CN103674912B - The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof - Google Patents
The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof Download PDFInfo
- Publication number
- CN103674912B CN103674912B CN201310641474.XA CN201310641474A CN103674912B CN 103674912 B CN103674912 B CN 103674912B CN 201310641474 A CN201310641474 A CN 201310641474A CN 103674912 B CN103674912 B CN 103674912B
- Authority
- CN
- China
- Prior art keywords
- mol
- cxt
- concentration
- fluorescence
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003093 cationic surfactant Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 36
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 title claims 5
- 238000001917 fluorescence detection Methods 0.000 title abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 112
- 238000001514 detection method Methods 0.000 claims abstract description 78
- 230000007613 environmental effect Effects 0.000 claims abstract description 27
- 238000010791 quenching Methods 0.000 claims description 24
- 230000000171 quenching effect Effects 0.000 claims description 20
- 239000003153 chemical reaction reagent Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims 1
- -1 pyridinium quaternary ammonium salt Chemical class 0.000 abstract description 44
- 239000002352 surface water Substances 0.000 abstract description 26
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000010865 sewage Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 156
- 239000004094 surface-active agent Substances 0.000 description 87
- 230000005284 excitation Effects 0.000 description 60
- 150000003839 salts Chemical class 0.000 description 51
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 50
- 239000000523 sample Substances 0.000 description 49
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- 230000003247 decreasing effect Effects 0.000 description 33
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 30
- 239000007864 aqueous solution Substances 0.000 description 30
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 30
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 29
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 29
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 29
- 229920001213 Polysorbate 20 Polymers 0.000 description 27
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 27
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 27
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 27
- 229910052938 sodium sulfate Inorganic materials 0.000 description 27
- 235000011152 sodium sulphate Nutrition 0.000 description 27
- 238000011084 recovery Methods 0.000 description 26
- IVKNZCBNXPYYKL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 IVKNZCBNXPYYKL-UHFFFAOYSA-N 0.000 description 24
- 238000002189 fluorescence spectrum Methods 0.000 description 24
- 239000007850 fluorescent dye Substances 0.000 description 23
- YFVBASFBIJFBAI-UHFFFAOYSA-M 1-tetradecylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+]1=CC=CC=C1 YFVBASFBIJFBAI-UHFFFAOYSA-M 0.000 description 22
- NJUKKAADRGWCRO-UHFFFAOYSA-N 3-chloro-2-octadecylpyridine Chemical compound CCCCCCCCCCCCCCCCCCc1ncccc1Cl NJUKKAADRGWCRO-UHFFFAOYSA-N 0.000 description 22
- IEZDTNCUMWPRTD-UHFFFAOYSA-N 346704-04-9 Chemical compound [O-][N+](=O)C1=CC=C(N2CCNCC2)C=C1N1CCCCC1 IEZDTNCUMWPRTD-UHFFFAOYSA-N 0.000 description 22
- 238000012360 testing method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 238000011160 research Methods 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000012496 blank sample Substances 0.000 description 12
- 238000012417 linear regression Methods 0.000 description 12
- 238000011895 specific detection Methods 0.000 description 11
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 9
- 239000007853 buffer solution Substances 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000003068 molecular probe Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920001214 Polysorbate 60 Polymers 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 3
- 229920000053 polysorbate 80 Polymers 0.000 description 3
- 125000001453 quaternary ammonium group Chemical class 0.000 description 3
- RCEAADKTGXTDOA-UHFFFAOYSA-N OS(O)(=O)=O.CCCCCCCCCCCC[Na] Chemical compound OS(O)(=O)=O.CCCCCCCCCCCC[Na] RCEAADKTGXTDOA-UHFFFAOYSA-N 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 240000009038 Viola odorata Species 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
吡啶季铵盐阳离子表面活性剂的荧光检测方法及其应用。本发明涉及吡啶季铵盐阳离子表面活性剂的荧光检测剂及其应用方法。本发明提供了检测线性范围宽、低检出限、低成本以及快速的吡啶季铵盐阳离子表面活性剂的荧光检测剂及其应用方法。吡啶季铵盐阳离子表面活性剂的结构式为R=CnH2n+1,或CnH2n+1NCOCH2,n=8-18;X-=Cl-,Br-,I-。可应用于实际环境水样品,例如地表水、湖水以及城市污水等中的吡啶季铵盐阳离子表面活性剂检测。
Fluorescence detection method and application of pyridinium quaternary ammonium salt cationic surfactant. The invention relates to a fluorescence detection agent for a pyridine quaternary ammonium salt cationic surfactant and an application method thereof. The invention provides a fluorescent detection agent for detecting a pyridinium quaternary ammonium salt cationic surfactant with wide linear range, low detection limit, low cost and fast and an application method thereof. The structural formula of pyridinium quaternary ammonium salt cationic surfactant is R=C n H 2n+1 , or C n H 2n+1 NCOCH 2 , n=8-18; X - =Cl - , Br - , I - . It can be applied to the detection of pyridinium quaternary ammonium salt cationic surfactants in actual environmental water samples, such as surface water, lake water and urban sewage.
Description
技术领域technical field
本发明涉及吡啶季铵盐阳离子表面活性剂的荧光检测方法及其应用。The invention relates to a fluorescence detection method and application of a pyridinium quaternary ammonium salt cationic surfactant.
背景技术Background technique
季铵盐型阳离子表面活性剂是产量高、应用广的阳离子表面活性剂,其中比较典型、最为常见的一类为吡啶季铵盐阳离子表面活性剂,烷基吡啶季铵盐(RPB)的分子结构式如下:Quaternary ammonium salt-type cationic surfactants are cationic surfactants with high output and wide application. Among them, the typical and most common type is pyridinium quaternary ammonium salt cationic surfactant, the molecule of alkyl pyridinium quaternary ammonium salt (RPB) The structural formula is as follows:
R=CnH2n+1,或CnH2n+1NCOCH2,n=8-18;X-=Cl-,Br-,I-;因其水溶性好,既耐酸又耐碱且具有较强的杀菌作用,被广泛应用于工业生产和日用产品中,最终将被释放到环境中,引起环境问题。因此,建立新的吡啶季铵盐阳离子表面活性剂的检测方法,对于生物、化学、环境及医学等都有着特殊意义。R=C n H 2n+1 , or C n H 2n+1 NCOCH 2 , n=8-18; X - =Cl - , Br - , I - ; because of its good water solubility, it is both acid and alkali resistant and has Strong bactericidal effect, widely used in industrial production and daily products, will eventually be released into the environment, causing environmental problems. Therefore, establishing a new detection method for pyridinium quaternary ammonium salt cationic surfactant has special significance for biology, chemistry, environment and medicine.
Diao等人合成了一种碲化镉胶状体荧光分子探针在水溶液中对一系列阳离子表面活性剂十六烷基三甲级溴化铵、十二烷基三甲级溴化铵和氯化十六烷基吡啶进行检测,其检出限为5.0×10-8mol/L,线性范围为2.0×10-7~7.0×10-6mol/L。(Diao,X.L.;Xia,Y.S.;Zhang,T.L.Anal.Bioanal.Chem.2007,388,1191–1197)。Diao et al. synthesized a cadmium telluride colloidal fluorescent molecular probe for a series of cationic surfactants such as hexadecyltrimethylammonium bromide, dodecyltrimethylammonium bromide and chloride in aqueous solution. The detection limit was 5.0×10 -8 mol/L, and the linear range was 2.0×10 -7 ~7.0×10 -6 mol/L. (Diao, XL; Xia, YS; Zhang, TLAnal. Bioanal. Chem. 2007, 388, 1191–1197).
此外离子选择电极法、高效液相色谱法、流动注射分析法、毛细管电泳法以及色谱-质谱分析法等检测方法也都可以应用于对阳离子表面活性剂的检测。In addition, detection methods such as ion selective electrode method, high performance liquid chromatography, flow injection analysis, capillary electrophoresis and chromatography-mass spectrometry can also be applied to the detection of cationic surfactants.
然而现有的方法虽然在水溶液中可以对阳离子表面活性剂或阴离子表面活性剂进行检测,但检测方法缺乏单一选择性、检测线性范围窄、检出限高,以及存在成本高、耗时长、操作繁琐、缺乏再现性和信号稳定性等缺点。因此,需要不断地研究和开发一种方法简便、成本低、灵敏度高、响应时间短以及可以单一选择性识别吡啶季铵盐阳离子表面活性剂的检测方法。However, although the existing methods can detect cationic surfactants or anionic surfactants in aqueous solution, the detection methods lack single selectivity, narrow detection linear range, high detection limit, high cost, long time consumption, and difficult operation. Disadvantages include tediousness, lack of reproducibility, and signal stability. Therefore, it is necessary to continuously research and develop a detection method with simple method, low cost, high sensitivity, short response time and single selective recognition of pyridinium quaternary ammonium salt cationic surfactant.
发明内容Contents of the invention
本发明提供了检测线性范围宽、低检出限、低成本以及快速的对吡啶季铵盐阳离子表面活性剂进行荧光检测的方法及其应用。The invention provides a method for fluorescence detection of pyridinium quaternary ammonium salt cationic surfactant with wide detection linear range, low detection limit, low cost and fast and application thereof.
吡啶季铵盐阳离子表面活性剂的荧光检测方法,其特征在于吡啶季铵盐阳离子表面活性剂的结构式为The fluorescence detection method of pyridinium quaternary ammonium salt cationic surfactant is characterized in that the structural formula of pyridinium quaternary ammonium salt cationic surfactant is
R=CnH2n+1,或CnH2n+1NCOCH2,n=8-18;X-=Cl-,Br-,I-。R=C n H 2n+1 , or C n H 2n+1 NCOCH 2 , n=8-18; X - =Cl - , Br - , I - .
本发明还提供了对吡啶季铵盐阳离子表面活性剂进行荧光检测的应用。The invention also provides the application of the fluorescence detection to the pyridinium quaternary ammonium salt cationic surfactant.
本发明的方法利用荧光光谱,以荧光染料CXT(4,4'-双-(4-羟乙胺基-苯胺基-1,3,5-三嗪-2基)氨基-二苯乙烯-2,2'-二磺酸钠盐)为荧光分子探针,以Brij35胶束水溶液为介质,以Tris-HCl或者Hepes作为缓冲溶液,从常见阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中单一选择性检测吡啶季铵盐阳离子表面活性剂。The method of the present invention utilizes fluorescence spectrum, with fluorescent dye CXT (4,4'-bis-(4-hydroxyethylamino-anilino-1,3,5-triazine-2 base)amino-stilbene-2 , 2'-disulfonic acid sodium salt) as a fluorescent molecular probe, with Brij35 micellar aqueous solution as the medium, Tris-HCl or Hepes as the buffer solution, from common cationic surfactants, anionic surfactants and nonionic surfactants Single selective detection of pyridinium quaternary ammonium cationic surfactants in solvents.
本发明的方法具有以下优点:The method of the present invention has the following advantages:
1、本发明以荧光染料CXT作为检测试剂,可单一选择性检测吡啶季铵盐阳离子表面活性剂。荧光染料CXT是一种优良增白剂,来源广泛,价格低廉,能够发射蓝紫色荧光的特殊染料,具有很好的光谱性能、高溶解度和低污染等优点。1. The present invention uses fluorescent dye CXT as a detection reagent, which can single-selectively detect pyridinium quaternary ammonium salt cationic surfactants. Fluorescent dye CXT is an excellent whitening agent with wide sources and low price. It is a special dye that can emit blue-violet fluorescence. It has the advantages of good spectral performance, high solubility and low pollution.
2、本发明以Tris-HCl或者Hepes作为缓冲溶液,以Brij35胶束水溶液为介质,使得CXT与吡啶季铵盐阳离子表面活性剂在水溶液中的溶解性较好,并且在毫摩尔浓度以下的低浓度吡啶季铵盐阳离子表面活性剂与CXT就能形成稳定复合物,使CXT的荧光猝灭。2. The present invention uses Tris-HCl or Hepes as a buffer solution, and uses Brij35 micellar aqueous solution as a medium, so that the solubility of CXT and pyridinium quaternary ammonium salt cationic surfactant in aqueous solution is better, and the low concentration below the millimolar concentration Concentration pyridinium quaternary ammonium cationic surfactant and CXT can form a stable complex, which can quench the fluorescence of CXT.
3、本发明的方法不受其它常见表面活性剂和无机盐,例如十六烷基三甲基溴化铵(CTAB)、十二烷基三甲基溴化铵(DTAB)、十二烷基硫酸钠(SDS)、十二烷基苯磺钠(SDBS)、对甲基苯磺酸钠(SPTS)、OP–3~30、TritonX–100、Tween–20、Tween–40、Tween–60、Tween–80、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-等离子的影响,具有高选择性。3. The method of the present invention is not affected by other common surfactants and inorganic salts, such as cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), lauryl Sodium sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), sodium p-toluenesulfonate (SPTS), OP–3~30, TritonX–100, Tween–20, Tween–40, Tween–60, Tween–80, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- plasma effect with high selectivity.
4、本发明不仅避免了目前吡啶季铵盐阳离子表面活性剂荧光分子探针研究中繁琐的有机合成问题,而且该方法还具有合成探针无法相比的安全性。4. The present invention not only avoids the cumbersome organic synthesis problem in the current research on fluorescent molecular probes of pyridinium quaternary ammonium salt cationic surfactants, but also has incomparable safety for synthetic probes.
5、本发明提供了一种操作简便、响应时间迅速(2min)、高选择性、高灵敏度和低检出限(8.2×10-9mol/L~7.6×10-8mol/L)测试吡啶季铵盐阳离子表面活性剂的方法。5. The present invention provides a method for testing pyridine with simple operation, fast response time (2min), high selectivity, high sensitivity and low detection limit (8.2×10 -9 mol/L~7.6×10 -8 mol/L) Method for quaternary ammonium cationic surfactants.
6、本发明可应用于实际环境水样品,例如地表水、湖水以及污水等中的吡啶季铵盐阳离子表面活性剂检测。6. The present invention can be applied to the detection of pyridinium quaternary ammonium salt cationic surfactants in actual environmental water samples, such as surface water, lake water and sewage.
附图说明Description of drawings
图1为试验一(一)中不同表面活性剂对CXT荧光强度变化图;Figure 1 is a graph showing the variation of CXT fluorescence intensity with different surfactants in Test 1 (1);
图2为试验一(二)中荧光强度随pH值的变化曲线图;其中a为CXT,b为CXT/CPB;Figure 2 is a graph showing the variation of fluorescence intensity with pH value in Test 1 (2); where a is CXT, and b is CXT/CPB;
图3为试验一(三)中响应时间对CXT与CPB复合物影响的荧光强度变化图;Figure 3 is a graph showing the change in fluorescence intensity of the effect of response time on the complex of CXT and CPB in Test 1 (3);
图4为试验一(四)中CPB浓度对CXT荧光强度变化图;Figure 4 is a graph showing the variation of CPB concentration versus CXT fluorescence intensity in Test 1 (4);
图5为试验一(五)中其它常见表面活性剂和无机盐与CPB竞争时,对CXT荧光强度变化图;其中1为CPB、2为CPB+CTAB、3为CPB+DTAB、4为CPB+SDS、5为CPB+SDBS、6为CPB+SPTS、7为CPB+OP–10、8为CPB+TritonX-100、9为CPB+Tween–20、10为CPB+F-、11为CPB+Cl-、12为CPB+Br-、13为CPB+I-、14为CPB+SCN-、15为CPB+PO4 3-、16为CPB+NO3-、17为CPB+NO2-、18为CPB+C2O4 2-、19为CPB+CO3 2–、20为CPB+SO4 2-;Figure 5 is a diagram of the fluorescence intensity changes against CXT when other common surfactants and inorganic salts compete with CPB in Test 1 (5); among them, 1 is CPB, 2 is CPB+CTAB, 3 is CPB+DTAB, and 4 is CPB+ SDS, 5 is CPB+SDBS, 6 is CPB+SPTS, 7 is CPB+OP–10, 8 is CPB+TritonX-100, 9 is CPB+Tween–20, 10 is CPB+F - , 11 is CPB+Cl - , 12 is CPB+Br - , 13 is CPB+I - , 14 is CPB+SCN - , 15 is CPB+PO 4 3- , 16 is CPB+NO 3- , 17 is CPB+NO 2- , 18 is CPB+C 2 O 4 2- , 19 is CPB+CO 3 2- , 20 is CPB+SO 4 2- ;
图6为试验一(六)中荧光强度与CPB溶液摩尔浓度线性关系曲线图;Fig. 6 is a graph showing the linear relationship between the fluorescence intensity and the molar concentration of the CPB solution in test one (six);
图7为试验二(六)中荧光强度与N-DAPC溶液摩尔浓度线性关系曲线图;Fig. 7 is a graph showing the linear relationship between the fluorescence intensity and the molar concentration of the N-DAPC solution in test two (six);
图8为试验三(六)中荧光强度与HPB溶液摩尔浓度线性关系曲线图。Fig. 8 is a graph showing the linear relationship between the fluorescence intensity and the molar concentration of the HPB solution in Test 3 (6).
具体实施方式detailed description
具体实施方式一:本实施方式的吡啶季铵盐阳离子表面活性剂(RPB)的荧光检测方法按以下步骤进行:Embodiment one: the fluorescence detection method of the pyridinium quaternary ammonium salt cationic surfactant (RPB) of the present embodiment is carried out according to the following steps:
一、配置检测液:将荧光染料CXT、非离子表面活性剂和缓冲溶液加入到水中,混合均匀后调节pH值至pH为5~12,得到检测液;所述的检测液中CXT的摩尔浓度为1.0×10-6~1.0×10-3mol/L;所述的检测液中非离子表面活性剂为Brij35,其摩尔浓度为1.0×10-5~1.0×10-2mol/L;所述的检测液中缓冲溶液为Tris-HCl或者Hepes,其摩尔浓度为0.1×10-3~2.0×10-2mol/L。1. Configure the detection solution: add the fluorescent dye CXT, non-ionic surfactant and buffer solution into the water, adjust the pH value to pH 5-12 after mixing evenly, and obtain the detection solution; the molar concentration of CXT in the detection solution 1.0×10 -6 ~ 1.0×10 -3 mol/L; the nonionic surfactant in the detection solution is Brij35, and its molar concentration is 1.0×10 -5 ~ 1.0×10 -2 mol/L; The buffer solution in the detection solution mentioned above is Tris-HCl or Hepes, and its molar concentration is 0.1×10 -3 -2.0×10 -2 mol/L.
二、RPB的单一选择性:向步骤一溶液中分别加入各种常见的表面活性剂,表面活性剂浓度为CXT浓度的1~6倍时,测定其荧光强度(激发波长为340nm,最大发射波长为444nm)。2. The single selectivity of RPB: Add various common surfactants respectively to the solution of step 1. When the concentration of surfactant is 1 to 6 times of the concentration of CXT, measure its fluorescence intensity (excitation wavelength is 340nm, maximum emission wavelength at 444nm).
三、响应时间的确定:向步骤一溶液中加入5.0×10-6~3.0×10-5mol/LRPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。3. Determination of response time: Add 5.0×10 -6 ~ 3.0×10 -5 mol/LRPB to the solution in step 1, and measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm).
四、RPB浓度的确定:向步骤一溶液中逐渐加入RPB的浓度为CXT浓度的0~12倍时,测定其荧光光谱。4. Determination of RPB concentration: when the concentration of RPB is gradually added to the solution in step 1 to be 0 to 12 times the concentration of CXT, measure its fluorescence spectrum.
五、干扰物质的影响:向步骤一溶液中分别加入5.0×10-6~3.0×10-5mol/LRPB和同浓度的其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–3~30、TritonX–100、Tween–20、Tween–40、Tween–60、Tween–80、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),RPB与其它表面活性剂和无机盐共存,测定其荧光(激发波长为340nm,最大发射波长为444nm)。5. The influence of interfering substances: Add 5.0×10 -6 ~ 3.0×10 -5 mol/LRPB and other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–3~30, TritonX–100, Tween–20, Tween–40, Tween–60, Tween–80, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3 - , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), RPB coexists with other surfactants and inorganic salts, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm) .
六、检出限的确定:向步骤一溶液中逐渐加入RPB的浓度为CXT浓度的0~12倍时,测定其在444nm处的荧光强度(激发波长为340nm,最大发射波长为444nm)。当RPB浓度在0~3.0×10-5mol/L范围内,溶液的荧光强度与RPB浓度呈现良好的线性关系;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9~7.6×10-8mol/L,线性范围为8.2×10-9~3.0×10-5mol/L。Six, determination of detection limit: when the concentration of gradually adding RPB in step one solution is 0~12 times of CXT concentration, measure its fluorescence intensity at 444nm place (excitation wavelength is 340nm, maximum emission wavelength is 444nm). When the RPB concentration is in the range of 0~3.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the RPB concentration; 20 average measurements are carried out on the blank sample, and 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 ~7.6×10 -8 mol/L, and the linear range is 8.2×10 -9 ~3.0×10 -5 mol/L.
七、待测试样的检测:将待测试样过滤后以离心速度为12000rpm进行离心分离后,将上清液加入到步骤一得到检测液中,在波长为444nm处测定其荧光强度,利用步骤六得到的线性回归方程计算待测试样中RPB的含量,得到回收率范围为98.9~102%。7. Detection of the sample to be tested: After the sample to be tested is filtered and centrifuged at a centrifugal speed of 12000rpm, the supernatant is added to the detection solution obtained in step 1, and the fluorescence intensity is measured at a wavelength of 444nm. The linear regression equation obtained in step 6 calculates the content of RPB in the sample to be tested, and the recovery rate ranges from 98.9 to 102%.
本实施方式的方法利用荧光光谱,以荧光染料CXT(4,4'-双-(4-羟乙胺基-苯胺基-1,3,5-三嗪-2基)氨基-二苯乙烯-2,2'-二磺酸钠盐)为荧光分子探针,以Brij35胶束水溶液为介质,以Tris-HCl或者Hepes作为缓冲溶液,从常见阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中单一选择性检测吡啶季铵盐阳离子表面活性剂。The method of this embodiment utilizes fluorescence spectroscopy, and the fluorescent dye CXT (4,4'-bis-(4-hydroxyethylamino-anilino-1,3,5-triazin-2-yl)amino-stilbene- 2,2'-disulfonic acid sodium salt) as a fluorescent molecular probe, with Brij35 micellar aqueous solution as the medium, Tris-HCl or Hepes as the buffer solution, from common cationic surfactants, anionic surfactants and nonionic surface active agents Single selective detection of pyridinium quaternary ammonium cationic surfactants among active agents.
本实施方式的方法具有以下优点:The method of this embodiment has the following advantages:
1、本发明以荧光染料CXT作为检测试剂,可单一选择性检测吡啶季铵盐阳离子表面活性剂。荧光染料CXT是一种优良增白剂,来源广泛,价格低廉,能够发射蓝紫色荧光的特殊染料,具有很好的光谱性能、高溶解度和低污染等优点。1. The present invention uses fluorescent dye CXT as a detection reagent, which can single-selectively detect pyridinium quaternary ammonium salt cationic surfactants. Fluorescent dye CXT is an excellent whitening agent with wide sources and low price. It is a special dye that can emit blue-violet fluorescence. It has the advantages of good spectral performance, high solubility and low pollution.
2、本发明以Tris-HCl或者Hepes作为缓冲溶液,以Brij35胶束水溶液为介质,使得CXT与吡啶季铵盐阳离子表面活性剂在水溶液中的溶解性较好,并且在毫摩尔浓度以下的低浓度吡啶季铵盐阳离子表面活性剂与CXT就能形成稳定复合物,使CXT的荧光猝灭。2. The present invention uses Tris-HCl or Hepes as a buffer solution, and uses Brij35 micellar aqueous solution as a medium, so that the solubility of CXT and pyridinium quaternary ammonium salt cationic surfactant in aqueous solution is better, and the low concentration below the millimolar concentration Concentration pyridinium quaternary ammonium cationic surfactant and CXT can form a stable complex, which can quench the fluorescence of CXT.
3、本发明的方法不受其它常见表面活性剂和无机盐,例如十六烷基三甲基溴化铵(CTAB)、十二烷基三甲基溴化铵(DTAB)、十二烷基硫酸钠(SDS)、十二烷基苯磺钠(SDBS)、对甲基苯磺酸钠(SPTS)、OP–3~30、TritonX–100、Tween–20、Tween–40、Tween–60、Tween–80、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-等离子的影响,具有高选择性。3. The method of the present invention is not affected by other common surfactants and inorganic salts, such as cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), lauryl Sodium sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), sodium p-toluenesulfonate (SPTS), OP–3~30, TritonX–100, Tween–20, Tween–40, Tween–60, Tween–80, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- plasma effect with high selectivity.
4、本发明不仅避免了目前吡啶季铵盐阳离子表面活性剂荧光分子探针研究中繁琐的有机合成问题,而且该方法还具有合成探针无法相比的安全性。4. The present invention not only avoids the cumbersome organic synthesis problem in the current research on fluorescent molecular probes of pyridinium quaternary ammonium salt cationic surfactants, but also has incomparable safety for synthetic probes.
5、本发明提供了一种操作简便、响应时间迅速(2min)、高选择性、高灵敏度和低检出限(8.2×10-9mol/L~7.6×10-8mol/L)测试吡啶季铵盐阳离子表面活性剂的方法。5. The present invention provides a method for testing pyridine with simple operation, fast response time (2min), high selectivity, high sensitivity and low detection limit (8.2×10 -9 mol/L~7.6×10 -8 mol/L) Method for quaternary ammonium cationic surfactants.
6、本发明可应用于实际环境水样品,例如地表水、湖水以及污水等中的吡啶季铵盐阳离子表面活性剂检测。6. The present invention can be applied to the detection of pyridinium quaternary ammonium salt cationic surfactants in actual environmental water samples, such as surface water, lake water and sewage.
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中混合均匀后用HCl溶液或NaOH溶液调节步骤一得到的检测液的pH值至pH为8。其它与具体实施方式一相同。Embodiment 2: This embodiment differs from Embodiment 1 in that: after mixing uniformly in Step 1, use HCl solution or NaOH solution to adjust the pH value of the detection solution obtained in Step 1 to pH 8. Others are the same as in the first embodiment.
具体实施方式三:本实施方式与具体实施方式一至二之一不同的是:步骤一中所述的检测液中CXT的摩尔浓度为5.0×10-6。其它与具体实施方式一至二之一相同。Embodiment 3: This embodiment differs from Embodiment 1 to Embodiment 2 in that the molar concentration of CXT in the detection solution described in step 1 is 5.0×10 -6 . Others are the same as one of the specific embodiments 1 to 2.
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中所述的检测液中非离子表面活性剂为Brij35,其摩尔浓度为1.2×10-3mol/L。其它与具体实施方式一至三之一相同。Embodiment 4: This embodiment differs from Embodiments 1 to 3 in that the non-ionic surfactant in the detection solution described in step 1 is Brij35, and its molar concentration is 1.2×10 -3 mol/L. Others are the same as those in the first to third specific embodiments.
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中所述的检测液中缓冲溶液为Tris-HCl,其摩尔浓度为0.01mol/L。其它与具体实施方式一至四之一相同。Embodiment 5: This embodiment differs from Embodiment 1 to Embodiment 4 in that: the buffer solution in the detection solution described in step 1 is Tris-HCl, and its molar concentration is 0.01 mol/L. Others are the same as one of the specific embodiments 1 to 4.
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中表面活性剂浓度为CXT浓度的1倍。其它与具体实施方式一至五之一相同。Embodiment 6: The difference between this embodiment and one of Embodiments 1 to 5 is that the concentration of the surfactant in step 2 is 1 times the concentration of CXT. Others are the same as one of the specific embodiments 1 to 5.
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中表面活性剂浓度为CXT浓度的4倍。其它与具体实施方式一至六之一相同。Embodiment 7: The difference between this embodiment and one of Embodiments 1 to 6 is that the surfactant concentration in step 2 is 4 times of the CXT concentration. Others are the same as one of the specific embodiments 1 to 6.
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中表面活性剂浓度为CXT浓度的6倍。其它与具体实施方式一至七之一相同。Embodiment 8: The difference between this embodiment and one of Embodiments 1 to 7 is that the surfactant concentration in step 2 is 6 times of the CXT concentration. Others are the same as one of the specific embodiments 1 to 7.
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中RPB的浓度为5.0×10-6mol/L。其它与具体实施方式一至八之一相同。Embodiment 9: This embodiment differs from Embodiments 1 to 8 in that the concentration of RPB in step 3 is 5.0×10 -6 mol/L. Others are the same as one of the specific embodiments 1 to 8.
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三中RPB的浓度为2.0×10-5mol/L。其它与具体实施方式一至九之一相同。Embodiment 10: This embodiment differs from Embodiments 1 to 9 in that the concentration of RPB in step 3 is 2.0×10 -5 mol/L. Others are the same as one of the specific embodiments 1 to 9.
具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是:步骤三中RPB的浓度为3.0×10-5mol/L。其它与具体实施方式一至十之一相同。Embodiment 11: This embodiment differs from Embodiments 1 to 10 in that the concentration of RPB in step 3 is 3.0×10 -5 mol/L. Others are the same as those in Embodiments 1 to 11.
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同的是:步骤四中加入RPB的浓度为CXT浓度的0~4倍。其它与具体实施方式一至十一之一相同。Embodiment 12: This embodiment differs from Embodiments 1 to 11 in that the concentration of RPB added in Step 4 is 0-4 times the concentration of CXT. Others are the same as those of the specific embodiments 1 to 11.
具体实施方式十三:本实施方式与具体实施方式一至十二之一不同的是:步骤四中加入RPB的浓度为CXT浓度的0~10倍。其它与具体实施方式一至十二之一相同。Embodiment 13: This embodiment is different from Embodiment 1 to Embodiment 12 in that: the concentration of RPB added in Step 4 is 0-10 times the concentration of CXT. Others are the same as one of the specific embodiments 1 to 12.
具体实施方式十四:本实施方式与具体实施方式一至十三之一不同的是:步骤四中加入RPB的浓度为CXT浓度的0~12倍。其它与具体实施方式一至十三之一相同。Embodiment 14: This embodiment differs from Embodiments 1 to 13 in that the concentration of RPB added in Step 4 is 0-12 times the concentration of CXT. Others are the same as those of the first to thirteenth specific embodiments.
具体实施方式十五:本实施方式与具体实施方式一至十四之一不同的是:步骤五中其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2-、SO4 2-)。其它与具体实施方式一至十五之一相同。Embodiment 15: This embodiment is different from one of Embodiment 1 to 14 in that: other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX) in step 5 –100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2- , SO 4 2 - ). Others are the same as those in the first to fifteenth specific embodiments.
具体实施方式十六:本实施方式与具体实施方式一至十五之一不同的是:步骤六中计算检出限为6.3×10-8mol/L,线性范围为6.3×10-8~2.0×10-5mol/L。其它与具体实施方式一至十五之一相同。Embodiment 16: This embodiment differs from Embodiment 1 to Embodiment 15 in that: the calculated detection limit in step 6 is 6.3×10 -8 mol/L, and the linear range is 6.3×10 -8 ~ 2.0× 10 -5 mol/L. Others are the same as those in the first to fifteenth specific embodiments.
具体实施方式十七:本实施方式与具体实施方式一至十六之一不同的是:步骤六中计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。其它与具体实施方式一至十六之一相同。Embodiment 17: This embodiment differs from Embodiment 1 to Embodiment 16 in that the detection limit calculated in step 6 is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~ 5.0× 10 -6 mol/L. Others are the same as one of the specific embodiments 1 to 16.
具体实施方式十八:本实施方式与具体实施方式一至十七之一不同的是:步骤六中计算检出限为7.6×10-8mol/L,线性范围为7.6×10-8~3.0×10-5mol/L。其它与具体实施方式一至十七之一相同。Embodiment 18: The difference between this embodiment and Embodiment 1 to 17 is that the detection limit calculated in step 6 is 7.6×10 -8 mol/L, and the linear range is 7.6×10 -8 ~ 3.0× 10 -5 mol/L. Others are the same as those of the first to seventeenth specific embodiments.
具体实施方式十九:本实施方式与具体实施方式一至十八之一不同的是:步骤七中得到回收率范围为98.9~100.2%。其它与具体实施方式一至十八之一相同。Embodiment Nineteen: The difference between this embodiment and Embodiment One to Embodiment Eighteen is that the recovery rate obtained in step seven ranges from 98.9% to 100.2%. Others are the same as those of the first to eighteenth specific embodiments.
具体实施方式二十:本实施方式与具体实施方式一至十九之一不同的是:步骤七中得到回收率范围为99.1~101.2%。其它与具体实施方式一至十九之一相同。Embodiment 20: This embodiment differs from Embodiments 1 to 19 in that the recovery rate obtained in step 7 ranges from 99.1 to 101.2%. Others are the same as those of the first to nineteenth specific embodiments.
具体实施方式二十一:本实施方式与具体实施方式一至二十之一不同的是:步骤七中得到回收率范围为99.0~102%。其它与具体实施方式一至二十之一相同。Embodiment 21: This embodiment is different from Embodiments 1 to 21 in that: the recovery rate obtained in step 7 ranges from 99.0 to 102%. Others are the same as the first to twenty-first specific embodiments.
下面结合具体的实施例对本发明方法作进一步的描述,以便本领域的技术人员清楚地理解本发明,但以下实施例不以任何形式限制本发明请求保护的范围。The method of the present invention will be further described below in conjunction with specific examples, so that those skilled in the art can clearly understand the present invention, but the following examples do not limit the scope of protection claimed by the present invention in any form.
试验一:溴代十六烷基吡啶(CPB)阳离子表面活性剂的具体检测方法:Test 1: Specific detection method of cetylpyridinium bromide (CPB) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、CPB),浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅CPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测CPB。其中:纵坐标表示最大发射波长处(444nm)的荧光强度,横坐标表示表面活性剂种类。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, CPB), when the concentration is 4 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength at 444nm). Only CPB can significantly quench the fluorescence of the solution, while other surfactants have little effect on the fluorescence spectrum of the solution. It shows that the fluorescent probe of the present invention can single-selectively detect CPB in common surfactants. Wherein: the ordinate represents the fluorescence intensity at the maximum emission wavelength (444nm), and the abscissa represents the type of surfactant.
(二)将5.0×10-6mol/L的CXT水溶液及含2.0×10-5mol/LCPB的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与CPB形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时CPB的检测。其中:纵坐标表示最大发射波长处(444nm)的荧光强度,横坐标表示pH值。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 2.0×10 -5 mol/LCPB containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity changing with the pH value, it can be seen that when the pH value is greater than 5, CXT and CPB form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of CPB when the pH value is greater than 5. Wherein: the ordinate represents the fluorescence intensity at the maximum emission wavelength (444nm), and the abscissa represents the pH value.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入2.0×10-5mol/L的CPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对CPB的响应时间迅速。其中:纵坐标表示最大发射波长处(444nm)的荧光强度,横坐标表示响应时间(t/min)。( 3 ) Add 2.0× 10 -5 mol/L CPB, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicating that the response time of CXT to CPB is rapid. Wherein: the ordinate represents the fluorescence intensity at the maximum emission wavelength (444nm), and the abscissa represents the response time (t/min).
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,CPB浓度为CXT浓度的0–10倍时,测定其荧光光谱。随着CPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。其中:纵坐标表示荧光强度,横坐标表示荧光发射波长(λem/nm,激发波长为340nm)。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of CPB is the concentration of CXT Measure the fluorescence spectrum at 0-10 times. With the addition of CPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. Wherein: the ordinate represents the fluorescence intensity, and the abscissa represents the fluorescence emission wavelength (λ em /nm, the excitation wavelength is 340nm).
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入CPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2-、SO4 2-),CPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰CPB复合物的荧光发射,其荧光强度与溶液中仅存在CPB时相似。表明,CXT对CPB的荧光检测不受其它常见表面活性剂和无机盐的影响。其中:纵坐标表示最大发射波长处(444nm)的荧光强度,横坐标表示表面活性剂和无机盐种类。(5) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add CPB and other common Surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2- , SO 4 2- ), CPB coexisted with other surfactants and inorganic salts, and when the concentration was 4 times that of CXT, the fluorescence was measured ( The excitation wavelength is 340nm, and the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts did not significantly interfere with the fluorescence emission of the CPB complex, and its fluorescence intensity was similar to that when only CPB existed in the solution. It shows that the fluorescence detection of CPB by CXT is not affected by other common surfactants and inorganic salts. Wherein: the ordinate represents the fluorescence intensity at the maximum emission wavelength (444nm), and the abscissa represents the types of surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,CPB浓度为CXT浓度的0–10倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着CPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当CPB浓度在0~2.0×10-5mol/L范围内,溶液的荧光强度与CPB浓度呈现良好的线性关系(R2=0.9956),其线性回归方程为y=-5.5939x+182.58;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为6.3×10-8mol/L,线性范围为6.3×10-8~2.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测CPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of CPB is the concentration of CXT At 0-10 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of CPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the CPB concentration is in the range of 0~2.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the CPB concentration (R 2 =0.9956), and its linear regression equation is y=-5.5939x+182.58; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 6.3×10 -8 mol/L, and the linear range is 6.3×10 -8 ~2.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect CPB with high sensitivity.
(七)以下是CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入CPB水溶液,至终浓度分别为5.00,10.0,15.0和20.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到CPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在98.9~100.2%之间,如表1所示。结果表明,可应用于实际环境水样品中的CPB检测。(7) The following is the application of CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add CPB aqueous solution, and the final concentrations are respectively 5.00, 10.0, 15.0 and 20.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of CPB was obtained, and the recovery rate was calculated, and good experimental results were obtained. The recovery rate was between 98.9% and 100.2%, as shown in Table 1. The results show that it can be applied to the detection of CPB in actual environmental water samples.
表1地表水和湖水水样品中的CPB检测数据Table 1 CPB detection data in surface water and lake water samples
试验二:N-十二烷基乙酰基氯代吡啶(N-DAPC)阳离子表面活性剂的具体检测方法:Test 2: The specific detection method of N-dodecylacetyl chloride pyridinium (N-DAPC) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、N-DAPC),浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅N-DAPC导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测N-DAPC。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, N-DAPC), when the concentration is 1 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum The emission wavelength is 444nm). Only N-DAPC caused significant quenching of the solution fluorescence, while other surfactants had no obvious effect on the solution fluorescence spectrum. It shows that the fluorescent probe of the present invention can single-selectively detect N-DAPC in common surfactants.
(二)将5.0×10-6mol/L的CXT水溶液及含5.0×10-6mol/LN-DAPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与N-DAPC形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时N-DAPC的检测。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 5.0×10 -6 mol/L N-DAPC containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution , to measure the change of the fluorescence intensity of the solution with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and N-DAPC form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of N-DAPC when the pH value is greater than 5.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入5.0×10-6mol/L的N-DAPC,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对N-DAPC的响应时间迅速。( 3 ) Add 5.0 ×10 -6 mol/L N-DAPC, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. It shows that the response time of CXT to N-DAPC is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DAPC浓度为CXT浓度的0–4倍时,测定其荧光光谱。随着N-DAPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DAPC is CXT When the concentration is 0-4 times, measure its fluorescence spectrum. With the addition of N-DAPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入N-DAPC与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2-、SO4 2-),N-DAPC与其它表面活性剂和无机盐共存,浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰N-DAPC复合物的荧光发射,其荧光强度与溶液中仅存在N-DAPC时相似。表明,CXT对N-DAPC的荧光检测不受其它常见表面活性剂和无机盐的影响。(5) Add N - DAPC and Other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3 - , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2- , SO 4 2- ), N-DAPC coexists with other surfactants and inorganic salts, when the concentration is 1 times the concentration of CXT, Measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the N-DAPC complex, and its fluorescence intensity is similar to that when only N-DAPC exists in the solution. It shows that the fluorescence detection of N-DAPC by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DAPC浓度为CXT浓度的0–4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着N-DAPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。当N-DAPC浓度在0~5.0×10-6mol/L范围内,溶液的荧光强度与N-DAPC浓度呈现良好的线性关系(R2=0.9901),其线性回归方程为y=-23.028x+177.17;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。表明,本发明的荧光试剂可以高灵敏检测N-DAPC。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DAPC is CXT When the concentration is 0-4 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of N-DAPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the concentration of N-DAPC is in the range of 0~5.0×10 -6 mol/L, the fluorescence intensity of the solution has a good linear relationship with the concentration of N-DAPC (R 2 =0.9901), and the linear regression equation is y=-23.028x +177.17; 20 times the average measurement of the blank sample, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~ 5.0×10 -6 mol/L. It shows that the fluorescent reagent of the present invention can detect N-DAPC with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入N-DAPC水溶液,至终浓度分别为1.0,2.0,3.0和4.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到N-DAPC的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.1~101.2%之间。结果表明,可应用于实际环境水样品中的N-DAPC检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add N-DAPC aqueous solution, to the final concentration 1.0, 2.0, 3.0 and 4.0 μM, respectively. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of N-DAPC was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.1% and 101.2%. The results show that it can be applied to the detection of N-DAPC in actual environmental water samples.
试验三:碳数不同(8~18)的混合烷基吡啶季铵盐阳离子表面活性剂(WPB)的具体检测方法:Test 3: The specific detection method of mixed alkyl pyridinium quaternary ammonium salt cationic surfactant (WPB) with different carbon numbers (8-18):
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、WPB),浓度为CXT浓度的6倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅WPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。(1) Water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a concentration of CXT of 5.0×10 -6 mol/L, adding various common surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, WPB), when the concentration is 6 times of CXT concentration, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm ). Only WPB led to significant quenching of the solution fluorescence, while other surfactants had no obvious effect on the solution fluorescence spectrum.
(二)将5.0×10-6mol/L的CXT水溶液及含3.0×10-5mol/LTPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与WPB形成了稳定的复合物,导致溶液荧光发生显著猝灭。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 3.0×10 -5 mol/LTPC-containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and WPB form a stable complex, resulting in a significant quenching of the solution fluorescence.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入3.0×10-5mol/L的WPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对WPB的响应时间迅速。( 3 ) Add 3.0×10 -5 mol / For WPB of L, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicates that the response time of CXT to WPB is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,WPB浓度为CXT浓度的0–12倍时,测定其荧光光谱。随着HPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/L Hepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of WPB is 0– At 12 times, measure its fluorescence spectrum. With the addition of HPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入WPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2-、SO4 2-),WPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的6倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰WPB复合物的荧光发射,其荧光强度与溶液中仅存在WPB时相似。表明,CXT对WPB的荧光检测不受其它常见表面活性剂和无机盐的影响。(5) Water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L, add WPB and other common surface Active agents and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3 - , NO 2- , C 2 O 4 2- , CO 3 2- , SO 4 2- ), WPB coexists with other surfactants and inorganic salts, when the concentration is 6 times that of CXT, measure its fluorescence (excitation wavelength 340nm, the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts did not significantly interfere with the fluorescence emission of the WPB complex, and its fluorescence intensity was similar to that when only WPB existed in the solution. It indicated that the fluorescence detection of WPB by CXT was not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,WPB浓度为CXT浓度的0–12倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着WPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当HPB浓度在0~3.0×10-5mol/L范围内,溶液的荧光强度与WPB浓度呈现良好的线性关系(R2=0.9978),其线性回归方程为y=-4.3856x+192.82;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为7.6×10-8mol/L,线性范围为7.6×10-8~3.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测WPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/L Hepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of WPB is 0– At 12 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of WPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the concentration of HPB is in the range of 0~3.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the concentration of WPB (R 2 =0.9978), and the linear regression equation is y=-4.3856x+192.82; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 7.6×10 -8 mol/L, and the linear range is 7.6×10 -8 ~3.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect WPB with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入WPB水溶液,至终浓度分别为5.00,15.0,20.0和25.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到WPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.4-101.8%之间。结果表明,可应用于实际环境水样品中的WPB检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add WPB aqueous solution, the final concentration is 5.00, 15.0, 20.0 and 25.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of WPB was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.4-101.8%. The results show that it can be applied to the detection of WPB in actual environmental water samples.
试验四:氯代十四烷基吡啶(TPC)阳离子表面活性剂的具体检测方法:Test 4: The specific detection method of tetradecylpyridinium chloride (TPC) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、TPC),浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅TPC导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, TPC), when the concentration is 4 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength at 444nm). Only TPC resulted in significant quenching of the solution fluorescence, while other surfactants had no significant effect on the solution fluorescence spectra.
(二)将5.0×10-6mol/L的CXT水溶液及含2.0×10-5mol/LTPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与TPC形成了稳定的复合物,导致溶液荧光发生显著猝灭。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 2.0×10 -5 mol/LTPC (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution to determine The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity changing with the pH value, it can be seen that when the pH value is greater than 5, CXT and TPC form a stable complex, resulting in a significant quenching of the solution fluorescence.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入2.0×10-5mol/L的TPC,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对TPC的响应时间迅速。( 3 ) Add 2.0× 10 -5 mol/L TPC, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicating that the response time of CXT to TPC is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,TPC浓度为CXT浓度的0–10倍时,测定其荧光光谱。随着TPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of TPC is the concentration of CXT Measure the fluorescence spectrum at 0-10 times. With the addition of TPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入TPC与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),TPC与其它表面活性剂和无机盐共存,浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰TPC复合物的荧光发射,其荧光强度与溶液中仅存在TPC时相似。表明,CXT对TPC的荧光检测不受其它常见表面活性剂和无机盐的影响。(5 ) Add TPC and other common Surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), TPC coexisted with other surfactants and inorganic salts, when the concentration was 4 times that of CXT, the fluorescence was measured ( The excitation wavelength is 340nm, and the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the TPC complex, and its fluorescence intensity is similar to that when only TPC exists in the solution. It shows that the fluorescence detection of TPC by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,TPC浓度为CXT浓度的0–10倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着TPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。当TPC浓度在0~2.0×10-5mol/L范围内,溶液的荧光强度与TPC浓度呈现良好的线性关系(R2=0.9956),其线性回归方程为y=-5.5939x+182.58;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为6.3×10-8mol/L,线性范围为6.3×10-8~2.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测TPC。(6) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with CXT concentration of 5.0×10 -6 mol/L, TPC concentration of CXT concentration At 0-10 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of TPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the TPC concentration is in the range of 0~2.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the TPC concentration (R 2 =0.9956), and its linear regression equation is y=-5.5939x+182.58; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 6.3×10 -8 mol/L, and the linear range is 6.3×10 -8 ~2.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect TPC with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入TPC水溶液,至终浓度分别为5.00,10.0,15.0和20.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到TPC的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在98.9~100.2%之间。结果表明,可应用于实际环境水样品中的TPC检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add TPC aqueous solution, and the final concentrations are 5.00, 10.0, 15.0 and 20.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of TPC was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 98.9% and 100.2%. The results show that it can be applied to the detection of TPC in actual environmental water samples.
试验五:溴代十二烷基吡啶(DPB)阳离子表面活性剂的具体检测方法:Experiment 5: The specific detection method of dodecylpyridinium bromide (DPB) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、DPB),浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅DPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。(1) Water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a concentration of CXT of 5.0×10 -6 mol/L, adding various common surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, DPB), when the concentration is 4 times of CXT concentration, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm ). Only DPB can significantly quench the fluorescence of the solution, while other surfactants have little effect on the fluorescence spectrum of the solution.
(二)将5.0×10-6mol/L的CXT水溶液及含2.0×10-5mol/LDPB的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与DPB形成了稳定的复合物,导致溶液荧光发生显著猝灭。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 2.0×10 -5 mol/LDPB containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and DPB form a stable complex, resulting in a significant quenching of the solution fluorescence.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入2.0×10-5mol/L的DPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对DPB的响应时间迅速。( 3 ) Add 2.0×10 -5 mol / For the DPB of L, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. It shows that the response time of CXT to DPB is fast.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,DPB浓度为CXT浓度的0–10倍时,测定其荧光光谱。随着DPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/L Hepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of DPB is 0– At 10 times, measure its fluorescence spectrum. With the addition of DPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入DPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),DPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰DPB复合物的荧光发射,其荧光强度与溶液中仅存在DPB时相似。表明,CXT对DPB的荧光检测不受其它常见表面活性剂和无机盐的影响。(5) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add DPB and other common surface Active agents and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3 - , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), when DPB coexists with other surfactants and inorganic salts, when the concentration is 4 times that of CXT, measure its fluorescence (excitation wavelength 340nm, the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the DPB complex, and its fluorescence intensity is similar to that when only DPB exists in the solution. It shows that the fluorescence detection of CXT on DPB is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,DPB浓度为CXT浓度的0–10倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着DPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当DPB浓度在0~2.0×10-5mol/L范围内,溶液的荧光强度与DPB浓度呈现良好的线性关系(R2=0.9956),其线性回归方程为y=-5.5939x+182.58;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为6.3×10-8mol/L,线性范围为6.3×10-8~2.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测DPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/L Hepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of DPB is 0– At 10 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of DPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the DPB concentration is in the range of 0~2.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the DPB concentration (R 2 =0.9956), and its linear regression equation is y=-5.5939x+182.58; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 6.3×10 -8 mol/L, and the linear range is 6.3×10 -8 ~2.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect DPB with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LHepes,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入DPB水溶液,至终浓度分别为5.00,10.0,15.0和20.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到DPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在98.9~100.2%之间。结果表明,可应用于实际环境水样品中的DPB检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LHepes, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add DPB aqueous solution, and the final concentration is 5.00, 10.0, 15.0 and 20.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of DPB was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 98.9% and 100.2%. The results show that it can be applied to the detection of DPB in actual environmental water samples.
试验六:氯代十八烷基吡啶(OPC)阳离子表面活性剂的具体检测方法:Test 6: The specific detection method of octadecylpyridine chloride (OPC) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、OPC),浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅OPC导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, OPC), when the concentration is 4 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength at 444nm). Only OPC led to significant quenching of the solution fluorescence, while other surfactants had no obvious effect on the solution fluorescence spectrum.
(二)将5.0×10-6mol/L的CXT水溶液及含2.0×10-5mol/LOPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与OPC形成了稳定的复合物,导致溶液荧光发生显著猝灭。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 2.0×10 -5 mol/LOPC-containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity changing with the pH value, it can be seen that when the pH value is greater than 5, CXT and OPC form a stable complex, resulting in a significant quenching of the solution fluorescence.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入2.0×10-5mol/L的OPC,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对OPC的响应时间迅速。( 3 ) Add 2.0× 10 -5 mol/L OPC, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicates that the response time of CXT to OPC is fast.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,OPC浓度为CXT浓度的0–10倍时,测定其荧光光谱。随着OPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with CXT concentration of 5.0×10 -6 mol/L, OPC concentration of CXT concentration Measure the fluorescence spectrum at 0-10 times. With the addition of OPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入OPC与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),OPC与其它表面活性剂和无机盐共存,浓度为CXT浓度的4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰OPC复合物的荧光发射,其荧光强度与溶液中仅存在OPC时相似。表明,CXT对OPC的荧光检测不受其它常见表面活性剂和无机盐的影响。(5 ) Add OPC and other common Surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), OPC coexists with other surfactants and inorganic salts, when the concentration is 4 times that of CXT, measure its fluorescence ( The excitation wavelength is 340nm, and the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the OPC complex, and its fluorescence intensity is similar to that when only OPC exists in the solution. It shows that the fluorescence detection of OPC by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,OPC浓度为CXT浓度的0–10倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着OPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。当OPC浓度在0~2.0×10-5mol/L范围内,溶液的荧光强度与OPC浓度呈现良好的线性关系(R2=0.9956),其线性回归方程为y=-5.5939x+182.58;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为6.3×10-8mol/L,线性范围为6.3×10-8~2.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测OPC。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the OPC concentration is the concentration of CXT At 0-10 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of OPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the OPC concentration is in the range of 0~2.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the OPC concentration (R 2 =0.9956), and its linear regression equation is y=-5.5939x+182.58; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 6.3×10 -8 mol/L, and the linear range is 6.3×10 -8 ~2.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect OPC with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入OPC水溶液,至终浓度分别为5.00,15.0,20.0和25.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到OPC的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在98.9-100.2%之间。结果表明,可应用于实际环境水样品中的OPC检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add OPC aqueous solution, and the final concentrations are respectively 5.00, 15.0, 20.0 and 25.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of OPC was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 98.9-100.2%. The results show that it can be applied to the detection of OPC in actual environmental water samples.
试验七:N-十四烷基乙酰基氯代吡啶(N-DTPC)阳离子表面活性剂的具体检测方法:Experiment 7: The specific detection method of N-tetradecylacetyl chloride pyridinium (N-DTPC) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、N-DTPC),浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅N-DTPC导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测N-DTPC。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, N-DTPC), when the concentration is 1 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum The emission wavelength is 444nm). Only N-DTPC resulted in significant quenching of the solution fluorescence, while other surfactants had no significant effect on the solution fluorescence spectra. It shows that the fluorescent probe of the present invention can single-selectively detect N-DTPC in common surfactants.
(二)将5.0×10-6mol/L的CXT水溶液及含5.0×10-6mol/LN-DAPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与N-DTPC形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时N-DTPC的检测。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 5.0×10 -6 mol/L N-DAPC containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution , to measure the change of the fluorescence intensity of the solution with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and N-DTPC form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of N-DTPC when the pH value is greater than 5.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入5.0×10-6mol/L的N-DTPC,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对N-DTPC的响应时间迅速。( 3 ) Add 5.0 ×10 -6 mol/L N-DTPC, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. It shows that the response time of CXT to N-DTPC is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DTPC浓度为CXT浓度的0–4倍时,测定其荧光光谱。随着N-DTPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DTPC is CXT When the concentration is 0-4 times, measure its fluorescence spectrum. With the addition of N-DTPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入N-DTPC与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),N-DTPC与其它表面活性剂和无机盐共存,浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰N-DTPC复合物的荧光发射,其荧光强度与溶液中仅存在N-DTPC时相似。表明,CXT对N-DTPC的荧光检测不受其它常见表面活性剂和无机盐的影响。(5) Add N - DTPC and Other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3 - , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), N-DTPC coexists with other surfactants and inorganic salts, when the concentration is 1 times the concentration of CXT, Measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the N-DTPC complex, and its fluorescence intensity is similar to that when only N-DTPC exists in the solution. It shows that the fluorescence detection of N-DTPC by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DTPC浓度为CXT浓度的0–4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着N-DTPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。当N-DTPC浓度在0~5.0×10-6mol/L范围内,溶液的荧光强度与N-DTPC浓度呈现良好的线性关系(R2=0.9901),其线性回归方程为y=-23.028x+177.17;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。表明,本发明的荧光试剂可以高灵敏检测N-DTPC。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DTPC is CXT When the concentration is 0-4 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of N-DTPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the concentration of N-DTPC is in the range of 0~5.0×10 -6 mol/L, the fluorescence intensity of the solution has a good linear relationship with the concentration of N-DTPC (R 2 =0.9901), and the linear regression equation is y=-23.028x +177.17; 20 times the average measurement of the blank sample, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~ 5.0×10 -6 mol/L. It shows that the fluorescent reagent of the present invention can detect N-DTPC with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入N-DTPC水溶液,至终浓度分别为1.0,2.0,3.0和4.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到N-DAPC的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.1~101.2%之间。结果表明,可应用于实际环境水样品中的N-DTPC检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add N-DTPC aqueous solution, to the final concentration 1.0, 2.0, 3.0 and 4.0 μM, respectively. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of N-DAPC was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.1% and 101.2%. The results show that it can be applied to the detection of N-DTPC in actual environmental water samples.
试验八:N-十六烷基乙酰基溴代吡啶(N-DCPB)阳离子表面活性剂的具体检测方法:Test 8: The specific detection method of N-hexadecylacetylpyridine bromide (N-DCPB) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、N-DCPB),浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅N-DCPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测N-DCPB。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, N-DCPB), when the concentration is 1 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum The emission wavelength is 444nm). Only N-DCPB caused significant quenching of the solution fluorescence, while other surfactants had no obvious effect on the solution fluorescence spectrum. It shows that the fluorescent probe of the present invention can single-selectively detect N-DCPB in common surfactants.
(二)将5.0×10-6mol/L的CXT水溶液及含5.0×10-6mol/LN-DCPB的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与N-DCPB形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时N-DCPB的检测。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 5.0×10 -6 mol/L N-DCPB containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution , to measure the change of the fluorescence intensity of the solution with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and N-DCPB form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of N-DCPB when the pH value is greater than 5.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入5.0×10-6mol/L的N-DCPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对N-DCPB的响应时间迅速。( 3 ) Add 5.0 ×10 -6 mol/L N-DCPB, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. It shows that the response time of CXT to N-DCPB is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DCPB浓度为CXT浓度的0–4倍时,测定其荧光光谱。随着N-DAPC的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DCPB is CXT When the concentration is 0-4 times, measure its fluorescence spectrum. With the addition of N-DAPC, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入N-DCPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),N-DCPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰N-DCPB复合物的荧光发射,其荧光强度与溶液中仅存在N-DCPB时相似。表明,CXT对N-DCPB的荧光检测不受其它常见表面活性剂和无机盐的影响。( 5 ) Add N - DCPB and Other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3 - , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), N-DCPB coexists with other surfactants and inorganic salts, when the concentration is 1 times the concentration of CXT, Measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the N-DCPB complex, and its fluorescence intensity is similar to that when only N-DCPB exists in the solution. It shows that the fluorescence detection of N-DCPB by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DCPB浓度为CXT浓度的0–4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着N-DCPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当N-DCPB浓度在0~5.0×10-6mol/L范围内,溶液的荧光强度与N-DCPB浓度呈现良好的线性关系(R2=0.9901),其线性回归方程为y=-23.028x+177.17;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。表明,本发明的荧光试剂可以高灵敏检测N-DCPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DCPB is CXT When the concentration is 0-4 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of N-DCPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the concentration of N-DCPB is in the range of 0~5.0×10 -6 mol/L, the fluorescence intensity of the solution has a good linear relationship with the concentration of N-DCPB (R 2 =0.9901), and the linear regression equation is y=-23.028x +177.17; 20 times the average measurement of the blank sample, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~ 5.0×10 -6 mol/L. It shows that the fluorescent reagent of the present invention can detect N-DCPB with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入N-DCPB水溶液,至终浓度分别为1.0,2.0,3.0和4.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到N-DCPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.1~101.2%之间。结果表明,可应用于实际环境水样品中的N-DCPB检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add N-DCPB aqueous solution, to the final concentration 1.0, 2.0, 3.0 and 4.0 μM, respectively. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of N-DCPB was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.1% and 101.2%. The results show that it can be applied to the detection of N-DCPB in actual environmental water samples.
试验九:N-十八烷基乙酰基碘代吡啶(N-DOPI)阳离子表面活性剂的具体检测方法:Test 9: The specific detection method of N-octadecylacetyliodopyridine (N-DOPI) cationic surfactant:
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、N-DOPI),浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅N-DOPI导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测N-DOPI。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, N-DOPI), when the concentration is 1 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum The emission wavelength is 444nm). Only N-DOPI caused significant quenching of the solution fluorescence, while other surfactants had no obvious effect on the solution fluorescence spectrum. It shows that the fluorescent probe of the present invention can single-selectively detect N-DOPI in common surfactants.
(二)将5.0×10-6mol/L的CXT水溶液及含5.0×10-6mol/LN-DOPI的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与N-DOPI形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时N-DOPI的检测。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 5.0×10 -6 mol/L N-DOPI-containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution , to measure the change of the fluorescence intensity of the solution with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and N-DOPI form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of N-DOPI when the pH value is greater than 5.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入5.0×10-6mol/L的N-DOPI,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对N-DOPI的响应时间迅速。( 3 ) Add 5.0 ×10 -6 mol/L N-DOPI, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. It shows that the response time of CXT to N-DOPI is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DOPI浓度为CXT浓度的0–4倍时,测定其荧光光谱。随着N-DOPI的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DOPI is CXT When the concentration is 0-4 times, measure its fluorescence spectrum. With the addition of N-DOPI, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入N-DOPI与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),N-DOPI与其它表面活性剂和无机盐共存,浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰N-DOPI复合物的荧光发射,其荧光强度与溶液中仅存在N-DOPI时相似。表明,CXT对N-DOPI的荧光检测不受其它常见表面活性剂和无机盐的影响。( 5 ) Add N - DOPI and Other common surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3 - , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), N-DOPI coexists with other surfactants and inorganic salts, when the concentration is 1 times that of CXT, Measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the N-DOPI complex, and its fluorescence intensity is similar to that when only N-DOPI exists in the solution. It shows that the fluorescence detection of N-DOPI by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,N-DOPI浓度为CXT浓度的0–4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着N-DOPI的加入,探针分子在444nm处的荧光峰强度逐渐降低。当N-DOPI浓度在0~5.0×10-6mol/L范围内,溶液的荧光强度与N-DOPI浓度呈现良好的线性关系(R2=0.9901),其线性回归方程为y=-23.028x+177.17;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。表明,本发明的荧光试剂可以高灵敏检测N-DOPI。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of N-DOPI is CXT When the concentration is 0-4 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of N-DOPI, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the concentration of N-DOPI is in the range of 0~5.0×10 -6 mol/L, the fluorescence intensity of the solution has a good linear relationship with the concentration of N-DOPI (R 2 =0.9901), and the linear regression equation is y=-23.028x +177.17; 20 times the average measurement of the blank sample, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~ 5.0×10 -6 mol/L. It shows that the fluorescent reagent of the present invention can detect N-DOPI with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入N-DOPI水溶液,至终浓度分别为1.0,2.0,3.0和4.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到N-DOPI的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.1~101.2%之间。结果表明,可应用于实际环境水样品中的N-DOPI检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add N-DOPI aqueous solution, to the final concentration 1.0, 2.0, 3.0 and 4.0 μM, respectively. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of N-DOPI was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.1% and 101.2%. The results show that it can be applied to the detection of N-DOPI in actual environmental water samples.
试验十:碳数不同(8~18)的混合酰胺吡啶季铵盐阳离子表面活性剂(NPB)的具体检测方法:Experiment 10: Specific detection methods for mixed amide pyridine quaternary ammonium salt cationic surfactants (NPB) with different carbon numbers (8-18):
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、NPB),浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅NPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。表明,本发明的荧光探针可在常见表面活性剂中单一选择性检测NPB。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, NPB), when the concentration is 1 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength at 444nm). Only NPB resulted in significant quenching of the solution fluorescence, while other surfactants had no significant effect on the solution fluorescence spectra. It shows that the fluorescent probe of the present invention can single-selectively detect NPB in common surfactants.
(二)将5.0×10-6mol/L的CXT水溶液及含5.0×10-6mol/LNPB的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与N-DOPI形成了稳定的复合物,导致溶液荧光发生显著猝灭。表明CXT能够用于pH值大于5时NPB的检测。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 5.0×10 -6 mol/L NPB containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity with pH value, it can be seen that when the pH value is greater than 5, CXT and N-DOPI form a stable complex, resulting in a significant quenching of the solution fluorescence. It shows that CXT can be used for the detection of NPB when the pH value is greater than 5.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入5.0×10-6mol/L的NPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对NPB的响应时间迅速。( 3 ) Add 5.0 ×10 -6 mol/L NPB, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicating that the response time of CXT to NPB is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,NPB浓度为CXT浓度的0–4倍时,测定其荧光光谱。随着NPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with CXT concentration of 5.0×10 -6 mol/L, NPB concentration of CXT concentration Measure the fluorescence spectrum at 0-4 times. With the addition of NPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入NPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),NPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的1倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰NPB复合物的荧光发射,其荧光强度与溶液中仅存在NPB时相似。表明,CXT对NPB的荧光检测不受其它常见表面活性剂和无机盐的影响。(5) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add NPB and other common Surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), NPB coexisted with other surfactants and inorganic salts, when the concentration was 1 times that of CXT, the fluorescence was measured ( The excitation wavelength is 340nm, and the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts did not significantly interfere with the fluorescence emission of the NPB complex, and its fluorescence intensity was similar to that when only NPB existed in the solution. It shows that the fluorescence detection of NPB by CXT is not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,NPB浓度为CXT浓度的0–4倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着NPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当NPB浓度在0~5.0×10-6mol/L范围内,溶液的荧光强度与NPB浓度呈现良好的线性关系(R2=0.9901),其线性回归方程为y=-23.028x+177.17;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为8.2×10-9mol/L,线性范围为8.2×10-9~5.0×10-6mol/L。表明,本发明的荧光试剂可以高灵敏检测NPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of NPB is the concentration of CXT At 0-4 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of NPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the NPB concentration is in the range of 0~5.0×10 -6 mol/L, the fluorescence intensity of the solution has a good linear relationship with the NPB concentration (R 2 =0.9901), and its linear regression equation is y=-23.028x+177.17; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 8.2×10 -9 mol/L, and the linear range is 8.2×10 -9 ~5.0 ×10 - 6mol/L. It shows that the fluorescent reagent of the present invention can detect NPB with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入NPB水溶液,至终浓度分别为1.0,2.0,3.0和4.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到NPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.1~101.2%之间。结果表明,可应用于实际环境水样品中的NPB检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add NPB aqueous solution, and the final concentrations are respectively 1.0, 2.0, 3.0 and 4.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of NPB was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.1% and 101.2%. The results show that it can be applied to the detection of NPB in actual environmental water samples.
试验十一:碳数不同(8~18)的混合烷基和酰胺吡啶季铵盐阳离子表面活性剂(HPB)的具体检测方法:Experiment 11: Specific detection methods for mixed alkyl and amidopyridinium quaternary ammonium salt cationic surfactants (HPB) with different carbon numbers (8-18):
(一)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入各种常见的表面活性剂(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX–100、Tween–20、HPB),浓度为CXT浓度的6倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。仅HPB导致溶液荧光发生显著猝灭,而其它表面活性剂对溶液荧光光谱影响不明显。(1) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with a CXT concentration of 5.0×10 -6 mol/L was added to various common Surfactants (CTAB, DTAB, SDS, SDBS, SPTS, OP-10, TritonX-100, Tween-20, HPB), when the concentration is 6 times the concentration of CXT, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength at 444nm). Only HPB caused the solution fluorescence to be significantly quenched, while other surfactants had no obvious effect on the solution fluorescence spectrum.
(二)将5.0×10-6mol/L的CXT水溶液及含3.0×10-5mol/LTPC的CXT水(1.2×10-3mol/LBrij35)溶液,用HCl或NaOH溶液调节pH值,测定溶液荧光强度随pH值的变化。比较两条荧光强度随pH值变化的曲线,可知在pH值大于5时,CXT与HPB形成了稳定的复合物,导致溶液荧光发生显著猝灭。(2) Adjust the pH value of 5.0×10 -6 mol/L CXT aqueous solution and 3.0×10 -5 mol/LTPC-containing CXT water (1.2×10 -3 mol/LBrij35) solution with HCl or NaOH solution, and measure The fluorescence intensity of the solution changes with the pH value. Comparing the two curves of fluorescence intensity changing with the pH value, it can be known that when the pH value is greater than 5, CXT and HPB form a stable complex, resulting in a significant quenching of the solution fluorescence.
(三)向浓度为5.0×10-6mol/L的CXT水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液中加入3.0×10-5mol/L的HPB,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着时间的增加,探针分子在444nm处的荧光强度明显降低,当响应时间超过2min后,探针分子的荧光强度趋于稳定。表明CXT对HPB的响应时间迅速。( 3 ) Add 3.0× 10 -5 mol/L HPB, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the increase of time, the fluorescence intensity of the probe molecule at 444nm decreased obviously, and when the response time exceeded 2min, the fluorescence intensity of the probe molecule tended to be stable. Indicating that the response time of CXT to HPB is rapid.
(四)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,HPB浓度为CXT浓度的0–12倍时,测定其荧光光谱。随着HPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。(4) Water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution with CXT concentration of 5.0×10 -6 mol/L, HPB concentration of CXT concentration Measure the fluorescence spectrum at 0-12 times. With the addition of HPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually.
(五)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,分别加入HPB与其它常见的表面活性剂和无机盐(CTAB、DTAB、SDS、SDBS、SPTS、OP–10、TritonX-100、Tween–20、F-、Cl-、Br-、I-、SCN-、PO4 3-、NO3-、NO2-、C2O4 2-、CO3 2–、SO4 2-),HPB与其它表面活性剂和无机盐共存,浓度为CXT浓度的6倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。其它常见的表面活性剂和无机盐均不明显干扰HPB复合物的荧光发射,其荧光强度与溶液中仅存在HPB时相似。表明,CXT对HPB的荧光检测不受其它常见表面活性剂和无机盐的影响。(5 ) Add HPB and other common Surfactants and inorganic salts (CTAB, DTAB, SDS, SDBS, SPTS, OP–10, TritonX-100, Tween–20, F - , Cl - , Br - , I - , SCN - , PO 4 3- , NO 3- , NO 2- , C 2 O 4 2- , CO 3 2– , SO 4 2- ), HPB coexisted with other surfactants and inorganic salts, when the concentration was 6 times that of CXT, the fluorescence was measured ( The excitation wavelength is 340nm, and the maximum emission wavelength is 444nm). Other common surfactants and inorganic salts do not significantly interfere with the fluorescence emission of the HPB complex, and its fluorescence intensity is similar to that when only HPB exists in the solution. It indicated that the fluorescence detection of HPB by CXT was not affected by other common surfactants and inorganic salts.
(六)CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,HPB浓度为CXT浓度的0–12倍时,测定其荧光(激发波长为340nm,最大发射波长为444nm)。随着HPB的加入,探针分子在444nm处的荧光峰强度逐渐降低。当HPB浓度在0~3.0×10-5mol/L范围内,溶液的荧光强度与HPB浓度呈现良好的线性关系(R2=0.9978),其线性回归方程为y=-4.3856x+192.82;对空白样进行20次平均测定,按3σ/K(σ为空白标准偏差,K为回归方程斜率),计算检出限为7.6×10-8mol/L,线性范围为7.6×10-8~3.0×10-5mol/L。表明,本发明的荧光试剂可以高灵敏检测HPB。(6) The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, the concentration of HPB is the concentration of CXT At 0-12 times, measure its fluorescence (excitation wavelength is 340nm, maximum emission wavelength is 444nm). With the addition of HPB, the fluorescence peak intensity of the probe molecule at 444nm decreased gradually. When the HPB concentration is in the range of 0~3.0×10 -5 mol/L, the fluorescence intensity of the solution has a good linear relationship with the HPB concentration (R 2 =0.9978), and its linear regression equation is y=-4.3856x+192.82; The blank sample was averaged 20 times, according to 3σ/K (σ is the standard deviation of the blank, K is the slope of the regression equation), the calculated detection limit is 7.6×10 -8 mol/L, and the linear range is 7.6×10 -8 ~3.0 ×10 -5 mol/L. It shows that the fluorescent reagent of the present invention can detect HPB with high sensitivity.
(七)以下是荧光探针CXT在实际环境水样品研究中的应用。以地表水和湖水为研究对象,将地表水和湖水用定性滤纸过滤,然后用离心分离机以12000rpm分离。CXT的浓度为5.0×10-6mol/L的水(1.0×10-2mol/LTris-HCl,1.2×10-3mol/LBrij35,pH=8.0)溶液,加入HPB水溶液,至终浓度分别为5.00,15.0,20.0和25.0μM。在340nm激发下,记录444nm荧光发射强度。通过与定量标准曲线对比,得到HPB的实际检测浓度,计算回收率,获得了良好的实验结果,回收率在99.4-101.8%之间。结果表明,可应用于实际环境水样品中的HPB检测。(7) The following is the application of the fluorescent probe CXT in the study of actual environmental water samples. Taking surface water and lake water as the research objects, the surface water and lake water were filtered with qualitative filter paper, and then separated by a centrifuge at 12000rpm. The concentration of CXT is 5.0×10 -6 mol/L water (1.0×10 -2 mol/LTris-HCl, 1.2×10 -3 mol/LBrij35, pH=8.0) solution, add HPB aqueous solution, and the final concentrations are respectively 5.00, 15.0, 20.0 and 25.0 μM. With excitation at 340 nm, the fluorescence emission intensity at 444 nm was recorded. By comparing with the quantitative standard curve, the actual detection concentration of HPB was obtained, and the recovery rate was calculated. Good experimental results were obtained, and the recovery rate was between 99.4-101.8%. The results show that it can be applied to the detection of HPB in actual environmental water samples.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310641474.XA CN103674912B (en) | 2013-12-03 | 2013-12-03 | The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310641474.XA CN103674912B (en) | 2013-12-03 | 2013-12-03 | The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103674912A CN103674912A (en) | 2014-03-26 |
CN103674912B true CN103674912B (en) | 2016-01-27 |
Family
ID=50313121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310641474.XA Expired - Fee Related CN103674912B (en) | 2013-12-03 | 2013-12-03 | The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103674912B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104198480B (en) * | 2014-08-20 | 2016-08-24 | 浙江大学 | A kind of water quality quaternary ammonium salt Test paper and preparation method thereof |
CN105670611B (en) * | 2016-04-05 | 2018-08-10 | 河北工业大学 | Application process of the rare-earth hybridized luminescent material in quickly detection trace cation surfactant |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1650165A (en) * | 2002-03-08 | 2005-08-03 | 沃拉克有限公司 | Dissociative fluorescence enhancement assay |
EP1890143A1 (en) * | 2006-06-26 | 2008-02-20 | Sysmex Corporation | Reagent for sample analysis, reagent kit for sample analysis and method for sample analysis |
-
2013
- 2013-12-03 CN CN201310641474.XA patent/CN103674912B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1650165A (en) * | 2002-03-08 | 2005-08-03 | 沃拉克有限公司 | Dissociative fluorescence enhancement assay |
EP1890143A1 (en) * | 2006-06-26 | 2008-02-20 | Sysmex Corporation | Reagent for sample analysis, reagent kit for sample analysis and method for sample analysis |
Non-Patent Citations (4)
Title |
---|
Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes;Xue-Lian Diao et al.;《Anal Bioanal Chem》;20070511;第388卷;第1191页摘要 * |
Rapid Excitation Quenching by Host Micelles. Observations from Hexadecylpyridinium Chloride and Brij-35 Micellar systems Containing Pyrene Scintillator;A.V. Sapre et al.;《J. Phys. Chem.》;19801231;第84卷;第2281页摘要,第2281页左栏第1段,2282页至2285页,第2286页左栏第1段,图1-5 * |
稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数;李新宝 等;《物理化学学报》;20051231;第21卷(第12期);第1403-1406页 * |
荧光分析法在环境监测中的应用和进展;陆州舜 等;《环境科学进展》;19950630;第3卷(第3期);第7-20页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103674912A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | A new carbazole-based colorimetric and fluorescent sensor with aggregation induced emission for detection of cyanide anion | |
Yuan et al. | Highly sensitive and selective turn-on fluorescent probes for Cu 2+ based on rhodamine B | |
Li et al. | A colorimetric and reversible fluorescent chemosensor for Ag+ in aqueous solution and its application in IMPLICATION logic gate | |
Zhang et al. | A fluorescent light-up platform with “AIE+ ESIPT” characteristics for multi-target detection both in solution and on paper strip | |
Xie et al. | A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions | |
An et al. | Ratiometric fluorescence detection of ciprofloxacin using the terbium-based coordination polymers | |
Wang et al. | A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels | |
Piyanuch et al. | Highly sensitive and selective Hg2+-chemosensor based on dithia-cyclic fluorescein for optical and visual-eye detections in aqueous buffer solution | |
Wang et al. | A highly selective and colorimetric fluorescent probe for hydrazine detection in water samples | |
Wu et al. | Ratiometric and colorimetric sensors for highly sensitive detection of water in organic solvents based on hydroxyl-containing polyimide-fluoride complexes | |
Bao et al. | Design and synthesis of a novel chromium (III) selective fluorescent chemosensor bearing a thiodiacetamide moiety and two rhodamine B fluorophores | |
Chen et al. | Colorimetric and fluorometric detection of cationic surfactants based on conjugated polydiacetylene supramolecules | |
Zhu et al. | An EDTA promoted coordination induced disaggregation for specific Hg2+ detection | |
Zhang et al. | A Ag+-selective “off–on” probe based on a naphthalimide derivative | |
Kong et al. | A novel phenolphthalein-based fluorescent chemosensor for pyrophosphate detection via an Al3+ displacement approach in real samples and living cells | |
CN103674912B (en) | The fluorescence detection method of quaternized pyridinium cationic surfactants and application thereof | |
Shu et al. | A novel ratiometric fluorescent probe based on a BODIPY derivative for Cu 2+ detection in aqueous solution | |
Liu et al. | AIE based colorimetric and fluorescent sensor for the selective detection of CN− in aqueous media | |
Yao et al. | Colorimetric and fluorescent dual detection of paraquat and diquat based on an anionic polythiophene derivative | |
Chen et al. | Homopropargyl as a new recognition moiety of a fluorescent probe for detection of palladium in living cells | |
CN104181137B (en) | A kind of detect the method for lead ion content in water sample | |
Wei et al. | Highly sensitive fluorescent hydrazone derivatives for sensing of Cu2+ and its application for actual environment detection | |
Zhou et al. | A cationic on–off fluorescent sensor with AIE properties for heparin and protamine detection | |
Zhou et al. | Aggregation-induced emission-based versatile 3D hierarchical porous nanoprobe for electrochemiluminscence-fluorescence dual-mode detection of Cr (VI) | |
CN106546564A (en) | Application of the five substituted-tetrahydro pyrimidine compounds in titration measuring critical micelle concentration of surfactant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Guo Xiangfeng Inventor after: Jia Lihua Inventor after: Huang Fengting Inventor before: Guo Xiangfeng Inventor before: Jia Lihua Inventor before: Zhang Yingying |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: GUO XIANGFENG JIA LIHUA ZHANG YINGYING TO: GUO XIANGFENG JIA LIHUA HUANG FENGTING |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160127 Termination date: 20211203 |