CN103681800B - Multi-time programmable semiconductor device and manufacturing method thereof - Google Patents
Multi-time programmable semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN103681800B CN103681800B CN201210326597.XA CN201210326597A CN103681800B CN 103681800 B CN103681800 B CN 103681800B CN 201210326597 A CN201210326597 A CN 201210326597A CN 103681800 B CN103681800 B CN 103681800B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor device
- substrate
- grid
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 72
- 239000010410 layer Substances 0.000 claims description 187
- 239000000463 material Substances 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 29
- 238000005530 etching Methods 0.000 claims description 19
- 229910021332 silicide Inorganic materials 0.000 claims description 16
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 239000011229 interlayer Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000012212 insulator Substances 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- -1 bottom Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 4
- 229910002244 LaAlO3 Inorganic materials 0.000 claims 2
- 229910015468 Ni1-xCox Inorganic materials 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims 2
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 229910003978 SiClx Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 claims 1
- 238000002513 implantation Methods 0.000 abstract description 20
- 230000010354 integration Effects 0.000 abstract description 6
- 238000000206 photolithography Methods 0.000 description 11
- 239000007943 implant Substances 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 6
- 229910052735 hafnium Inorganic materials 0.000 description 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- 101100521334 Mus musculus Prom1 gene Proteins 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910019001 CoSi Inorganic materials 0.000 description 3
- 229910003855 HfAlO Inorganic materials 0.000 description 3
- 229910004129 HfSiO Inorganic materials 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 description 2
- 229910005883 NiSi Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021340 platinum monosilicide Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/6891—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6215—Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/681—Floating-gate IGFETs having only two programming levels
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
本发明公开了多次可编程半导体器件,包括:多个鳍形结构,位于衬底上且沿平行于衬底表面的第一方向延伸分布,包括衬底注入区、埋氧层、顶层;沟道区,位于多个鳍形结构的顶层中;源漏区,位于多个鳍形结构的顶层中沟道区两端;栅极绝缘层,位于沟道区的顶部以及侧部,沿平行于衬底表面的第二方向延伸分布;浮栅,位于多个鳍形结构的第二方向上的两侧;编程/擦除栅,由衬底注入区构成,位于埋氧层下方。依照本发明的多次可编程半导体器件及其制造方法,利用衬底注入区来形成FinFET的编程/擦除栅,简化了器件结构,并缩减了制造工序,提高了器件的集成密度,适用于多次可编程存储器。
The invention discloses a multi-time programmable semiconductor device, comprising: a plurality of fin-shaped structures located on a substrate and extending and distributed along a first direction parallel to the surface of the substrate, including a substrate implantation region, a buried oxide layer, and a top layer; a trench The channel region is located in the top layer of the plurality of fin structures; the source and drain regions are located at both ends of the channel region in the top layer of the plurality of fin structures; the gate insulating layer is located on the top and side of the channel region and is parallel to The substrate surface extends in the second direction; the floating gate is located on both sides of the plurality of fin structures in the second direction; the programming/erasing gate is formed by the substrate implantation region and is located under the buried oxide layer. According to the multi-time programmable semiconductor device and its manufacturing method of the present invention, the programming/erasing gate of the FinFET is formed by using the substrate implantation region, which simplifies the device structure, reduces the manufacturing process, improves the integration density of the device, and is suitable for Multiple times programmable memory.
Description
技术领域technical field
本发明涉及一种多次可编程半导体器件及其制造方法,特别是涉及一种高密度、适用于鳍形场效应晶体管(FinFET)技术的多次可编程半导体器件及其制造方法。The invention relates to a multi-time programmable semiconductor device and a manufacturing method thereof, in particular to a high-density multi-time programmable semiconductor device suitable for Fin Field Effect Transistor (FinFET) technology and a manufacturing method thereof.
背景技术Background technique
随着CMOS工艺特征尺寸持续等比例缩减,MOS存储器结构发展迅速,出现了各种类型的存储器单元结构。DRAM虽然集成度高功耗低但是无法长期保存信息,而SRAM虽然可以长期保存信息但是面积大集成度低。当前的技术发展逐渐着眼于ROM,特别是电可擦除的E2PROM。As the feature size of the CMOS process continues to shrink proportionally, the MOS memory structure develops rapidly, and various types of memory cell structures appear. Although DRAM has high integration and low power consumption, it cannot store information for a long time, while SRAM can store information for a long time, but it has a large area and low integration. Current technological developments are gradually focusing on ROMs, especially electrically erasable E 2 PROMs.
现有的E2PROM单元中,利用薄氧化层的F-N隧道效应实现电擦除,通常包括沟道区上依次叠置超薄的隧道氧化层、多晶硅的浮栅、层间介电质、多晶硅或金属的控制栅。然而因为传统的MOSFET中亚阈值漏电,这种结构在小尺寸器件中的性能大大降低。此外,阈值电压的变化严重限制了驱动强度和响应速度。In the existing E 2 PROM unit, the FN tunneling effect of the thin oxide layer is used to realize electrical erasure, which usually includes an ultra-thin tunnel oxide layer, a floating gate of polysilicon, an interlayer dielectric, and a polysilicon layer stacked in sequence on the channel region. or metal control grid. However, due to the subthreshold leakage in conventional MOSFETs, the performance of this structure is greatly degraded in small-scale devices. Furthermore, variations in threshold voltage severely limit the drive strength and response speed.
一种有效地解决方案是利用FinFET来实现E2PROM,通过改变浮栅的电荷来提高或减小晶体管的阈值电压,从而为芯片提供较高的性能和较低的功耗。然而,现有的FinFET实现的E2PROM结构过于复杂、器件面积较大,工艺成本高昂、集成密度低,难以适用于大规模的存储器单元阵列制造。An effective solution is to use FinFET to realize E 2 PROM, and increase or decrease the threshold voltage of the transistor by changing the charge of the floating gate, thus providing higher performance and lower power consumption for the chip. However, the structure of the existing E 2 PROM implemented by FinFET is too complex, the device area is large, the process cost is high, and the integration density is low, so it is difficult to be suitable for large-scale memory cell array manufacturing.
总而言之,当前的多次可编程半导体器件结构复杂、成本高昂、效率较低,亟需改进。All in all, the current multi-time programmable semiconductor devices are complex in structure, high in cost and low in efficiency, and are in urgent need of improvement.
发明内容Contents of the invention
因此,本发明的目的在于提供一种高密度集成的、适用于FinFET技术的多次可编程半导体器件及其制造方法。Therefore, the object of the present invention is to provide a high-density integrated multi-time programmable semiconductor device suitable for FinFET technology and a manufacturing method thereof.
本发明提供了一种多次可编程半导体器件,包括:多个鳍形结构,位于衬底上且沿平行于衬底表面的第一方向延伸分布,包括衬底注入区、埋氧层、顶层;沟道区,位于多个鳍形结构的顶层中;源漏区,位于多个鳍形结构的顶层中沟道区两端;栅极绝缘层,位于沟道区的顶部以及侧部,沿平行于衬底表面的第二方向延伸分布;浮栅,位于多个鳍形结构的第二方向上的两侧;编程/擦除栅,由衬底注入区构成,位于埋氧层下方。The present invention provides a multiple-time programmable semiconductor device, comprising: a plurality of fin-shaped structures located on a substrate and extending along a first direction parallel to the surface of the substrate, including a substrate implantation region, a buried oxide layer, and a top layer The channel region is located in the top layer of the plurality of fin structures; the source and drain regions are located at both ends of the channel region in the top layer of the plurality of fin structures; the gate insulating layer is located on the top and sides of the channel region along the The distribution extends in the second direction parallel to the surface of the substrate; the floating gate is located on both sides of the plurality of fin structures in the second direction; the programming/erasing gate is formed by the substrate implantation region and is located under the buried oxide layer.
进一步包括:层间介质层,覆盖多个鳍形结构、栅极绝缘层、控制栅、浮栅;源漏接触孔与编程/擦除栅接触孔,形成在层间介质层中,分别暴露源漏区以及作为编程/擦除栅的衬底注入区;金属硅化物,形成在源漏接触孔与编程/擦除栅接触孔中;连接线,通过金属硅化物与源漏区以及作为编程/擦除栅的衬底注入区电连接。It further includes: an interlayer dielectric layer covering a plurality of fin structures, a gate insulating layer, a control gate, and a floating gate; source-drain contact holes and programming/erasing gate contact holes are formed in the interlayer dielectric layer to respectively expose source The drain region and the substrate implantation region as the programming/erasing gate; the metal silicide is formed in the source-drain contact hole and the programming/erasing gate contact hole; the connection line is used as the programming/erasing gate through the metal silicide and the source-drain region and as the programming/erasing gate The substrate implant region of the erase gate is electrically connected.
其中,多个鳍形结构还包括位于顶层之上的盖层。Wherein, the plurality of fin structures further include a capping layer on the top layer.
其中,栅极绝缘层包括氧化硅、氮化硅、氮氧化硅、高k材料及其组合。其中,高k材料包括选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料,或是包括选自ZrO2、La2O3、LaAlO3、TiO2、Y2O3的稀土基高K介质材料,或是包括Al2O3,以其上述材料的复合层。Wherein, the gate insulating layer includes silicon oxide, silicon nitride, silicon oxynitride, high-k materials and combinations thereof. Wherein, the high-k material includes hafnium-based materials selected from HfO 2 , HfSiO x , HfSiON, HfAlO x , HfTaO x , HfLaO x , HfAlSiO x , HfLaSiO x , or includes hafnium-based materials selected from ZrO 2 , La 2 O 3 , LaAlO 3 , TiO 2 , Y 2 O 3 rare earth-based high-K dielectric material, or a composite layer including Al 2 O 3 and the above materials.
其中,浮栅包括多晶硅、金属、所述金属的合金、所述金属的氮化物及其组合。其中,所述金属包括Al、Ta、Ti及其组合。Wherein, the floating gate includes polysilicon, metals, alloys of the metals, nitrides of the metals and combinations thereof. Wherein, the metal includes Al, Ta, Ti and combinations thereof.
其中,金属硅化物的材质包括Ni S i2-y、PtS i2-y、CoSi2-y、Ni1-xPtxSi2-y、Ni1- xCoxSi2-y、Pt1-xCoxSi2-y、Ni2-x-zPtxCozSi3-y,其中x、z大于0小于1,y大于等于0小于等于1。Among them, the metal silicide materials include Ni Si 2-y , PtS i 2-y , CoSi 2-y , Ni 1-x Pt x Si 2-y , Ni 1- x Co x Si 2-y , Pt 1 -x Co x Si 2-y , Ni 2-xz Pt x Co z Si 3-y , where x and z are greater than 0 and less than 1, and y is greater than or equal to 0 and less than or equal to 1.
其中,连接线的材质包括W、Cu、Al、Ti、Ta及其组合。Wherein, the material of the connecting wire includes W, Cu, Al, Ti, Ta and combinations thereof.
本发明还提供了一种多次可编程半导体器件制造方法,包括步骤:在衬底上形成沿平行于衬底表面的第一方向延伸分布的多个鳍形结构,包括衬底注入区、埋氧层、顶层;在多个鳍形结构顶部以及两侧形成栅极绝缘层;在栅极绝缘层两侧形成栅极导电层;光刻/刻蚀栅极导电层,仅在位于顶层中的沟道区两侧保留部分的栅极导电层,作为浮栅;光刻/刻蚀多个鳍形结构,暴露部分的衬底注入区;形成源漏接触,以及形成连接到暴露的衬底注入区的编程/擦除栅接触。The present invention also provides a manufacturing method of a multi-time programmable semiconductor device, comprising the steps of: forming a plurality of fin-shaped structures extending along a first direction parallel to the surface of the substrate on the substrate, including substrate implantation regions, buried Oxygen layer, top layer; form a gate insulating layer on the top and both sides of multiple fin structures; form a gate conductive layer on both sides of the gate insulating layer; photolithography/etch the gate conductive layer, only in the top layer Retain part of the gate conductive layer on both sides of the channel region as a floating gate; photolithography/etch multiple fin structures to expose part of the substrate implant region; form source and drain contacts, and form connections to the exposed substrate implant region’s program/erase gate contacts.
其中,形成多个鳍形结构的步骤进一步包括:对包括底层、埋氧层和顶层的衬底进行掺杂注入,在埋氧层下方的底层中形成衬底注入区,构成编程/擦除栅;光刻/刻蚀衬底,直至暴露未掺杂的底层,形成沿平行于衬底表面的第一方向延伸分布的多个鳍形结构。Wherein, the step of forming a plurality of fin structures further includes: performing dopant implantation on the substrate including the bottom layer, buried oxide layer and top layer, forming a substrate implantation region in the bottom layer below the buried oxide layer to form a programming/erasing gate ; Photolithography/etching the substrate until the undoped bottom layer is exposed, forming a plurality of fin-shaped structures extending and distributed along a first direction parallel to the substrate surface.
其中,光刻/刻蚀栅极导电层的步骤进一步包括:在衬底、栅极导电层、栅极绝缘层上形成沿平行于衬底表面的第二方向延伸部分的硬掩膜图形;以硬掩膜图形为掩膜,刻蚀栅极导电层,仅留下被硬掩膜图形覆盖的部分栅极导电层,其中硬掩膜图形下方的顶层构成沟道区,沟道区两端的顶层构成源漏区。Wherein, the step of photolithography/etching the gate conductive layer further includes: forming a hard mask pattern extending along a second direction parallel to the substrate surface on the substrate, the gate conductive layer, and the gate insulating layer; The hard mask pattern is a mask, and the gate conductive layer is etched, leaving only a part of the gate conductive layer covered by the hard mask pattern, wherein the top layer below the hard mask pattern constitutes the channel region, and the top layer at both ends of the channel region form the source-drain region.
其中,暴露部分的衬底注入区的步骤进一步包括:在整个器件上形成硬掩膜层;平坦化直至暴露栅极绝缘层;光刻/刻蚀部分的栅极绝缘层、顶层、埋氧层,直至暴露衬底注入区,形成编程/擦除栅接触孔,其中编程/擦除栅接触孔位于第一方向上源漏区的一端。Wherein, the step of exposing part of the substrate implantation region further includes: forming a hard mask layer on the entire device; planarizing until the gate insulating layer is exposed; photolithography/etching part of the gate insulating layer, top layer, buried oxide layer , until the substrate implantation region is exposed, forming a programming/erasing gate contact hole, wherein the programming/erasing gate contact hole is located at one end of the source-drain region in the first direction.
其中,形成源漏接触以及形成连接到暴露的衬底注入区的编程/擦除栅接触孔的步骤进一步包括:在整个器件上形成层间介质层;光刻/刻蚀形成源漏接触孔,以及连接到暴露的衬底注入区的编程/擦除栅接触孔;在源漏接触孔和编程/擦除栅接触孔中形成金属硅化物;在源漏接触孔和编程/擦除栅接触孔中填充导电材料,形成连接线。Wherein, the steps of forming source-drain contacts and forming programming/erasing gate contact holes connected to exposed substrate implant regions further include: forming an interlayer dielectric layer on the entire device; photolithography/etching to form source-drain contact holes, And the programming/erasing gate contact hole connected to the exposed substrate implant region; metal silicide is formed in the source-drain contact hole and the programming/erasing gate contact hole; the source-drain contact hole and the programming/erasing gate contact hole Fill with conductive material to form connection lines.
其中,栅极绝缘层包括氧化硅、氮化硅、氮氧化硅、高k材料及其组合。Wherein, the gate insulating layer includes silicon oxide, silicon nitride, silicon oxynitride, high-k materials and combinations thereof.
其中,高k材料包括选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料,或是包括选自ZrO2、La2O3、LaAlO3、TiO2、Y2O3的稀土基高K介质材料,或是包括Al2O3,以其上述材料的复合层。Wherein, the high-k material includes hafnium-based materials selected from HfO 2 , HfSiO x , HfSiON, HfAlO x , HfTaO x , HfLaO x , HfAlSiO x , HfLaSiO x , or includes hafnium-based materials selected from ZrO 2 , La 2 O 3 , LaAlO 3 , TiO 2 , Y 2 O 3 rare earth-based high-K dielectric material, or a composite layer including Al 2 O 3 and the above materials.
其中,浮栅包括多晶硅、金属、所述金属的合金、所述金属的氮化物及其组合。Wherein, the floating gate includes polysilicon, metals, alloys of the metals, nitrides of the metals and combinations thereof.
其中,所述金属包括Al、Ta、Ti及其组合。Wherein, the metal includes Al, Ta, Ti and combinations thereof.
其中,金属硅化物的材质包括NiSi2-y、PtSi2-y、CoSi2-y、Ni1-xPtxSi2-y、Ni1-xCoxSi2-y、Pt1-xCoxSi2-y、Ni2-x-zPtxCozSi3-y,其中x、z大于0小于1,y大于等于0小于等于1。Among them, the metal silicide materials include NiSi 2-y , PtSi 2-y , CoSi 2-y , Ni 1-x Pt x Si 2-y , Ni 1-x Co x Si 2-y , Pt 1-x Co x Si 2-y , Ni 2-xz Pt x Co z Si 3-y , where x and z are greater than 0 and less than 1, and y is greater than or equal to 0 and less than or equal to 1.
其中,连接线的材质包括W、Cu、Al、Ti、Ta及其组合。Wherein, the material of the connecting wire includes W, Cu, Al, Ti, Ta and combinations thereof.
依照本发明的多次可编程半导体器件及其制造方法,利用衬底注入区来形成FinFET的编程/擦除栅,简化了器件结构,并缩减了制造工序,提高了器件的集成密度,适用于多次可编程存储器。According to the multi-time programmable semiconductor device and its manufacturing method of the present invention, the programming/erasing gate of the FinFET is formed by using the substrate implantation region, which simplifies the device structure, reduces the manufacturing process, improves the integration density of the device, and is suitable for Multiple times programmable memory.
附图说明Description of drawings
以下参照附图来详细说明本发明的技术方案,其中:Describe technical scheme of the present invention in detail below with reference to accompanying drawing, wherein:
图1A显示了依照本发明的方法步骤S 1的顶视图,其中在SOI衬底上形成沿第一方向延伸的鳍形结构;FIG. 1A shows a top view of step S1 of the method according to the present invention, wherein a fin-shaped structure extending along a first direction is formed on an SOI substrate;
图1B为图1A中沿线AA’的剖视图;Fig. 1 B is a cross-sectional view along line AA' among Fig. 1A;
图2A显示了依照本发明的方法步骤S2的顶视图,其中在鳍形结构上以及侧面形成栅极绝缘层和栅极导电层;FIG. 2A shows a top view of step S2 of the method according to the present invention, wherein a gate insulating layer and a gate conductive layer are formed on the fin structure and on the side;
图2B为图2A沿线AA’的剖视图;Fig. 2B is a sectional view along line AA' of Fig. 2A;
图2C为图2A沿线BB’的剖视图;Fig. 2 C is the sectional view of Fig. 2 A along line BB';
图2D为图2A沿线CC’的剖视图;Fig. 2D is a sectional view along line CC' of Fig. 2A;
图2E为图2A沿线DD’的剖视图;Figure 2E is a sectional view along line DD' of Figure 2A;
图3A显示了依照本发明的方法步骤S3的顶视图,其中沿第二方向形成掩膜并刻蚀栅极绝缘层和栅极导电层;3A shows a top view of step S3 of the method according to the present invention, wherein a mask is formed along the second direction and the gate insulating layer and the gate conductive layer are etched;
图3B为图3A沿线AA’的剖视图;Fig. 3B is a sectional view along line AA' of Fig. 3A;
图3C为图3A沿线BB’的剖视图;Fig. 3 C is a cross-sectional view along line BB' of Fig. 3A;
图3D为图3A沿线CC’的剖视图;Figure 3D is a sectional view along line CC' of Figure 3A;
图3E为图3A沿线DD’的剖视图;Figure 3E is a sectional view along line DD' of Figure 3A;
图4A显示了依照本发明的方法步骤S4的顶视图,其中刻蚀形成编程/擦除栅接触孔;FIG. 4A shows a top view of step S4 of the method according to the present invention, wherein etching forms programming/erasing gate contact holes;
图4B为图4A沿线AA’的剖视图;Fig. 4B is a sectional view along line AA' of Fig. 4A;
图4C为图4A沿线BB’的剖视图;Fig. 4C is a sectional view along line BB' of Fig. 4A;
图4D为图4A沿线CC’的剖视图;Figure 4D is a sectional view along line CC' of Figure 4A;
图4E为图4A沿线DD’的剖视图;Figure 4E is a sectional view along line DD' of Figure 4A;
图4F为图4A沿线EE’的剖视图;Fig. 4F is a sectional view along line EE' of Fig. 4A;
图5A显示了依照本发明的方法步骤S5的顶视图,其中形成源漏接触以及编程/擦除栅接触;FIG. 5A shows a top view of step S5 of the method according to the present invention, wherein source-drain contacts and program/erase gate contacts are formed;
图5B为图5A沿线AA’的剖视图;Fig. 5B is a cross-sectional view along line AA' of Fig. 5A;
图5C为图5A沿线BB’的剖视图;Figure 5C is a sectional view along line BB' of Figure 5A;
图5D为图5A沿线CC’的剖视图;Figure 5D is a sectional view along line CC' of Figure 5A;
图5E为图5A沿线DD’的剖视图;Figure 5E is a sectional view along line DD' of Figure 5A;
图5F为图5A沿线EE’的剖视图;以及Figure 5F is a cross-sectional view along line EE' of Figure 5A; and
图6显示了依照本发明的方法的流程图。Figure 6 shows a flow chart of the method according to the invention.
具体实施方式detailed description
以下参照附图并结合示意性的实施例来详细说明本发明技术方案的特征及其技术效果,公开了高密度集成的、适用于FinFET技术的多次可编程半导体器件及其制造方法。需要指出的是,类似的附图标记表示类似的结构,本申请中所用的术语“第一”、“第二”、“上”、“下”等等可用于修饰各种器件结构或工艺步骤。这些修饰除非特别说明并非暗示所修饰器件结构或工艺步骤的空间、次序或层级关系。The features and technical effects of the technical solution of the present invention will be described in detail below with reference to the accompanying drawings and in conjunction with schematic embodiments, disclosing a high-density integrated multi-time programmable semiconductor device suitable for FinFET technology and a manufacturing method thereof. It should be pointed out that similar reference numerals represent similar structures, and the terms "first", "second", "upper", "lower" and the like used in this application can be used to modify various device structures or process steps . These modifications do not imply spatial, sequential or hierarchical relationships of the modified device structures or process steps unless otherwise specified.
参照图6以及图1A、图1B,显示了依照本发明的方法步骤S1,其中在衬底上形成沿第一方向延伸的多个鳍形结构。提供半导体衬底,其材质为绝缘体上硅(SOI),包括底层1、埋氧层2以及顶层3。其中底层1与顶层3材质相同均为硅(Si),且顶层3厚度小于底层1的厚度。埋氧层2材质为顶层3材质的相应氧化物,例如为氧化硅(SiO2),且埋氧层2厚度小于顶层3的厚度。对半导体衬底进行掺杂注入,依照PMOS、NMOS导电类型不同而注入不同类型的掺杂离子。掺杂离子注入的峰值位于埋氧层2下方,例如距离埋氧层2的底面1~10nm,使得底层1中的一部分具有较高的n+或者p+的掺杂浓度,构成底层注入区1D而利于稍后用作编程/擦除栅(或称为字线)。与此同时,较少部分的掺杂离子也分布在顶层3中,使得顶层3具有较低的n-或者p-的掺杂浓度,以利于稍后形成源漏区。在整个器件上通过LPCVD、PECVD、HDPCVD、ALD等常规方法沉积盖层4,其材质例如为氮化硅或氮氧化硅,用于构成鳍形结构刻蚀的硬掩膜以及后续刻蚀的阻挡层。光刻并各向异性地刻蚀盖层4、顶层3、埋氧层2以及底层注入区1D,直至暴露未掺杂的底层1,在底层1上形成沿平行于底层1表面的第一方向延伸的多个鳍形结构。刻蚀停止的界面例如位于埋氧层2底面下方10~20nm。如图1A所示,在顶视图中,多个鳍形结构沿平行于衬底表面的第一方向延伸,线AA’为穿过多个鳍形结构的沿平行于衬底表面的第二方向的剖线,将作为FinFET器件的栅极(浮栅)所在位置,其中第二方向与第一方向相交,可选地为垂直。并且以下如果没有明确相反指示,所有相同标记的剖线的空间位置均相同。图1B为图1A沿剖线AA’截得的剖视图,其中多个鳍形结构由上至下依次包括盖层4、顶层3、埋氧层2以及底层注入区1D。Referring to FIG. 6 and FIG. 1A and FIG. 1B , a method step S1 according to the present invention is shown, wherein a plurality of fin-shaped structures extending along a first direction are formed on a substrate. A semiconductor substrate is provided, which is made of silicon-on-insulator (SOI), and includes a bottom layer 1 , a buried oxide layer 2 and a top layer 3 . The material of the bottom layer 1 and the top layer 3 are both silicon (Si), and the thickness of the top layer 3 is smaller than that of the bottom layer 1 . The material of the buried oxide layer 2 is the corresponding oxide of the material of the top layer 3 , such as silicon oxide (SiO 2 ), and the thickness of the buried oxide layer 2 is smaller than that of the top layer 3 . Doping implantation is performed on the semiconductor substrate, and different types of doping ions are implanted according to the different conductivity types of PMOS and NMOS. The peak of doped ion implantation is located below the buried oxide layer 2, for example, 1 to 10 nm away from the bottom surface of the buried oxide layer 2, so that a part of the bottom layer 1 has a higher n+ or p+ doping concentration, forming the bottom layer implantation region 1D, which is beneficial Later used as program/erase gate (or word line). At the same time, less dopant ions are also distributed in the top layer 3 , so that the top layer 3 has a lower n- or p- doping concentration, which is beneficial for later formation of source and drain regions. Deposit a cap layer 4 on the entire device by conventional methods such as LPCVD, PECVD, HDPCVD, ALD, etc., and its material is, for example, silicon nitride or silicon oxynitride, which is used to form a hard mask for fin structure etching and a barrier for subsequent etching layer. Lithographically and anisotropically etch the cap layer 4, the top layer 3, the buried oxide layer 2, and the bottom implant region 1D until the undoped bottom layer 1 is exposed, forming a layer on the bottom layer 1 along a first direction parallel to the surface of the bottom layer 1. Extended multiple fin structures. The interface where the etching stops is, for example, located 10-20 nm below the bottom surface of the buried oxide layer 2 . As shown in FIG. 1A, in a top view, a plurality of fin-shaped structures extend along a first direction parallel to the substrate surface, and a line AA' passes through the plurality of fin-shaped structures along a second direction parallel to the substrate surface. The section line of will serve as the position of the gate (floating gate) of the FinFET device, wherein the second direction intersects the first direction, and is optionally vertical. And below, if there is no explicit indication to the contrary, the spatial positions of all identically marked cross-lines are the same. 1B is a cross-sectional view of FIG. 1A taken along the section line AA', wherein the plurality of fin structures sequentially include a cap layer 4 , a top layer 3 , a buried oxide layer 2 and a bottom implant region 1D from top to bottom.
参照图6以及图2A至2E,显示了依照本发明的方法的步骤S2,其中在多个鳍形结构的侧面以及顶面形成沿第一方向延伸的栅极绝缘层,并且在栅极绝缘层两侧形成沿第一方向延伸的栅极导电层。通过LPCVD、PECVD、HDPCVD、ALD等常规方法在鳍形结构(4/3/2/1A)以及底层1上沉积栅极绝缘材料,并光刻/刻蚀,仅在鳍形结构顶部以及侧面留下沿第一方向延伸的栅极绝缘层5。栅极绝缘层5的材质包括氧化硅、氮化硅、氮氧化硅、高k材料及其组合。其中,高k材料包括选自HfO2、HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx、HfLaSiOx的铪基材料,或是包括选自ZrO2、La2O3、LaAlO3、TiO2、Y2O3的稀土基高K介质材料,或是包括Al2O3,以其上述材料的复合层。优选地,选用高k材料作为栅极绝缘层5,以便适用于小尺寸器件,使得能够采用超薄的栅极绝缘层作为隧道氧化层而利用F-N隧道效应实现电擦除。栅极绝缘层5的厚度例如为1~10nm。随后,在栅极绝缘层5以及底层1上通过LPCVD、PECVD、HDPCVD、ALD等常规方法沉积栅极导电材料,并光刻/刻蚀,仅在栅极绝缘层5的两侧的衬底底层1上留下沿第一方向延伸的栅极导电层6,稍后将经过图形化以用作浮栅。栅极导电层6的材质包括多晶硅、金属、金属的合金、金属的氮化物及其组合,其中,金属包括Al、Ta、Ti及其组合。栅极导电层6的厚度例如为1~10nm。图2A为顶视图,其中剖线AA’与图1A中剖线AA’相同;剖线BB’平行于剖线AA’、且也沿第二方向,但是与其具有一定距离,其位置稍后用作器件的源漏区;剖线CC’穿过鳍形结构、且沿第一方向,其位置包括稍后的沟道区以及编程/擦除栅的连接区;剖线DD’未穿过鳍形结构、且沿第一方向,用于对器件的空间结构进行补充说明。图2B、图2C分别为图2A沿线AA’和线BB’的剖视图,可见栅极绝缘层5分布在衬底底层1上鳍形结构(4/3/2/1A)的顶部以及侧面;栅极导电层6分布在衬底底层1上栅极绝缘层5的两侧,并且其顶部低于栅极绝缘层5的顶部。图2D为图2A沿线CC’的剖视图,可见栅极绝缘层5位于鳍形结构顶部,也沿第一方向延伸分布。图2E为图2A沿线DD’的剖视图,可见在衬底底层1上鳍形结构区域之外,没有栅极绝缘层5和栅极导电层6。Referring to FIG. 6 and FIGS. 2A to 2E , step S2 of the method according to the present invention is shown, wherein a gate insulating layer extending along the first direction is formed on the sides and top surfaces of a plurality of fin structures, and the gate insulating layer A gate conductive layer extending along the first direction is formed on both sides. Deposit gate insulating material on the fin structure (4/3/2/1A) and the bottom layer 1 by LPCVD, PECVD, HDPCVD, ALD and other conventional methods, and perform photolithography/etching, leaving only the top and sides of the fin structure a gate insulating layer 5 extending along the first direction. The material of the gate insulating layer 5 includes silicon oxide, silicon nitride, silicon oxynitride, high-k materials and combinations thereof. Wherein, the high-k material includes hafnium-based materials selected from HfO 2 , HfSiO x , HfSiON, HfAlO x , HfTaO x , HfLaO x , HfAlSiO x , HfLaSiO x , or includes hafnium-based materials selected from ZrO 2 , La 2 O 3 , LaAlO 3 , TiO 2 , Y 2 O 3 rare earth-based high-K dielectric material, or a composite layer including Al 2 O 3 and the above materials. Preferably, a high-k material is selected as the gate insulating layer 5 so as to be suitable for small-sized devices, so that an ultra-thin gate insulating layer can be used as a tunnel oxide layer to realize electrical erasing by using FN tunneling effect. The thickness of the gate insulating layer 5 is, for example, 1 to 10 nm. Subsequently, on the gate insulating layer 5 and the bottom layer 1, the gate conductive material is deposited by conventional methods such as LPCVD, PECVD, HDPCVD, ALD, etc., and photolithography/etching is performed. Only the substrate bottom layer on both sides of the gate insulating layer 5 1, leaving a gate conductive layer 6 extending in the first direction, which will be patterned later to be used as a floating gate. The material of the gate conductive layer 6 includes polysilicon, metal, metal alloy, metal nitride and combinations thereof, wherein the metal includes Al, Ta, Ti and combinations thereof. The thickness of the gate conductive layer 6 is, for example, 1 to 10 nm. Fig. 2A is a top view, wherein section line AA' is the same as section line AA' in Fig. 1A; The source and drain regions of the device; the section line CC' passes through the fin structure, and along the first direction, its position includes the later channel region and the connection area of the program/erase gate; the section line DD' does not pass through the fin Shaped structure and along the first direction are used to supplement the description of the spatial structure of the device. 2B and 2C are cross-sectional views of FIG. 2A along line AA' and line BB' respectively. It can be seen that the gate insulating layer 5 is distributed on the top and side surfaces of the fin structure (4/3/2/1A) on the substrate bottom layer 1; Electrode conductive layer 6 is distributed on both sides of gate insulating layer 5 on substrate bottom layer 1 , and its top is lower than the top of gate insulating layer 5 . FIG. 2D is a cross-sectional view along line CC′ in FIG. 2A , it can be seen that the gate insulating layer 5 is located on the top of the fin structure and also extends along the first direction. 2E is a cross-sectional view along the line DD' in FIG. 2A , it can be seen that there is no gate insulating layer 5 and gate conductive layer 6 outside the fin-shaped structure region on the substrate bottom layer 1 .
参照图6以及图3A至图3E,显示了依照本发明的方法的步骤S3,其中沿第二方向形成掩膜并刻蚀去除部分栅极绝缘层和栅极导电层,仅在掩膜覆盖区域保留部分的栅极绝缘层和栅极导电层。在整个器件上通过LPCVD、PECVD、HDPCVD、ALD等常规方法沉积第一硬掩膜材料,其材质例如为氧化硅、氮化硅、氮氧化硅。光刻/刻蚀硬掩膜材料形成沿第二方向延伸分布的多个第一硬掩膜图案7,其中至少一个第一硬掩膜图案7穿过剖线AA’以保留其下方的栅极绝缘层5和栅极导电层6,用作器件沟道区两侧的绝缘层和浮栅。然后以第一硬掩膜图案7作为掩膜,各向异性地刻蚀栅极导电层6,使得仅保留位于第一硬掩膜图案7下方的栅极导电层6,作为浮栅。图3A是顶视图,可见第一硬掩膜图案7沿第二方向延伸,并至少穿过剖线AA’。图3B、图3C分别是图3A沿线AA’、BB’的剖视图,可见未被第一硬掩膜图案7覆盖的区域上,栅极导电层6被移除。图3D、图3E分别是图3A沿线CC’、DD’的剖视图,其中AA’线穿过的区域中的顶层3部分构成沟道区3C,其余的顶层3部分则构成源漏区3S/3D,未来将用作器件的控制部分(或称为位线)。Referring to FIG. 6 and FIG. 3A to FIG. 3E, step S3 of the method according to the present invention is shown, wherein a mask is formed along the second direction and part of the gate insulating layer and the gate conductive layer are etched and removed, only in the area covered by the mask Parts of the gate insulating layer and the gate conductive layer are reserved. A first hard mask material is deposited on the entire device by conventional methods such as LPCVD, PECVD, HDPCVD, and ALD, and its material is, for example, silicon oxide, silicon nitride, and silicon oxynitride. Photolithography/etching of the hard mask material forms a plurality of first hard mask patterns 7 extending along the second direction, wherein at least one of the first hard mask patterns 7 passes through the section line AA' to retain the gate underneath it The insulating layer 5 and the gate conductive layer 6 are used as insulating layers and floating gates on both sides of the channel region of the device. Then, using the first hard mask pattern 7 as a mask, the gate conductive layer 6 is etched anisotropically so that only the gate conductive layer 6 under the first hard mask pattern 7 remains as a floating gate. FIG. 3A is a top view, it can be seen that the first hard mask pattern 7 extends along the second direction and at least passes through the section line AA'. 3B and 3C are cross-sectional views along the lines AA' and BB' of FIG. 3A respectively. It can be seen that the gate conductive layer 6 is removed on the area not covered by the first hard mask pattern 7 . Figure 3D and Figure 3E are cross-sectional views of Figure 3A along lines CC' and DD' respectively, where the top layer 3 part in the region through which the AA' line passes constitutes the channel region 3C, and the remaining top layer 3 parts constitute the source and drain regions 3S/3D , which will be used as the control part (or bit line) of the device in the future.
参照图6以及图4A至图4F,显示了依照本发明的方法的步骤S4,其中刻蚀形成控制栅接触孔。在整个器件上通过LPCVD、PECVD、HDPCVD、ALD等常规方法沉积第二硬掩膜层8,其材质例如为氧化硅、氮化硅或氮氧化硅,优选地第二硬掩膜层8与第一硬掩膜层/图案7的材料相同。然后采用CMP等工艺平坦化第二硬掩膜层8直至暴露栅极绝缘层5。然后光刻/刻蚀部分的第二硬掩膜层8、栅极绝缘层5、盖层4、顶层3、埋氧层2、直至暴露底层注入区1D,形成多个编程/擦除栅接触孔8H。图4A为顶视图,其中剖线EE’穿过编程/擦除栅接触孔8H所在的位置、且沿第二方向,编程/擦除栅接触孔8H沿第一方向延伸。图4B、图4C分别是图4A沿线AA’、BB’的剖视图,与图3B、3C类似,可见在未被原第一硬掩膜图案7覆盖的区域上,栅极导电层6被移除,而第二硬掩膜层8顶部与栅极绝缘层5顶部齐平。图4D是图4A沿线CC’的剖视图,可见编程/擦除栅接触孔8H直达底层注入区1D,从而使得作为编程/擦除栅的掺杂的底层注入区1D能与外部电连接。图4E是图4A沿线DD’的剖视图。图4F是图4A沿剖线EE’的剖视图,可见在编程/擦除栅接触孔8H中,栅极绝缘层5的顶部以及侧部的一部分被移除,而仅保留了在底层注入区1D两侧的部分。Referring to FIG. 6 and FIG. 4A to FIG. 4F , step S4 of the method according to the present invention is shown, wherein a control gate contact hole is formed by etching. The second hard mask layer 8 is deposited by conventional methods such as LPCVD, PECVD, HDPCVD, ALD, etc. on the entire device, and its material is, for example, silicon oxide, silicon nitride or silicon oxynitride, preferably the second hard mask layer 8 and the first A hard mask layer/pattern 7 is made of the same material. Then, the second hard mask layer 8 is planarized by CMP or other processes until the gate insulating layer 5 is exposed. Then photolithography/etching part of the second hard mask layer 8, gate insulating layer 5, capping layer 4, top layer 3, buried oxide layer 2, until the underlying implant region 1D is exposed, forming multiple programming/erasing gate contacts Hole 8H. FIG. 4A is a top view, wherein the line EE' passes through the position where the programming/erasing gate contact hole 8H is located, and extends along the second direction, and the programming/erasing gate contact hole 8H extends along the first direction. 4B and 4C are cross-sectional views along the lines AA' and BB' of FIG. 4A respectively. Similar to FIGS. 3B and 3C, it can be seen that the gate conductive layer 6 is removed in the area not covered by the original first hard mask pattern 7. , and the top of the second hard mask layer 8 is flush with the top of the gate insulating layer 5 . Fig. 4D is a cross-sectional view along line CC' of Fig. 4A. It can be seen that the programming/erasing gate contact hole 8H reaches directly to the underlying implanted region 1D, so that the doped underlying implanted region 1D used as the programming/erasing gate can be electrically connected to the outside. Fig. 4E is a cross-sectional view of Fig. 4A along line DD'. 4F is a cross-sectional view of FIG. 4A along section line EE'. It can be seen that in the programming/erasing gate contact hole 8H, a part of the top and side of the gate insulating layer 5 is removed, and only the implanted region 1D in the bottom layer remains. parts on both sides.
参照图6以及图5A至图5F,显示了依照本发明的方法的步骤S5,其中形成源漏接触以及编程/擦除栅接触。在整个器件上通过LPCVD、PECVD、HDPCVD、ALD等常规方法沉积层间介质层9,其材质例如为氧化硅、氮化硅或氮氧化硅,优选地与第一硬掩膜层/图案7和/或第二硬掩膜层8的材料相同。光刻/刻蚀层间介质层9,在与源漏区3S/3D对应的位置处形成源漏接触孔9SD,而在与编程/擦除栅接触孔8H对应的位置形成编程/擦除栅接触孔9P。然后在各个接触孔中形成金属硅化物10以降低接触电阻。金属硅化物10的材质包括NiSi2-y、PtSi2-y、CoSi2-y、Ni1-xPtxSi2-y、Ni1-xCoxSi2-y、Pt1-xCoxSi2-y、Ni2-x-zPtxCozSi3-y,其中x、z大于0小于1,y大于等于0小于等于1。然后在各个接触孔中填充导电材料11形成接触塞以及连接线,导电材料11例如为W、Cu、Al、Ti、Ta及其组合。图5A为顶视图,其中AA’线穿过沟道区以及沟道区两侧的栅极绝缘层和栅极导电层,BB’穿过源漏区以及源漏区两侧的栅极绝缘层,CC’穿过源漏区、沟道区、编程/擦除栅接触孔,DD’仅穿过衬底底层1,EE’穿过衬底注入区1D。图5B为图5A沿AA’的剖视图,可见在沟道区3C两侧具有栅极绝缘层5,栅极绝缘层5两侧具有栅极导电层6(浮栅)。图5C为图5A沿BB’的剖视图,可见源漏连接线11SD(作为器件单元的位线)通过金属硅化物10与源漏区3S/3D电连接,源漏区两侧仅有栅极绝缘层5而没有栅极导电层6。图5D、图5E分别为图5A沿CC’、EE’的剖视图,可见编程/擦除栅连接线11C(作为器件单元的字线)通过金属硅化物10而与衬底注入区1D电连接,且衬底注入区1D两侧具有部分的栅极绝缘层5。图5E为图5A沿DD’的剖视图。Referring to FIG. 6 and FIG. 5A to FIG. 5F , step S5 of the method according to the present invention is shown, wherein source-drain contacts and program/erase gate contacts are formed. The interlayer dielectric layer 9 is deposited on the entire device by conventional methods such as LPCVD, PECVD, HDPCVD, ALD, and its material is, for example, silicon oxide, silicon nitride or silicon oxynitride, preferably with the first hard mask layer/pattern 7 and /or the materials of the second hard mask layer 8 are the same. Photolithography/etching the interlayer dielectric layer 9, forming the source-drain contact hole 9SD at the position corresponding to the source-drain region 3S/3D, and forming the programming/erasing gate at the position corresponding to the programming/erasing gate contact hole 8H Contact hole 9P. Metal silicide 10 is then formed in each contact hole to reduce contact resistance. The material of metal silicide 10 includes NiSi 2-y , PtSi 2-y , CoSi 2-y , Ni 1-x Pt x Si 2-y , Ni 1-x Co x Si 2-y , Pt 1-x Co x Si 2-y , Ni 2-xz Pt x Co z Si 3-y , where x and z are greater than 0 and less than 1, and y is greater than or equal to 0 and less than or equal to 1. Then, each contact hole is filled with a conductive material 11 to form a contact plug and a connection line. The conductive material 11 is, for example, W, Cu, Al, Ti, Ta or a combination thereof. Figure 5A is a top view, in which the AA' line passes through the channel region and the gate insulating layer and the gate conductive layer on both sides of the channel region, and BB' passes through the source and drain regions and the gate insulating layer on both sides of the source and drain region , CC' passes through the source-drain region, channel region, programming/erasing gate contact holes, DD' only passes through the bottom layer 1 of the substrate, and EE' passes through the substrate implantation region 1D. 5B is a cross-sectional view along AA' of FIG. 5A , it can be seen that there are gate insulating layers 5 on both sides of the channel region 3C, and gate conductive layers 6 (floating gates) on both sides of the gate insulating layer 5 . Fig. 5C is a cross-sectional view along BB' of Fig. 5A. It can be seen that the source-drain connection line 11SD (as the bit line of the device unit) is electrically connected to the source-drain region 3S/3D through the metal silicide 10, and there is only gate insulation on both sides of the source-drain region Layer 5 without gate conductive layer 6. 5D and 5E are cross-sectional views of FIG. 5A along CC' and EE', respectively. It can be seen that the programming/erasing gate connection line 11C (word line as a device unit) is electrically connected to the substrate implantation region 1D through the metal silicide 10, And there are part of the gate insulating layer 5 on both sides of the substrate injection region 1D. FIG. 5E is a cross-sectional view along DD' of FIG. 5A .
最终得到的多次可编程半导体器件如图5A至图5F所示,包括:多个鳍形结构,位于衬底上,包括衬底注入区1D、埋氧层2、顶层3以及可选地盖层4,多个鳍形结构沿平行于衬底表面的第一方向延伸分布;沟道区3C,位于多个鳍形结构的顶层3中;源漏区3S/3D,位于多个鳍形结构的顶层3中沟道区3C两端;栅极绝缘层5,位于沟道区3C的顶部以及侧部,沿平行于衬底表面的第二方向延伸分布,第二方向与第一方向相交并优选地垂直;浮栅6,位于鳍形结构的第二方向上的两侧,与栅极绝缘层5接触;编程/擦除栅,由衬底注入区1D构成,位于沟道区3C下方;层间介质层9,覆盖多个鳍形结构、栅极绝缘层以及浮栅;源漏接触孔9SD与编程/擦除栅接触孔9P形成在层间介质层9中,分别暴露源漏区3S/3D以及作为编程/擦除栅的衬底注入区1D;金属硅化物10,形成在源漏接触孔9SD与编程/擦除栅接触孔9P中;连接线11,通过金属硅化物10与源漏区3S/3D以及作为编程/擦除栅的衬底注入区1D电连接,其中源漏区连接线11SD沿第二方向延伸分布。The resulting multi-time programmable semiconductor device is shown in Figures 5A to 5F, including: a plurality of fin structures located on the substrate, including a substrate implant region 1D, a buried oxide layer 2, a top layer 3 and optionally a cap Layer 4, a plurality of fin-shaped structures extending along a first direction parallel to the substrate surface; channel region 3C, located in the top layer 3 of the plurality of fin-shaped structures; source and drain regions 3S/3D, located in the plurality of fin-shaped structures Both ends of the channel region 3C in the top layer 3; the gate insulating layer 5, located on the top and side of the channel region 3C, extends along a second direction parallel to the substrate surface, and the second direction intersects the first direction and Preferably vertical; the floating gate 6 is located on both sides of the fin structure in the second direction and is in contact with the gate insulating layer 5; the programming/erasing gate is formed by the substrate implantation region 1D and is located below the channel region 3C; The interlayer dielectric layer 9 covers a plurality of fin structures, gate insulating layers and floating gates; the source and drain contact holes 9SD and the programming/erasing gate contact holes 9P are formed in the interlayer dielectric layer 9, respectively exposing the source and drain regions 3S /3D and the substrate implantation region 1D as the programming/erasing gate; the metal silicide 10 is formed in the source-drain contact hole 9SD and the programming/erasing gate contact hole 9P; the connection line 11 passes through the metal silicide 10 and the source The drain region 3S/3D is electrically connected to the substrate implantation region 1D serving as a program/erase gate, wherein the source-drain region connection line 11SD extends along the second direction.
上述各个部件的具体材质和几何结构参数已在制造方法各个步骤中详细描述,此外,后续制造工艺,例如字线、位线的连接,选择电路的制造等等,这些已广为技术人员所熟知,因此也不再赘述。The specific material and geometric structure parameters of the above components have been described in detail in each step of the manufacturing method. In addition, subsequent manufacturing processes, such as the connection of word lines and bit lines, the manufacture of selection circuits, etc., are widely known to those skilled in the art. , so it will not be repeated here.
依照本发明的多次可编程半导体器件,利用衬底注入区来形成FinFET的编程/擦除栅,简化了器件结构,并缩减了制造工序,提高了器件的集成密度,适用于多次可编程存储器。According to the multi-time programmable semiconductor device of the present invention, the substrate implantation region is used to form the programming/erasing gate of the FinFET, which simplifies the device structure, reduces the manufacturing process, improves the integration density of the device, and is suitable for multi-time programmable memory.
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对器件结构做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。While the invention has been described with reference to one or more exemplary embodiments, those skilled in the art will recognize various suitable changes and equivalents in device structures that do not depart from the scope of the invention. In addition, many modifications, possibly suited to a particular situation or material, may be made from the disclosed teaching without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode for carrying out this invention, but that the disclosed device structures and methods of making the same will include all embodiments falling within the scope of the invention .
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210326597.XA CN103681800B (en) | 2012-09-05 | 2012-09-05 | Multi-time programmable semiconductor device and manufacturing method thereof |
PCT/CN2012/001536 WO2014036676A1 (en) | 2012-09-05 | 2012-11-13 | Multiple time programmable semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210326597.XA CN103681800B (en) | 2012-09-05 | 2012-09-05 | Multi-time programmable semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681800A CN103681800A (en) | 2014-03-26 |
CN103681800B true CN103681800B (en) | 2016-12-28 |
Family
ID=50236430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210326597.XA Active CN103681800B (en) | 2012-09-05 | 2012-09-05 | Multi-time programmable semiconductor device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103681800B (en) |
WO (1) | WO2014036676A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104375429B (en) * | 2014-11-27 | 2017-02-22 | 无锡中感微电子股份有限公司 | Programming control circuit for programmable chip |
TWI677077B (en) * | 2016-07-06 | 2019-11-11 | 聯華電子股份有限公司 | Non-volatile memory device and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7091551B1 (en) * | 2005-04-13 | 2006-08-15 | International Business Machines Corporation | Four-bit FinFET NVRAM memory device |
CN101093838A (en) * | 2006-06-23 | 2007-12-26 | 三星电子株式会社 | Non-volatile memory device and methods for operating same |
CN101159270A (en) * | 2006-10-03 | 2008-04-09 | 旺宏电子股份有限公司 | Method for operating flash memory unit element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7205601B2 (en) * | 2005-06-09 | 2007-04-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET split gate EEPROM structure and method of its fabrication |
US8872247B2 (en) * | 2009-11-04 | 2014-10-28 | Micron Technology, Inc. | Memory cells having a folded digit line architecture |
-
2012
- 2012-09-05 CN CN201210326597.XA patent/CN103681800B/en active Active
- 2012-11-13 WO PCT/CN2012/001536 patent/WO2014036676A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7091551B1 (en) * | 2005-04-13 | 2006-08-15 | International Business Machines Corporation | Four-bit FinFET NVRAM memory device |
CN101093838A (en) * | 2006-06-23 | 2007-12-26 | 三星电子株式会社 | Non-volatile memory device and methods for operating same |
CN101159270A (en) * | 2006-10-03 | 2008-04-09 | 旺宏电子股份有限公司 | Method for operating flash memory unit element |
Also Published As
Publication number | Publication date |
---|---|
CN103681800A (en) | 2014-03-26 |
WO2014036676A1 (en) | 2014-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9431461B2 (en) | Transistor having a vertical channel | |
KR102307838B1 (en) | Flash memory structure with enhanced floating gate | |
CN100464430C (en) | Method for manufacturing vertical field effect transistor and field effect transistor | |
KR100612718B1 (en) | Saddle type flash memory device and manufacturing method | |
CN103208423B (en) | Based on the three-dimensional transistor strain engineering technology of the isolated material of strain | |
CN101304042B (en) | Semiconductor device and manufacturing method thereof | |
US20080035997A1 (en) | Fin Field-Effect Transistor and Method for Fabricating a Fin Field-Effect Transistor | |
CN102315224B (en) | Nonvolatile memory device using FinFET and method of fabricating the same | |
US10325921B2 (en) | Semiconductor device and manufacturing method of the same | |
CN107591403A (en) | Integrated circuit and forming method thereof | |
CN107425001A (en) | Integrated circuit and the method for forming integrated circuit | |
WO2023168897A1 (en) | Semiconductor structure and preparation method therefor | |
US20200365612A1 (en) | Three dimensional memory device and method for fabricating the same | |
CN103681800B (en) | Multi-time programmable semiconductor device and manufacturing method thereof | |
US20240147714A1 (en) | Flash memory structure with enhanced floating gate | |
CN102738209B (en) | Semiconductor element and its manufacturing method | |
CN105280709A (en) | Methods of forming a nanowire device with a gate-all-around-channel configuration and the resulting nanowire device | |
US11888074B2 (en) | Flash memory device with three-dimensional half flash structure and methods for forming the same | |
TWI469361B (en) | Semiconductor device and method of fabricating the same | |
TW200905806A (en) | Two-bit flash memory cell structure and method of making the same | |
CN103311282B (en) | Semiconductor device and method for manufacturing the same | |
JP2009277782A (en) | Semiconductor memory and its production process | |
JP2010010192A (en) | Semiconductor memory and fabrication process of semiconductor memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |