages
English (en)
Other versions
CN103691895A (zh
Inventor
毛卫民
朱文志
郑志凯
张兴孟
王伟番
陈艺骏
岳锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201310701547.XA priority Critical patent/CN103691895B/zh
Publication of CN103691895A publication Critical patent/CN103691895A/zh
Application granted granted Critical
Publication of CN103691895B publication Critical patent/CN103691895B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

本发明属于半固态金属成形技术领域,提供了一种半固态金属的振动蛇形通道制备方法及装置。将具有一定过热度的金属液浇入一垂直的或倾斜的带有机械振动特性的蛇形通道的上口内,在机械振动的作用下,过热金属液沿着蛇形通道内壁向下流动,直至蛇形通道的下出口,获得半固态金属。装置包括浇包、过热金属液、浇口杯、蛇形通道、电激机械振动器、电激振动控制器、半固态金属、收集容器、压室、冲头、定型和动型部分。本发明的优点在于:利用电激机械振动装置促进蛇形通道内金属液的冷却、形核和晶粒游离,蛇形通道内壁的挂料数量下降,清理工作难度降低,金属回炉数量和熔化能耗减少,且设备构造简单,生产成本低,适合半固态金属的制备。

Description

一种半固态金属的振动蛇形通道制备方法及装置
技术领域
本发明属于半固态金属成形技术领域,特别提供了一种半固态金属的振动蛇形通道制备方法及装置。
背景技术
20世纪70年代初,美国麻省理工学院(MIT)的Flemings等人发明了半固态金属成形技术,引起各国学者和工业界的广泛关注,随后各国学者对此进行了深入和广泛的基础理论和技术研究。由研究和实际应用可知,在半固态金属成形技术中,半固态金属的制备始终处于关键位置。据文献“Behaviorofmetalalloysinthesemisolidstate”(MCFlemings,MetallTrans,1991,22A:957-981)、“半固态金属浆料先进制备技术的研究进展”(毛卫民,铸造,2012,61(8):1-13)和《半固态金属成形技术》(毛卫民,北京:机械工业出版社,2004.6)报道,获得半固态金属的方法很多,如机械搅拌法、电磁搅拌法、应变引起的熔体激活法(straininducedmeltactivation,简称为SIMA)、紊流效应法、单螺旋搅拌法、双螺旋搅拌法、低过热度倾斜板浇注法、低过热度浇注和弱电磁搅拌法、压室电磁搅拌法、低过热度浇注和弱机械搅拌法、连续流变转换法(Continuousrheoconversionprocess,简称CRP)、偏旋热焓平衡法(Swirledenthalpyequilibrationdevice,简称为SEED)、旋转倾斜圆管法、波浪板形浇注法、超声振动法、控制浇注高度法、自孕育法、气泡搅拌法、倒锥形通道浇注法、蛇形通道浇注法、转桶机械剪切法、环状电磁搅拌法等。但是,为了降低半固态金属的制备成本或者为了改善半固态金属的制备工艺过程,世界各国的学者和专家仍然不断探索新的半固态金属的制备方法和制备装置。
中国专利ZL200710062977.6、ZL200710063091.3和文献“半固态A356铝合金浆料的蛇形通道制备和流变压铸工艺(陈正周,博士学位论文,北京科技大学,2011)”提出了半固态金属的蛇形通道浇注制备技术。在蛇形通道浇注制备技术中,首先将金属液的过热度控制到预定的浇注过热度,然后将金属液浇注到一个蛇形通道中,金属液顺序向下流过蛇形通道内的不同弯道;在金属液流经蛇形通道时,金属液会向蛇形通道不断传热,引起接触通道内壁的金属液层的过冷,因而该过冷金属液会沿着蛇形通道内壁发生初生晶粒的形核和长大;在这些初生晶粒形核和长大的过程中,初生晶粒根部产生溶质富集,同时初生晶粒又承受金属液的连续冲刷,部分初生晶粒会不断发生游离而离开通道内壁并进入金属熔体中;由于金属熔体不断向蛇形通道内壁散热和流动熔体的混合作用,最初浇入的过热金属熔体会逐渐进入整体过冷状态,从蛇形通道内壁游离并进入金属熔体中的大量初生晶粒会存活下来;金属熔体中的这些大密度的存活下来的初生晶粒会发生溶质场和温度场的相互干涉,从而抑制枝晶生长,这些初生晶粒逐渐长大为球状;当金属熔体到达蛇形通道出口处时,金属熔体已经处于固液两相区,内部包含有大量游离的球状初生晶粒,这就是半固态金属。这种半固态金属可以直接进行流变压铸成形、或流变挤压成形、或流变锻造成形,也可以将这些半固态金属收集到一个容器中,再经过适当的冷却凝固,可进一步提高半固态金属中的固相分数,用于流变成形高致密性的零件。总之,从上述制备技术的总体上看,蛇形通道浇注制备技术的过程比较简单,是一种低成本的半固态金属的制备方法。但在半固态金属制备过程中,由于沿着蛇形通道内壁形核的初生晶粒不能发生全部游离,剩余晶粒会不断长大,常常会堵塞蛇形通道,被迫终止半固态金属的制备过程,降低了蛇形通道的每次制备的半固态金属容量,不利于流变成形较大的零件。在半固态金属制备过程中,即使不会完全堵塞蛇形通道,也会在蛇形通道内产生大量挂料,挂料数量可占浇注金属重量的10%~30%,这大大增加了清理挂料的难度,也大大增加了金属回炉的数量和熔化能耗。因此,需要采取新的措施或方法来提高蛇形通道内壁上的初生晶粒的游离数量,大幅度减慢蛇形通道挂料的速度,大幅度减少蛇形通道内壁的挂料数量,以便简化清理工艺和降低清理工作难度及金属的回炉数量,也有利于流变成形较大型的零件。
发明内容
本发明的目的在于:提供一种半固态金属的振动蛇形通道制备方法及装置。以利用电激机械振动来促进蛇形通道内金属液的冷却、形核和晶粒游离,减少蛇形通道内壁的金属挂料数量,简化清理工艺和降低清理工作难度及金属的回炉数量。
本发明的具体工艺特征如下:
1、产生过热的金属液,将该过热金属液的温度预先控制在其液相线温度以上1~250℃,将该过热金属液浇入垂直或倾斜的带有机械振动特性的蛇形通道的上口内;在不断产生机械振动的过程中,该过热金属液沿着该蛇形通道内壁向下流动,直至蛇形通道的下出口,此时该金属熔体处于其固液两相区,即此时该金属熔体已经是半固态金属;该半固态金属再流入非磁性金属(即相对磁导率约为1的金属)或非金属的收集容器中,当半固态金属积累到一定的数量时即可进行后续的流变成形,或该半固态金属直接流入流变成形设备中流变成形。
2、该垂直或倾斜的带有机械振动特性的蛇形通道的高度为100~1000mm;蛇形通道的内径为5~100mm,蛇形通道的内部弧形弯道数量为1~10个;蛇形通道的材质可以是非金属、也可以是金属;在浇注过热金属液时,蛇形通道的温度低于该金属液的固相线温度。
3、在该过热金属液的浇注过程中,蛇形通道持续处于机械振动的作用下;该机械振动的振动频率为0.1Hz~50kHz、振幅为0.01mm~10mm。
4、在收集容器和蛇形通道中,可以通入保护气体来减少金属熔体的氧化;该保护气体可以是氩气或含SF6的气体。
一种半固态金属的振动蛇形通道制备装置分为四种形式:
附图1为第一种形式,装置由浇包1、过热金属液2、浇口杯3、蛇形通道4、电激机械振动器5、电激振动控制器6、半固态金属7、收集容器8构成,其中蛇形通道4为垂直的。浇包1与过热金属液2衔接,过热金属液2与浇口杯3衔接,浇口杯3与蛇形通道4衔接,蛇形通道4与电激机械振动器5衔接,电激机械振动器5与电激振动控制器6衔接,蛇形通道4与半固态金属7衔接,半固态金属7与收集容器8衔接。
附图2为第二种形式,装置由浇包1、过热金属液2、浇口杯3、蛇形通道4、电激机械振动器5、电激振动控制器6、半固态金属7、收集容器8构成,其中蛇形通道4为倾斜的。浇包1与过热金属液2衔接,过热金属液2与浇口杯3衔接,浇口杯3与蛇形通道4衔接,蛇形通道4与电激机械振动器5衔接,电激机械振动器5与电激振动控制器6衔接,蛇形通道4与半固态金属7衔接,半固态金属7与收集容器8衔接。
附图3为第三种形式,装置由浇包1、过热金属液2、浇口杯3、蛇形通道4、电激机械振动器5、电激振动控制器6、半固态金属7、压室9、冲头10、定型11和动型12构成,其中蛇形通道4为垂直的。浇包1与过热金属液2衔接,过热金属液2与浇口杯3衔接,浇口杯3与蛇形通道4衔接,蛇形通道4与电激机械振动器5衔接,电激机械振动器5与电激振动控制器6衔接,蛇形通道4与半固态金属7衔接,半固态金属7与压室9衔接,压室9与冲头10衔接,冲头10与定型11衔接,定型11与动型12衔接。
附图4为第四种形式,装置由浇包1、过热金属液2、浇口杯3、蛇形通道4、电激机械振动器5、电激振动控制器6、半固态金属7、压室9、冲头10、定型11和动型12构成,其中蛇形通道4是倾斜的。浇包1与过热金属液2衔接,过热金属液2与浇口杯3衔接,浇口杯3与蛇形通道4衔接,蛇形通道4与电激机械振动器5衔接,电激机械振动器5与电激振动控制器6衔接,蛇形通道4与半固态金属7衔接,半固态金属7与压室9衔接,压室9与冲头10衔接,冲头10与定型11衔接,定型11与动型12衔接。
收集容器的形状为圆柱形容器或多边棱柱形容器,收集容器的材质为相对磁导率约为1的金属或非金属。
本发明的优点在于:在电激机械振动装置的作用下,促进了蛇形通道内壁初生晶粒的形核和游离,明显增加了金属熔体中初生晶粒的密度,细化了半固态金属中初生晶粒的尺寸,也促使蛇形通道内壁挂料速度的明显下降,蛇形通道内壁的挂料数量大幅度减少,挂料数量可下降到浇注金属重量的5%以下,大大降低了清理工作的难度和工作量,也大大减少了金属回炉的数量和熔化能耗,每次浇注制备的半固态浆料的数量也大幅度提高,非常适合半固态金属的制备。
附图说明
图1是本发明的制备半固态金属的振动蛇形通道装置(第一种形式)示意图。
图2是本发明的制备半固态金属的振动蛇形通道装置(第二种形式)示意图。
图3是本发明的制备半固态金属的振动蛇形通道装置(第三种形式)示意图。
图4是本发明的制备半固态金属的振动蛇形通道装置(第四种形式)示意图。
其中1、浇包,2、过热金属液,3、浇口杯,4、蛇形通道,5、电激机械振动器,6、电激振动控制器,7、半固态金属,8、收集容器,9、压室,10、冲头,11、定型,12、动型。
具体实施方式
实施例1:
参照图1,这是按上述技术特点提供的第一种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的ZL101A铝合金液2(即亚共晶Al-7wt%Si-0.45wt%Mg铝合金,相当于美国牌号的A356铝合金)衔接;该过热的ZL101A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的高度为1000mm、内径为100mm,蛇形通道4的内部弧形弯道为6个,蛇形通道4由石墨制作;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为4mm、振动频率为10Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL101A铝合金7衔接;半固态ZL101A铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф80×200mm,浇注前收集容器8处于室温。将过热度为1℃的ZL101A铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态ZL101A铝合金7,制备半固态ZL101A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL101A铝合金2重量的4%,大大降低了清理工作的难度和工作量,大大减少了ZL101A铝合金回炉重熔的数量和熔化能耗。
实施例2:
参照图1,这是按上述技术特点提供的第一种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的ZL117铝合金液2(即过共晶Al-20wt%Si-1.8wt%Cu-1.0wt%RE铝合金)衔接;该过热的ZL117铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道的高度为400mm、内径为25mm,该蛇形通道的内部弧形弯道为3个,该蛇形通道的材质为石墨;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为4mm、振动频率为5Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL117铝合金7衔接;半固态ZL117铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф80×200mm,浇注前收集容器8处于室温。将过热度为45℃的ZL117铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态ZL117铝合金7,制备半固态ZL117铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL117铝合金2重量的2%,大大降低了清理工作的难度和工作量,大大减少了ZL117铝合金回炉重熔的数量和熔化能耗。
实施例3:
参照图1,这是按上述技术特点提供的第一种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的2024铝合金液2(即Al-4wt%Cu-1.5wt%Mg-0.6wt%Mn铝合金)衔接;该过热的2024铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道的高度为800mm、内径为25mm,该蛇形通道的内部弧形弯道为10个,该蛇形通道的材质为石墨;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为0.2mm、振动频率为100Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态2024铝合金7衔接;半固态2024铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф80×200mm,浇注前收集容器8处于室温。将过热度为100℃的2024铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态2024铝合金7,制备半固态2024铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注2024铝合金2重量的4.5%,大大降低了清理工作的难度和工作量,大大减少了2024铝合金回炉重熔的数量和熔化能耗。
实施例4:
参照图1,这是按上述技术特点提供的第一种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的AZ91D镁合金液2(即Mg-9wt%Al-0.7wt%Zn镁合金)衔接;该过热的AZ91D镁合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道的高度为500mm、内径为25mm,该蛇形通道的内部弧形弯道为4个,该蛇形通道的材质为石墨;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为0.2mm、振动频率为200Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态AZ91D镁合金7衔接;半固态AZ91D镁合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф80×200mm,浇注前收集容器8处于室温。将过热度为45℃的AZ91D镁合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态AZ91D镁合金7。在浇注该AZ91D镁合金液过程中,向该蛇形通道内吹入1%的SF6保护气体,该SF6气体的流量为每分钟0.03升。制备半固态AZ91D镁合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注AZ91D镁合金2重量的4%,大大降低了清理工作的难度和工作量,大大减少了AZ91D镁合金回炉重熔的数量和熔化能耗。
实施例5:
参照图1,这是按上述技术特点提供的第一种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的ZL101A铝合金液2(即亚共晶Al-7wt%Si-0.45wt%Mg铝合金,相当于美国牌号的A356铝合金)衔接;该过热的ZL101A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的高度为400mm、内径为25mm,蛇形通道4的内部弧形弯道为5个,蛇形通道4由纯铜制作;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为5mm、振动频率为35Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL101A铝合金7衔接;半固态ZL101A铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф80×200mm,浇注前收集容器8处于室温。将过热度为1℃的ZL101A铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态ZL101A铝合金7。当该收集容器8中的ZL101A铝合金7完全凝固后,即可得到半固态ZL101A铝合金坯料,该坯料可用于半固态ZL101A铝合金触变成形。制备半固态ZL101A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL101A铝合金2重量的1%,大大降低了清理工作的难度和工作量,大大减少了ZL101A铝合金回炉重熔的数量和熔化能耗。
实施例6:
参照图2,这是按上述技术特点提供的第二种形式的制备半固态金属的振动倾斜蛇形通道工艺流程及装置。该振动倾斜蛇形通道装置设置一浇包1,该浇包1与过热的ZL101A铝合金液2(即亚共晶Al-7wt%Si-0.45wt%Mg铝合金,相当于美国牌号的A356铝合金)衔接;该过热的ZL101A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的长度为400mm、内径为30mm,蛇形通道4的内部弧形弯道为4个,蛇形通道4由纯铜制作,蛇形通道4的长轴线与垂线的夹角为30度;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为10mm、振动频率为0.1Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL101A铝合金7衔接;半固态ZL101A铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф200×400mm,浇注前收集容器8处于室温。将过热度为125℃的ZL101A铝合金液2直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态ZL101A铝合金7,制备半固态ZL101A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL101A铝合金2重量的2%,大大降低了清理工作的难度和工作量,大大减少了ZL101A铝合金回炉重熔的数量和熔化能耗。
实施例7:
参照图2,这是按上述技术特点提供的第二种形式的制备半固态金属的振动倾斜蛇形通道工艺流程及装置。该振动倾斜蛇形通道装置设置一浇包1,该浇包1与过热的ZL101A铝合金液2(即亚共晶Al-7wt%Si-0.45wt%Mg铝合金,相当于美国牌号的A356铝合金)衔接;该过热的ZL101A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的长度为600mm、内径为30mm,蛇形通道4的内部弧形弯道为4个,蛇形通道4由纯铜制作,蛇形通道4的长轴线与垂线的夹角为0.5度;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为10mm、振动频率为0.1Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL101A铝合金7衔接;半固态ZL101A铝合金7与收集容器8衔接,收集容器8由奥氏体型不锈钢制作,收集容器8的内部尺寸为Ф200×400mm,浇注前收集容器8处于室温。将过热度为85℃的ZL101A铝合金液2直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入收集容器8中,即可得到半固态ZL101A铝合金7,制备半固态ZL101A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL101A铝合金2重量的2%,大大降低了清理工作的难度和工作量,大大减少了ZL101A铝合金回炉重熔的数量和熔化能耗。
实施例8:
参照图3,这是按上述技术特点提供的第三种形式的制备半固态金属的振动垂直蛇形通道工艺流程及装置。该振动垂直蛇形通道装置设置一浇包1,该浇包1与过热的ZL114A铝合金液2(即亚共晶Al-7wt%Si-0.6wt%Mg铝合金,相当于美国牌号的A357铝合金)衔接;该过热的ZL114A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的高度为100mm、内径为5mm,蛇形通道4的内部弧形弯道为1个,蛇形通道4由纯铜制作;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为0.1mm、振动频率为100Hz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL114A铝合金7衔接;半固态ZL114A铝合金7与压室9衔接;压室9与冲头10衔接;冲头10与定型11衔接;定型11与动型12衔接。将过热度为250℃的ZL114A铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入压室9中,制得半固态ZL114A铝合金7,制备半固态ZL114A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL114A铝合金2重量的1%,大大降低了清理工作的难度和工作量,大大减少了ZL114A铝合金回炉重熔的数量和熔化能耗。
实施例9:
参照图4,这是按上述技术特点提供的第四种形式的制备半固态金属的振动倾斜蛇形通道工艺流程及装置。该振动倾斜蛇形通道装置设置一浇包1,该浇包1与过热的ZL114A铝合金液2(即亚共晶Al-7wt%Si-0.65wt%Mg铝合金,相当于美国牌号的A357铝合金)衔接;该过热的ZL114A铝合金液2与浇口杯3衔接;该浇口杯3与蛇形通道4衔接,蛇形通道4的长度为400mm、内径为20mm,蛇形通道4的内部弧形弯道为4个,蛇形通道4由纯铜制作,蛇形通道4的长轴线与垂线的夹角为60度;蛇形通道4与电激机械振动器5衔接,电激机械振动器5的振幅为0.01mm、振动频率为50kHz;电激机械振动器5与电激振动控制器6衔接;蛇形通道4与半固态ZL114A铝合金7衔接;半固态ZL114A铝合金7与压室9衔接;压室9与冲头10衔接;冲头10与定型11衔接;定型11与动型12衔接。将过热度为45℃的ZL114A铝合金液直接浇入到该蛇形通道4上口内,并沿着该蛇形通道4的内壁流入压室9中,制得半固态ZL114A铝合金7,制备半固态ZL114A铝合金7的工艺流程结束后,蛇形通道4内壁的挂料数量占浇注ZL114A铝合金重量的2%,大大降低了清理工作的难度和工作量,大大减少了ZL114A铝合金回炉重熔的数量和熔化能耗。
为实施该发明的装置既适合于铝基合金的半固态金属的制备,也适合于镁基合金、锌基合金、铜基合金、镍基合金、钴基合金和铁基合金的半固态金属的制备。

Claims (2)

1.一种半固态金属的振动蛇形通道制备方法,其特征在于:将过热金属液(2)浇入垂直的或倾斜的带有机械振动特性的蛇形通道(4)的上口内,过热金属液(2)在机械振动中沿着蛇形通道(4)的内壁向下流动,直至蛇形通道(4)的下出口,最终流入收集容器(8)中或流入流变成形设备的料室或压室(9)中,获得该半固态金属(7),过热金属液的温度预先控制在其液相线温度以上1~250℃,在浇注过程中,通过电激振动控制器(6)控制电激机械振动器(5),使与电激机械振动器(5)衔接的蛇形通道(4)一直处于机械振动中,直至半固态金属(7)制备过程结束,在收集容器(8)和蛇形通道(4)中,通入保护气体,保护气体是氩气或含SF6的气体。
2.根据权利要求1所述的一种半固态金属的振动蛇形通道制备方法所用的振动蛇形通道装置,其特征在于:装置包括以下部分:浇包(1)、浇口杯(3)、蛇形通道(4)、电激机械振动器(5)、电激振动控制器(6)和收集容器(8)或浇包(1)、浇口杯(3)、蛇形通道(4)、电激机械振动器(5)、电激振动控制器(6)、压室(9)、冲头(10)、定型(11)和动型(12);其中,浇包(1)与过热金属液(2)衔接,过热金属液(2)与浇口杯(3)衔接,浇口杯(3)与蛇形通道(4)衔接,蛇形通道(4)与电激机械振动器(5)衔接,电激机械振动器(5)与电激振动控制器(6)衔接,蛇形通道(4)与半固态金属(7)衔接,半固态金属(7)与收集容器(8)衔接;或者,半固态金属(7)直接与压室(9)衔接,压室(9)与冲头(10)衔接,冲头(10)与定型(11)衔接,定型(11)与动型(12)衔接,所述电激机械振动器(5)的振动频率为0.1Hz-50KHz,振幅为0.01mm~10mm,所述带有机械振动特性的蛇形通道(4)的高度为100~1000mm,内径为5~100mm,蛇形通道(4)的内部弧形弯道数量为1~10个,所述倾斜的蛇形通道(4)的长轴线与垂线的夹角为0.5~60度。
CN201310701547.XA 2013-12-18 2013-12-18 一种半固态金属的振动蛇形通道制备方法及装置 Expired - Fee Related CN103691895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310701547.XA CN103691895B (zh) 2013-12-18 2013-12-18 一种半固态金属的振动蛇形通道制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310701547.XA CN103691895B (zh) 2013-12-18 2013-12-18 一种半固态金属的振动蛇形通道制备方法及装置

Publications (2)

Publication Number Publication Date
CN103691895A CN103691895A (zh) 2014-04-02
CN103691895B true CN103691895B (zh) 2016-05-11

Family

ID=50353647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310701547.XA Expired - Fee Related CN103691895B (zh) 2013-12-18 2013-12-18 一种半固态金属的振动蛇形通道制备方法及装置

Country Status (1)

Country Link
CN (1) CN103691895B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105750521B (zh) * 2016-03-02 2018-01-30 慈溪阿尔特新材料有限公司 一种能细化高硅铝合金初生硅的半固态流变压铸方法及其装置
CN106216617B (zh) * 2016-09-14 2018-04-17 湖南涉外经济学院 金属半固态浆料制备装置
CN107457386A (zh) * 2017-08-22 2017-12-12 广东工业大学 一种持续冷却蛇形流道半固态流变压铸装置
CN107803471A (zh) * 2017-11-21 2018-03-16 华南理工大学 一种用于铝合金组织细化的成型装置与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036860A1 (de) * 1997-02-19 1998-08-27 Gut Giesserei Umwelt Technik Gmbh Verfahren und vorrichtung zur herstellung von körpern auf metallischer basis in teilflüssigem zustand
CN101003863A (zh) * 2007-01-23 2007-07-25 北京科技大学 半固态合金浆料的制备和流变成型方法
CN101007342A (zh) * 2007-01-26 2007-08-01 北京科技大学 一种半固态合金浆料的制备和流变成型的设备
CN101032739A (zh) * 2006-03-08 2007-09-12 西北工业大学 一种铸造用半固态浆料的制备方法和制备装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036860A1 (de) * 1997-02-19 1998-08-27 Gut Giesserei Umwelt Technik Gmbh Verfahren und vorrichtung zur herstellung von körpern auf metallischer basis in teilflüssigem zustand
CN101032739A (zh) * 2006-03-08 2007-09-12 西北工业大学 一种铸造用半固态浆料的制备方法和制备装置
CN101003863A (zh) * 2007-01-23 2007-07-25 北京科技大学 半固态合金浆料的制备和流变成型方法
CN101007342A (zh) * 2007-01-26 2007-08-01 北京科技大学 一种半固态合金浆料的制备和流变成型的设备

Also Published As

Publication number Publication date
CN103691895A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
Nafisi et al. Semi-solid processing of aluminum alloys
CN100566890C (zh) 一种半固态合金浆料的制备和流变成型的设备
CN101660063B (zh) 制备半固态合金熔体的装置及生产AlSi9Mg半固态合金的工艺
CN102430732B (zh) 内外双向冷却连铸镁合金和铝合金锭坯装置与工艺
CN103691895B (zh) 一种半固态金属的振动蛇形通道制备方法及装置
Zhu et al. Preparation of semi-solid 7075 aluminum alloy slurry by serpentine pouring channel
CN101817064A (zh) 用于制备金属半固态浆料的装置及浆料的制备方法
CN100554455C (zh) 半固态合金浆料的制备和成型方法
CN107150116A (zh) 一种电磁调控自孕育处理制造大型铸锭的方法
CN100532596C (zh) 半固态合金浆料的制备和流变成型方法
CN105014020A (zh) 一种制备大直径半固态合金坯料的装置和方法
CN103639374B (zh) 一种制备半固态金属的振动倒锥形通道方法及装置
CN102266914B (zh) 一种半固态合金浆料的制备方法
CN102358922B (zh) 一种轻合金半固态浆料制备装置
BAI et al. Annulus electromagnetic stirring for preparing semisolid A357 aluminum alloy slurry
Bin et al. Microstructure evolution of semi-solid 7075 Al alloy slurry during temperature homogenization treatment
CN101745620B (zh) 一种低成本快速制备过共晶铝硅合金棒坯的方法
Khalifa et al. Microstructure characteristics and tensile property of ultrasonic treated-thixocast A356 alloy
CN204892888U (zh) 一种制备大直径半固态合金坯料的装置
CN107498010B (zh) 一种轻合金半固态浆料的制备工艺
CN100574939C (zh) 一种半固态合金浆料的制备与成型装置
CN103639375A (zh) 一种制备半固态金属的振动垂直直管通道方法及装置
CN101579723B (zh) 一种采用浇道自搅拌技术制备半固态浆料的方法及装置
Bin et al. Microstructure characteristics and mechanical properties of rheocasting 7075 aluminum alloy.
CN106890962A (zh) 一种复合制备半固态浆料的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20191218