CN103681935A - 非晶硅叠层太阳能电池 - Google Patents

非晶硅叠层太阳能电池 Download PDF

Info

Publication number
CN103681935A
CN103681935A CN201310424317.3A CN201310424317A CN103681935A CN 103681935 A CN103681935 A CN 103681935A CN 201310424317 A CN201310424317 A CN 201310424317A CN 103681935 A CN103681935 A CN 103681935A
Authority
CN
China
Prior art keywords
amorphous silicon
light absorbing
absorbing zone
type semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310424317.3A
Other languages
English (en)
Inventor
刘爽
曲鹏程
陈逢彬
何存玉
熊流峰
刘飒
钟智勇
刘永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310424317.3A priority Critical patent/CN103681935A/zh
Publication of CN103681935A publication Critical patent/CN103681935A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能转换效率较高的非晶硅叠层太阳能电池。该非晶硅叠层太阳能电池,包括依次层叠设置的透明玻璃衬底、TCO透明导电膜、第一P型半导体层、第一非晶硅光吸收层、第一N型半导体层、第二P型半导体层、第二非晶硅光吸收层、第二N型半导体层、金属电极,所述第一N型半导体层与第二P型半导体层之间设置有隧穿结,所述第一非晶硅光吸收层的厚度为600nm,所述第二非晶硅光吸收层的厚度为200nm~600nm,可以明显提高非晶硅叠层太阳能电池的转换效率,另外,隧穿结提供了缺陷能级,为两个子电池的载流子有利复合创造了条件,减少了载流子的不利复合,提高了叠层电池的转换效率,适合在太阳能利用技术领域推广应用。

Description

非晶硅叠层太阳能电池
技术领域
本发明涉及太阳能利用技术领域,具体涉及一种非晶硅叠层太阳能电池。
背景技术
太阳能取之不尽用之不竭,最有可能成为未来世界的主流能源,能很好的解决现存的能源危机,其中非晶硅薄膜电池具有生产成本低、能量回收时间短、适于大批量生产、弱光响应好以及易实现与建筑相结合、适用范围广等优点,在未来薄膜太阳能电池中将占据主要份额。
非晶硅太阳能电池的结构经过一系列的发展,不断克服着发展中的缺陷。最先提出的是非晶硅单结太阳能电池,非晶硅单结太阳能电池的结构包括依次层叠设置的透明玻璃衬底(起到衬底支撑作用和对下层结构的保护作用)、TCO透明导电膜(与金属电极一起构成电池的正负极)、P型半导体层(与N型半导体层一起构成太阳能电池的内建电场)、非晶硅光吸收层(吸收太阳光能并产生光生非平衡载流子)、N型半导体层、金属电极,其中非晶硅光吸收层作为非平衡载流子的产生层,P型半导体层和N型半导体层为电池提供了内建电场,进行非平衡载流子的收集。
单结非晶硅太阳能电池,由于非晶硅光吸收层的光学带隙宽度是固定的,约为1.7ev,因此只能单一的吸收波长为0.3~0.75微米的可见光,光谱利用率较低,同时,单结非晶硅太阳能电池为了尽可能增加太阳能转换效率,非晶硅光吸收层需要做得很厚,但较厚的非晶硅光吸收层反而增加了电池的不稳定性,即存在所谓的S-W效应(光至衰退效应),这会导致单结非晶硅太阳能电池随着光照时间的增加,太阳能转换效率会降低10%-20%,因此,拓宽非晶硅太阳能电池对光谱的响应范围,降低S-W效应,是非晶硅太阳能电池发展的必然趋势。
为了拓宽非晶硅太阳能电池对光谱的响应范围,降低S-W效应,人们在单结非晶硅太阳能电池的基础上提出了非晶硅叠层太阳能电池。非晶硅叠层太阳能电池的结构包括依次层叠设置的透明玻璃衬底、TCO透明导电膜、第一P型半导体层、第一非晶硅光吸收层、第一N型半导体层、第二P型半导体层、第二非晶硅光吸收层、第二N型半导体层、金属电极,非晶硅叠层太阳能电池相当于两个pin结构的单结非晶硅太阳能子电池(顶电池和底电池)的串联结构。
非晶硅叠层太阳能电池利用PECVD等薄膜沉积技术依次沉积两个pin结构的太阳能电池,其中,顶电池吸收能量较大的光波段,底电池吸收能量较小的光波段,扩展了光谱的响应;同时非晶硅光吸收层的薄化,使得两个子电池的内建电场有所增大,这样有利于非平衡载流子快速从非晶硅光吸收层中抽出,避免了载流子的复合损失,从而有利于提高太阳能转换效率并降低S-W效应。
但是,非晶硅叠层太阳能电池随即带来了一些新的问题,影响着电池的转换效率。由于两个子电池相互串联,流经两个子电池的电流必然相等,即两个子电池中产生的最小电流为最终输出的电流,所以必须调节顶电池或底电池非晶硅光吸收层的厚度,使两个个子电池的电流相匹配,才能获得较好的转换效率,如不考虑厚度,则顶电池和底电池皆可成为限制条件,从而影响电池的转换效率,现有的非晶硅叠层太阳能电池的顶电池和底电池非晶硅光吸收层的厚度没有一个合理的数值,导致现有的电池转换效率较低,一般只有11.231%。
发明内容
本发明所要解决的技术问题是提供一种太阳能转换效率较高的非晶硅叠层太阳能电池。
本发明解决上述技术问题所采用的技术方案是:该非晶硅叠层太阳能电池,包括依次层叠设置的透明玻璃衬底、TCO透明导电膜、第一P型半导体层、第一非晶硅光吸收层、第一N型半导体层、第二P型半导体层、第二非晶硅光吸收层、第二N型半导体层、金属电极,所述第一N型半导体层与第二P型半导体层之间设置有隧穿结,所述第一非晶硅光吸收层的厚度为600nm,所述第二非晶硅光吸收层的厚度为200nm~600nm。
进一步的是,所述第二非晶硅光吸收层的厚度为400nm。
进一步的是,所述第一非晶硅光吸收层采用非晶硅材料制作而成,所述第二非晶硅光吸收层采用非晶锗硅材料制作而成。
进一步的是,所述第一非晶硅光吸收层的光学带隙宽度为1.70ev~1.82ev,所述第二非晶硅光吸收层光学带隙宽度为1.30ev~1.52ev。
进一步的是,所述第一非晶硅光吸收层的光学带隙宽度为1.82ev,所述第二非晶硅光吸收层光学带隙宽度为1.52ev。
进一步的是,所述隧穿结由缺陷态密度大、光学带隙宽度小的材料制作而成。
进一步的是,所述的隧穿结的厚度为2nm,光学带隙宽度为0.45ev。
本发明的有益效果:本发明对非晶硅叠层太阳能电池的第一非晶硅光吸收层的厚度、第二非晶硅光吸收层的厚度进行优化,即所述第一非晶硅光吸收层的厚度为600nm,所述第二非晶硅光吸收层的厚度为200nm~600nm,可以明显提高非晶硅叠层太阳能电池的转换效率,另外,隧穿结提供了缺陷能级,为两个子电池的载流子有利复合创造了条件,减少了载流子的不利复合,提高了叠层电池的转换效率,再者,本发明所述非晶硅叠层太阳能电池的第一非晶硅光吸收层、第二非晶硅光吸收层的厚度较小,可以减小吸收层中的缺陷态密度,降低了光致衰退效应对电池效率产生的影响。
附图说明
图1是本发明非晶硅叠层太阳能电池的结构示意图;
图2是根据实施例得到的I-V曲线图;
图3是根据实施例得到的量子效率曲线图;
图中标记说明:透明玻璃衬底1、TCO透明导电膜2、第一P型半导体层3、第一非晶硅光吸收层4、第一N型半导体层5、隧穿结6、第二P型半导体层7、第二非晶硅光吸收层8、第二N型半导体层9、金属电极10。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。
如图1所示,该非晶硅叠层太阳能电池,包括依次层叠设置的透明玻璃衬底1、TCO透明导电膜2、第一P型半导体层3、第一非晶硅光吸收层4、第一N型半导体层5、第二P型半导体层7、第二非晶硅光吸收层8、第二N型半导体层9、金属电极10,所述第一N型半导体层5与第二P型半导体层7之间设置有隧穿结6,所述第一非晶硅光吸收层4的厚度为600nm,所述第二非晶硅光吸收层8的厚度为200nm~600nm。本发明对非晶硅叠层太阳能电池的第一非晶硅光吸收层4的厚度、第二非晶硅光吸收层8的厚度进行优化,即所述第一非晶硅光吸收层4的厚度为600nm,所述第二非晶硅光吸收层8的厚度为200nm~600nm,可以明显提高非晶硅叠层太阳能电池的转换效率,另外,隧穿结6提供了缺陷能级,为两个子电池的载流子有利复合创造了条件,减少了载流子的不利复合,提高了叠层电池的转换效率,再者,本发明所述非晶硅叠层太阳能电池的第一非晶硅光吸收层4、第二非晶硅光吸收层8的厚度较小,可以减小吸收层中的缺陷态密度,降低了光致衰退效应对电池效率产生的影响。
所述第一非晶硅光吸收层4、第二非晶硅光吸收层8的厚度既不能太厚也不能太薄,如果太厚,会增加整个太阳能电池的串联电阻,导致电池效率下降,如果太薄,光在吸收层中不能完全吸收,不足以产生足够的非平衡载流子,因此,作为优选的,所述第一非晶硅光吸收层4的厚度为600nm,所述第二非晶硅光吸收层8的厚度为400nm。
在上述实施方式中,所述第一非晶硅光吸收层4采用非晶硅材料制作而成,所述第二非晶硅光吸收层8采用非晶锗硅材料制作而成,这样第一非晶硅光吸收层4与第二非晶硅光吸收层8的光学带隙宽度不同,使其对应吸收不同波长范围的太阳光,使得太阳能光谱的利用率大大提高。
为了增大非晶硅叠层太阳能电池对光谱的利用率,所述第一非晶硅光吸收层4的光学带隙宽度为一般要大于第二非晶硅光吸收层8光学带隙宽度,采取这样分布的原因是,如果第一非晶硅光吸收层4的光学带隙宽度小于第二非晶硅光吸收层8的光学带隙宽度,由于第一非晶硅光吸收层4在最顶层,由于其光学带隙宽度最小,所以能量大于其光学带隙宽度的光波都会使其产生非平衡载流子,那么最下面光学带隙宽度较宽的第二非晶硅光吸收层8只能吸收较少的光,因此,所述第一非晶硅光吸收层4的光学带隙宽度为一般要大于第二非晶硅光吸收层8光学带隙宽度,具体的,所述第一非晶硅光吸收层4的光学带隙宽度为1.70ev~1.82ev,所述第二非晶硅光吸收层8光学带隙宽度为1.30ev~1.52ev。为了进一步增大非晶硅叠层太阳能电池对光谱的利用率,所述第一非晶硅光吸收层4的光学带隙宽度优选为1.82ev,所述第二非晶硅光吸收层8光学带隙宽度优选为1.52ev。
为了进一步为两个子电池的载流子有利复合创造了条件,减少了载流子的不利复合,提高了叠层电池的转换效率,所述隧穿结6由缺陷态密度大、光学带隙宽度小的材料制作而成。进一步的,所述的隧穿结6的厚度为2nm,光学带隙宽度为0.45ev。
实施例
本实施例中所述的非晶硅叠层太阳能电池的一些参数如表1所示:
表1
本发明对上述参数的非晶硅叠层太阳能电池以及单结太阳能电池分别进行仿真,得到如图2所示的I-V曲线图,其中,曲线1是单结太阳能电池的I-V曲线图,曲线2是非晶硅叠层太阳能电池的I-V曲线图,由图2可以看出,本发明所述的非晶硅叠层太阳能电池提高了电池的开路电压,填充因子,和转换效率11.231%的传统叠层电池相比,本发明所述的非晶硅叠层太阳能电池的转换效率达到了16.496%。
本发明还对上述参数的非晶硅叠层太阳能电池进行了仿真实验,得到了如图3所示的该非晶硅叠层太阳能电池的量子效率曲线,其中,曲线1是真空能级,曲线2是导带,曲线3是价带,曲线4是费米能级,在叠层电池的隧穿结里,顶电池的光生电子和底电池的光生空穴在图3中的5所标记的位置处进行有效的复合。
另外,在第一非晶硅光吸收层4的光学带隙宽度为1.82ev、第二非晶硅光吸收层8光学带隙宽度为1.52ev、第一非晶硅光吸收层4的厚度为600nm的前提下,当第二非晶硅光吸收层8的厚度在200nm~600nm范围变化时,电池的转换效率如表2所示:
表2
第一非晶硅光吸收层厚度 第二非晶硅光吸收层厚度 转换效率
600nm 600nm 16.225%
600nm 500nm 16.379%
600nm 400nm 16.496%
600nm 300nm 16.401%
600nm 200nm 16.271%
由表2可知,当第一非晶硅光吸收层4厚度为600nm,第二非晶硅光吸收层8厚度为400nm时,电池的转换效率达到最大,最大值为16.496%。
在所述第一非晶硅光吸收层4的厚度为600nm、第二非晶硅光吸收层8的厚度为400nm的前提下,当第一非晶硅光吸收层4的光学带隙宽度在1.70ev~1.82ev变化、第二非晶硅光吸收层8光学带隙宽度在1.30ev~1.52ev变化时,电池的转换效率如表3所示:
表3
Figure BDA0000383220120000051
Figure BDA0000383220120000061
由表3可以得知,在第一非晶硅光吸收层4为600nm,光学带隙宽度为1.82ev,第一非晶硅光吸收层4厚度为400nm,光学带隙宽度为1.52ev,并带有隧穿结6条件下,得到了电池的转换效率最大值为16.496%。

Claims (7)

1.非晶硅叠层太阳能电池,包括依次层叠设置的透明玻璃衬底(1)、TCO透明导电膜(2)、第一P型半导体层(3)、第一非晶硅光吸收层(4)、第一N型半导体层(5)、第二P型半导体层(7)、第二非晶硅光吸收层(8)、第二N型半导体层(9)、金属电极(10),所述第一N型半导体层(5)与第二P型半导体层(7)之间设置有隧穿结(6),其特征在于:所述第一非晶硅光吸收层(4)的厚度为600nm,所述第二非晶硅光吸收层(8)的厚度为200nm~600nm。
2.如权利要求1所述的非晶硅叠层太阳能电池,其特征在于:所述第二非晶硅光吸收层(8)的厚度为400nm。
3.如权利要求1或2所述的非晶硅叠层太阳能电池,其特征在于:所述第一非晶硅光吸收层(4)采用非晶硅材料制作而成,所述第二非晶硅光吸收层(8)采用非晶锗硅材料制作而成。
4.如权利要求3所述的非晶硅叠层太阳能电池,其特征在于:所述第一非晶硅光吸收层(4)的光学带隙宽度为1.70ev~1.82ev,所述第二非晶硅光吸收层(8)光学带隙宽度为1.30ev~1.52ev。
5.如权利要求4所述的非晶硅叠层太阳能电池,其特征在于:所述第一非晶硅光吸收层(4)的光学带隙宽度为1.82ev,所述第二非晶硅光吸收层(8)光学带隙宽度为1.52ev。
6.如权利要求5所述的非晶硅叠层太阳能电池,其特征在于:所述隧穿结(6)由缺陷态密度大、光学带隙宽度小的材料制作而成。
7.如权利要求6所述的非晶硅叠层太阳能电池,其特征在于:所述的隧穿结(6)的厚度为2nm,光学带隙宽度为0.45ev。
CN201310424317.3A 2013-09-17 2013-09-17 非晶硅叠层太阳能电池 Pending CN103681935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310424317.3A CN103681935A (zh) 2013-09-17 2013-09-17 非晶硅叠层太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310424317.3A CN103681935A (zh) 2013-09-17 2013-09-17 非晶硅叠层太阳能电池

Publications (1)

Publication Number Publication Date
CN103681935A true CN103681935A (zh) 2014-03-26

Family

ID=50318852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310424317.3A Pending CN103681935A (zh) 2013-09-17 2013-09-17 非晶硅叠层太阳能电池

Country Status (1)

Country Link
CN (1) CN103681935A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN113471312A (zh) * 2021-07-07 2021-10-01 安徽华晟新能源科技有限公司 一种异质结电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272641A (en) * 1979-04-19 1981-06-09 Rca Corporation Tandem junction amorphous silicon solar cells
CN1542988A (zh) * 2003-09-25 2004-11-03 李 毅 单室沉积非晶硅叠层太阳能电池及制造方法
US20100083999A1 (en) * 2008-10-01 2010-04-08 International Business Machines Corporation Tandem nanofilm solar cells joined by wafer bonding
CN102751372A (zh) * 2012-07-04 2012-10-24 圣睿太阳能科技(镇江)有限公司 具有NIP隧穿结的a-Si/μc-SiGe叠层太阳能电池及其制造方法
CN103077981A (zh) * 2011-10-26 2013-05-01 上海空间电源研究所 柔性衬底硅基多结叠层薄膜太阳电池及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272641A (en) * 1979-04-19 1981-06-09 Rca Corporation Tandem junction amorphous silicon solar cells
CN1542988A (zh) * 2003-09-25 2004-11-03 李 毅 单室沉积非晶硅叠层太阳能电池及制造方法
US20100083999A1 (en) * 2008-10-01 2010-04-08 International Business Machines Corporation Tandem nanofilm solar cells joined by wafer bonding
CN103077981A (zh) * 2011-10-26 2013-05-01 上海空间电源研究所 柔性衬底硅基多结叠层薄膜太阳电池及其制造方法
CN102751372A (zh) * 2012-07-04 2012-10-24 圣睿太阳能科技(镇江)有限公司 具有NIP隧穿结的a-Si/μc-SiGe叠层太阳能电池及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN113257940B (zh) * 2020-02-13 2023-12-29 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN113471312A (zh) * 2021-07-07 2021-10-01 安徽华晟新能源科技有限公司 一种异质结电池及其制备方法

Similar Documents

Publication Publication Date Title
Ranabhat et al. An introduction to solar cell technology
CN103077980B (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN107564989A (zh) 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
CN102306666A (zh) 一种具有梯度能带的铜铟镓硒太阳能电池及其制备方法
CN203481251U (zh) 一种薄膜太阳能电池
Matin et al. A study towards the possibility of ultra thin Cds/CdTe high efficiency solar cells from numerical analysis
CN101707224A (zh) 柔性非晶硅薄膜太阳能电池及其制备方法
CN102117860B (zh) 三结叠层太阳能薄膜电池及其制备方法
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
CN104867997A (zh) 一种叠层太阳能电池及其制备方法
CN101882653B (zh) 基于纳米CdS薄膜的太阳能电池制备方法
CN103681935A (zh) 非晶硅叠层太阳能电池
CN102856399A (zh) 一种多吸收层纵向分布的非晶硅太阳能电池
CN102856420A (zh) 一种多吸收层横向分布的非晶硅太阳能电池
CN106409961B (zh) 一种n-Si/CdSSe叠层太阳电池及其制备方法
CN101719521A (zh) 一种Si/FeSi2/Si组成三明治结构的太阳能电池及其制造方法
CN206460967U (zh) 一种碲化镉薄膜太阳能电池
CN101901847B (zh) 一种薄膜太阳能电池
CN101908569B (zh) 一种太阳能电池
CN105470339A (zh) 一种纳米硅薄膜多结太阳能电池
CN201708168U (zh) 太阳能电池
CN202957277U (zh) 异质结叠层薄膜太阳电池
CN201708169U (zh) 薄膜光伏太阳能电池
CN104241431B (zh) 一种叠层太阳能电池及其制备方法
CN101908568A (zh) 一种薄膜光伏太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326