CN103671190A - Intelligent early stage on-line fault diagnosis system of mine fan - Google Patents
Intelligent early stage on-line fault diagnosis system of mine fan Download PDFInfo
- Publication number
- CN103671190A CN103671190A CN201310426466.3A CN201310426466A CN103671190A CN 103671190 A CN103671190 A CN 103671190A CN 201310426466 A CN201310426466 A CN 201310426466A CN 103671190 A CN103671190 A CN 103671190A
- Authority
- CN
- China
- Prior art keywords
- mine
- signal
- fan
- fault diagnosis
- early
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 42
- 238000012706 support-vector machine Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 8
- 238000012549 training Methods 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 22
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000011217 control strategy Methods 0.000 claims description 2
- 230000003993 interaction Effects 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 1
- 230000007257 malfunction Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 14
- 239000003245 coal Substances 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Landscapes
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
一种智能早期矿用通风机在线故障诊断系统属于设备早期故障诊断领域。针对矿用通风机对煤矿安全的重要性和早期故障诊断的复杂性,本发明实现了既能对矿用通风机运行状态特征的准确提取,又能识别矿用通风机运行状态的细微变化。由于目前矿用通风机故障诊断装置只能实现故障预警,而不能对早期故障做出诊断。本发明利用聚类和奇异值分解的方法对传感器、变送器提取的状态信息做预处理和提取矿用通风机的状态特征,且不受噪声的干扰。在故障识别与分类方面使用支持向量机模型,同时利用每次诊断的数据不断丰富与更新支持向量机的训练与学习样本,使该模型包含更多的信息,达到矿用通风机早期故障的准确、快速和智能的目的。
An intelligent early mining fan online fault diagnosis system belongs to the field of early fault diagnosis of equipment. Aiming at the importance of the mine ventilator to coal mine safety and the complexity of early fault diagnosis, the present invention can not only accurately extract the operating state characteristics of the mine ventilator, but also identify subtle changes in the operating state of the mine ventilator. Because the current mining fan fault diagnosis device can only realize fault early warning, but cannot make early fault diagnosis. The invention uses clustering and singular value decomposition methods to preprocess the state information extracted by sensors and transmitters and extract the state characteristics of the mine ventilator without being disturbed by noise. Use the support vector machine model in fault identification and classification, and use the data of each diagnosis to continuously enrich and update the training and learning samples of the support vector machine, so that the model contains more information and achieves the accuracy of early faults of mine ventilators , fast and smart on purpose.
Description
技术领域 technical field
本发明涉及一种智能早期矿用通风机在线故障诊断系统,属于设备故障诊断领域,通过分析和运算矿用通风机的状态信号来诊断和识别矿用通风机的状态及状态变化,特别是用于恶劣环境中的矿用通风机的故障诊断,属于矿用通风机早期故障诊断领域。 The invention relates to an online fault diagnosis system for an intelligent early mine ventilator, which belongs to the field of equipment fault diagnosis. It diagnoses and identifies the state and state changes of a mine ventilator by analyzing and calculating the state signal of a mine ventilator, especially for the mine ventilator. The fault diagnosis of mine ventilator in harsh environment belongs to the field of early fault diagnosis of mine ventilator. the
背景技术 Background technique
矿用通风机是向矿井不断输送新鲜空气、稀释粉尘、有毒有害气体的重要设备,矿用通风机的正常工作是煤矿安全的前提,矿用通风机的故障将造成巨大的经济损失,甚至严重的人员伤亡。为了保证矿用通风机安全、可靠和平稳地运行,需要对矿用通风机进行早期故障诊断。 Mine ventilator is an important equipment for continuously conveying fresh air, diluting dust, and toxic and harmful gases to the mine. casualties. In order to ensure the safe, reliable and stable operation of mine ventilators, early fault diagnosis of mine ventilators is required. the
由于矿用通风机工作环境恶劣,长时间运行,极易发生故障,故障类型多,特征信号微弱且背景噪声强,为了准确、尽早地诊断出矿用通风机的故障类型和故障位置,需要选择合适的故障诊断方法和硬件平台。传统的矿用通风机的监测系统只能发现矿用通风机的中晚期故障,而不能诊断出早期故障,且误诊断率高,可靠性差。故障发现的越早,对矿用通风机的维护代价越小。矿用通风机需要准确客观的故障诊断系统,实现对矿用通风机可靠地早期故障诊断,确保矿用通风机安全。目前国内还没有成熟的矿用通风机早期故障诊断系统,因此研究开发一种智能早期矿用通风机在线故障诊断系统具有重要的现实意义。 Due to the harsh working environment and long-term operation of mining fans, they are prone to failures, with many types of failures, weak characteristic signals and strong background noise. Appropriate fault diagnosis method and hardware platform. The traditional monitoring system of mine ventilator can only detect the middle and late faults of mine ventilator, but cannot diagnose early faults, and the misdiagnosis rate is high and the reliability is poor. The earlier the fault is found, the lower the maintenance cost of mine ventilator. Mine ventilators need an accurate and objective fault diagnosis system to realize reliable early fault diagnosis of mine ventilators and ensure the safety of mine ventilators. At present, there is no mature early fault diagnosis system for mining ventilators in China, so it is of great practical significance to research and develop an intelligent online fault diagnosis system for early mining ventilators. the
发明内容 Contents of the invention
本发明的目的在于:针对目前矿用通风机的监测系统只能发现矿用通风机的中晚期故障,而不能诊断出矿用通风机矿用通风机的早期故障的不足,研发了一种智能早期矿用通风机在线故障诊断系统,该系统用于矿用通风机的早期故障诊断。通过传感器测量矿用通风机的状态信号,设备的状态信号由下位机PLC传输到上位机中,通过聚类算法对状态信号做预处理,剔除噪声信号,利用奇异值分解提取矿用通风机的状态特征,将信号特征输入到支持向量机模型中,识别和诊断矿用通风机的早期故障。 The purpose of the present invention is to develop an intelligent monitoring system aimed at the deficiency that the current monitoring system of mining fans can only detect the middle and late failures of mining fans, but cannot diagnose the early failures of mining fans. An online fault diagnosis system for early mine ventilators, which is used for early fault diagnosis of mine ventilators. The state signal of the mine ventilator is measured by the sensor, and the state signal of the equipment is transmitted from the lower computer PLC to the upper computer. The state signal is preprocessed through the clustering algorithm, the noise signal is eliminated, and the singular value decomposition is used to extract the mine ventilator. State features, signal features are input into the support vector machine model to identify and diagnose early failures of mine ventilators. the
一种智能早期矿用通风机在线故障诊断系统,以聚类和奇异值分解作为信号特征的提取方法,利用支持向量机识别和诊断故障,其中的信号特征提取方法包括以下步骤: An intelligent online fault diagnosis system for early mining ventilators uses clustering and singular value decomposition as signal feature extraction methods, and uses support vector machines to identify and diagnose faults. The signal feature extraction method includes the following steps:
S1.利用聚类的方法处理数据采集模块(已知的)采集的数据x(θ)(k)(k=1,2…N),N采样点,θ为信号代码,代表温度、振动、负压、一氧化碳浓度、甲烷浓度、电压、电流,θ=1,2…ss为信号总数,设定簇数n,分析后,包含信号最多的簇为所求信号,其余的簇集中包含的信号作为为异常点,除去信号中的异常点,得到包含数据最多的簇集Ki(θ)(x),Ki(θ)(x)=[xi1,xi2,…xim],i为所分的簇集的序数,i=1,2…n,m为包含数据最多的簇集的信号点数,m≤N; S1. Use the clustering method to process the data collected by the data acquisition module (known) x(θ)(k)(k=1,2...N), N sampling points, θ is the signal code, representing temperature, vibration, Negative pressure, carbon monoxide concentration, methane concentration, voltage, current, θ=1,2...ss is the total number of signals, set the number of clusters n, after analysis, the cluster containing the most signals is the desired signal, and the signals contained in the remaining clusters As an outlier, remove the outlier in the signal to obtain the cluster K i (θ)(x) containing the most data, K i (θ)(x)=[x i1 , x i2 ,… x im ], i is the ordinal number of the divided clusters, i=1,2...n, m is the number of signal points of the clusters containing the most data, m≤N;
S2.对S1中的Ki(θ)(x)构造Hankel矩阵A, S2. Construct Hankel matrix A for K i (θ)(x) in S1,
S3.对S2中的矩阵A做奇异值分解,取第一个奇异值λ(θ)为信号特征; S3. Singular value decomposition is performed on the matrix A in S2, and the first singular value λ(θ) is taken as the signal feature;
S4.以S3中的λ(θ)构造X={λ(1),λ(2)…λ(s)}为支持向量机的输入,输出Y={y1,y2…ys},其中yθ等于0或θ,某个位置出现故障,则输出对应的代码θ,正常则输出0,根据代码确定故障的位置。 S4. Construct X={λ(1),λ(2)...λ(s)} in S3 as the input of the support vector machine, output Y={y 1 ,y 2 ...y s }, Where y θ is equal to 0 or θ, if there is a fault in a certain position, the corresponding code θ will be output, if it is normal, 0 will be output, and the fault location will be determined according to the code.
S5.以表格的形式记录支持向量机模型的训练输入和输出,表格的横行表示支持向量机的输出,竖行表示样本的序号,支持向量机训练完成后的的诊断输出都要与该表格进行比对,若输出与表格相同,则矿用通风机的状态与样本相同; S5. Record the training input and output of the support vector machine model in the form of a table. The horizontal row of the table represents the output of the support vector machine, and the vertical row represents the serial number of the sample. The diagnostic output after the support vector machine training is completed must be compared with the table. Compare, if the output is the same as the table, the state of the mine ventilator is the same as the sample;
一种智能早期矿用通风机在线故障诊断系统,包括上位机、下位机、信号采集模块、温度传感器、振动传感器、负压传感器、甲烷传感器、一氧化碳传感器,ACR系列网络多功能电力仪表;同一被测点的两个传感器通过屏蔽线连接到模数转换模块SM331,SM331把模拟量转化为数字量,输入到CPU314中;矿用通风机电机的电压和电流通过ACR系列网络多功能电力仪表测量,通过RS485输入到CPU314中;每台矿用通风机早期故障诊断系统的硬件为两套,互为冗余;CPU314将所测量信号输入到上位机,上位机计算同一被测点的两个传感器的平均值作为该测点的信号;两台PLC相互监视,工作风机的PLC周期性地向另一台PLC发送指令,复位定时器,若不能复位,则发出故障报警;矿用通风机发生异常或故障根据风机的状态做出相应的控制策略,控制风机的启停、自动倒机、风门开闭;上位机利用WinCC作为组态软件,完成人机交互,既可显示风机的状态参数,显 示温度、电机的电压电流、振动、负压、风量、一氧化碳含量、甲烷含量、矿用通风机的性能曲线、风门状态和油站状态,又能实现控制输入,输入温度、振动、负压、风量、甲烷含量、一氧化碳含量的报警阈值;可通过键盘在上位机WinCC上输入控制指令,控制风门的开闭、风机的启停;温度传感器Pt100分别安装在轴承座的两侧和电机的定子线圈旁边,所有轴承座都在水平和垂直方向上安装一体式振动变送器;CPU314输出点连接继电器,继电器控制风门电机、通风机电机和油站电机电源开关。 An intelligent online fault diagnosis system for early mining ventilators, including a host computer, a slave computer, a signal acquisition module, a temperature sensor, a vibration sensor, a negative pressure sensor, a methane sensor, a carbon monoxide sensor, and an ACR series network multifunctional power meter; The two sensors at the measuring point are connected to the analog-to-digital conversion module SM331 through shielded wires, and SM331 converts the analog quantity into a digital quantity and inputs it into the CPU314; the voltage and current of the mine fan motor are measured by the ACR series network multifunctional power meter, It is input into CPU314 through RS485; the hardware of the early fault diagnosis system for each mining fan is two sets, which are mutually redundant; CPU314 inputs the measured signal to the upper computer, and the upper computer calculates the two sensors of the same measured point The average value is used as the signal of the measuring point; the two PLCs monitor each other, and the PLC of the working fan periodically sends instructions to the other PLC to reset the timer. If it cannot be reset, a fault alarm is issued; the mining fan is abnormal or According to the status of the fan, the corresponding control strategy is made to control the start and stop of the fan, automatic shutdown, and the opening and closing of the damper; the upper computer uses WinCC as the configuration software to complete the human-computer interaction, which can display the status parameters of the fan and display Temperature, motor voltage and current, vibration, negative pressure, air volume, carbon monoxide content, methane content, performance curve of mine fan, damper status and oil station status, and can realize control input, input temperature, vibration, negative pressure, air volume , methane content, and carbon monoxide content alarm thresholds; control commands can be input on the upper computer WinCC through the keyboard to control the opening and closing of the damper and the start and stop of the fan; the temperature sensor Pt100 is installed on both sides of the bearing seat and next to the stator coil of the motor , All bearing housings are installed with integrated vibration transmitters in the horizontal and vertical directions; the output point of CPU314 is connected to the relay, and the relay controls the power switch of the damper motor, fan motor and oil station motor. the
本系统将故障诊断算法集成在WinCC中,仅一个组态软件即可完成矿用通风机的故障诊断和控制。 This system integrates the fault diagnosis algorithm in WinCC, and only one configuration software can complete the fault diagnosis and control of mine ventilator. the
本发明提出的智能早期矿用通风机故障在线诊断系统,其优点是: The intelligent early mine fan fault online diagnosis system proposed by the present invention has the following advantages:
1、实现了在线实时智能化的矿用通风机早期故障诊断,能准确提取矿用通风机的状态特征,可尽早地诊断出矿用通风机是否存在故障以及故障的类型和故障位置。 1. Realize the online real-time intelligent early fault diagnosis of mine ventilator, which can accurately extract the state characteristics of mine ventilator, and can diagnose as early as possible whether there is a fault in the mine ventilator, the type and location of the fault. the
2、针对矿用通风机的工作环境恶劣和对可靠性要求高,故障诊断系统所有的硬件都采用双冗余措施,确保矿用通风机的早期故障诊断系统可靠、准确运行。 2. In view of the harsh working environment and high reliability requirements of mine ventilators, all hardware of the fault diagnosis system adopts dual redundancy measures to ensure the reliable and accurate operation of the early fault diagnosis system of mine ventilators. the
3、所有的故障诊断算法集成在上位机组态软件WinCC中,一个软件完成矿用通风机故障的诊断和控制,增加了系统的可靠性。 3. All fault diagnosis algorithms are integrated in the upper computer configuration software WinCC, and one software completes the diagnosis and control of mine fan faults, which increases the reliability of the system. the
附图说明 Description of drawings
图1本系统硬件示意图; Fig. 1 schematic diagram of the hardware of this system;
图2本系统故障诊断流程图; Fig. 2 is the fault diagnosis flow chart of this system;
具体实施方式 Detailed ways
下面结合附图和实例对本发明进行详细说明: The present invention is described in detail below in conjunction with accompanying drawing and example:
该系统的硬件结构如图1所示,主要由上位机、下位机、数据采集模块、控制输入模块、控制输出模块和传感器组成,所有的硬件都是两套,相互之间无交叉使用,互为冗余。上位机与下位机之间、下位机和下位机之间采用Profibus协议连接。 The hardware structure of the system is shown in Figure 1. It is mainly composed of upper computer, lower computer, data acquisition module, control input module, control output module and sensors. for redundancy. Profibus protocol is used to connect between the upper computer and the lower computer, and between the lower computer and the lower computer. the
该系统故障诊断流程如图2所示,设置聚类分类簇集数n,设置奇异值的窗口长度l,数据采集模块采集的信号输入到下位机PLC中,然后再传输到上位机中,同一节点的两个信号的平均值作为该测点的信号,通过聚类除去异常点,利用奇异值分解提取信号的状态特征,将奇异值分解的结果作为支持向量机模型的训练和诊断输入,输出矿用通风机的状态,如有故障,则报警并自动采取相应的控制。以一台矿用通风机为例,其基本过程如下: The fault diagnosis process of the system is shown in Figure 2. Set the number of clusters n for clustering and classification, set the window length l of the singular value, and input the signal collected by the data acquisition module to the PLC of the lower computer, and then transmit it to the upper computer. The average value of the two signals of the node is used as the signal of the measuring point, the abnormal points are removed by clustering, the state characteristics of the signal are extracted by singular value decomposition, and the result of the singular value decomposition is used as the training and diagnosis input of the support vector machine model, and the output The state of the mine ventilator, if there is a fault, it will alarm and take corresponding control automatically. Taking a mining fan as an example, the basic process is as follows:
1.分别对1号、2号PLC设定地址为1、2,1号上位机、2号上位机的通讯地址设为3,4; 1. Set the addresses of No. 1 and No. 2 PLCs to 1, 2, and the communication addresses of No. 1 upper computer and No. 2 upper computer to 3 and 4 respectively;
2.在矿用通风机的每个轴承和电机定子上安装两个Pt100温度传感器,分别在每个轴承座的水平方向和垂直方向上分别安装二个一体化振动变送器作为振动传感器,在出风口安装两个一氧化碳传感器和两个甲烷传感器,分别在风机的进风口和出风口安装两个B0300型工业级微压变送器作为负压传感器,在矿用通风机的PT配电柜上安装两块ACR系列网络多功能电力仪表测量矿用通风机的电压和电流; 2. Install two Pt100 temperature sensors on each bearing and motor stator of the mining fan, and install two integrated vibration transmitters as vibration sensors on the horizontal and vertical directions of each bearing seat respectively. Install two carbon monoxide sensors and two methane sensors at the air outlet, respectively install two B0300 industrial-grade micro-pressure transmitters at the air inlet and outlet of the fan as negative pressure sensors, and install them on the PT distribution cabinet of the mine fan Two pieces of ACR series network multifunctional power meters measure the voltage and current of the mine fan;
3.除两块ACR系列网络多功能电力仪表外,所有的传感器通过屏蔽线连接到西门子的模数装换模块SM331,设定两块ACR系列网络多功能电力仪表的地址分别为10,11,通过RS485通讯协议输入到西门子CPU314的P0口; 3. Except for the two ACR series network multifunctional power meters, all the sensors are connected to Siemens’ modulus replacement module SM331 through shielded wires, and the addresses of the two ACR series network multifunctional power meters are set to 10 and 11 respectively. Input to P0 port of Siemens CPU314 through RS485 communication protocol;
4.通过DP线连接1号PLC和1上位机、2号PLC和2号上位机、1号PLC和2号PLC; 4. Connect No. 1 PLC and No. 1 host computer, No. 2 PLC and No. 2 host computer, No. 1 PLC and No. 2 PLC through DP line;
5.在上位机上,通过键盘输入矿用通风机温度、振动、负压、风量、一氧化碳含量、甲烷含量、电机电压和电机电流的阈值到WinCC中,超出阈值立即报警; 5. On the host computer, enter the threshold values of mine fan temperature, vibration, negative pressure, air volume, carbon monoxide content, methane content, motor voltage and motor current into WinCC through the keyboard, and immediately alarm if the threshold is exceeded;
6.设定划分类数为3,采集到的信号为x(θ)(k),θ为信号代码,轴承1温度的θ为1、电机定子温度的θ为2、轴承3温度的θ为3、轴承4温度的θ为4、轴承5温度的θ为5、轴承1的水平和垂直振动的θ为6和7、轴承2的水平和垂直振动的θ为8和9、轴承3的水平和垂直振动的θ为10和11、轴承3的水平和垂直振动的θ为12和13、轴承4的水平和垂直振动的θ为14和15、、入风口负压和出风口负压θ分别为16和17、一氧化碳浓度的θ为18、甲烷浓度的θ为19、电压的θ为20、电流的θ为21,,采样点数k=1,2…512,利用聚类分析x(θ)(k),得到簇集Ki,Ki=[xi1,xi2,…xim],i=1,2,3,m≤N; 6. Set the number of divisions to 3, the collected signal is x(θ)(k), θ is the signal code, the θ of bearing 1 temperature is 1, the θ of motor stator temperature is 2, and the θ of bearing 3 temperature is 3. The θ of the temperature of bearing 4 is 4, the θ of the temperature of bearing 5 is 5, the θ of the horizontal and vertical vibration of bearing 1 is 6 and 7, the θ of the horizontal and vertical vibration of bearing 2 is 8 and 9, the level of bearing 3 The θ of the horizontal and vertical vibration of the bearing 3 is 10 and 11, the θ of the horizontal and vertical vibration of the bearing 3 is 12 and 13, the θ of the horizontal and vertical vibration of the bearing 4 is 14 and 15, the negative pressure of the air inlet and the negative pressure of the air outlet θ are respectively 16 and 17, theta of carbon monoxide concentration is 18, theta of methane concentration is 19, theta of voltage is 20, and theta of current is 21, the number of sampling points k=1,2...512, using cluster analysis x(θ) (k), get the cluster K i , K i =[x i1 ,x i2 ,…x im ], i=1,2,3, m≤N;
7.利用SVD分析包含数据最多的簇集Ki,构造簇集Ki的Hankel矩阵A: 7. Use SVD to analyze the cluster K i that contains the most data, and construct the Hankel matrix A of the cluster K i :
其中,l为窗口长度,且1<l<m,矩阵A的阶数(k=N-l+1)。得到轨迹矩阵A以后,需要求A的奇异值。X=AAT,则X为l×l矩阵,求得X的特征值为:λ1,λ2,λ3…λd,取其平方根即为轨迹矩阵A的奇异值(i≤d),作为信号特征。如果矩阵X的特征值都不为零,则d=l。 Among them, l is the window length, and 1<l<m, the order of matrix A (k=N-l+1). After obtaining the trajectory matrix A, it is necessary to find the singular value of A. X=AA T , then X is an l×l matrix, and the eigenvalues of X are obtained: λ 1 , λ 2 , λ 3 ...λ d , take the square root That is, the singular value (i≤d) of the trajectory matrix A is used as the signal feature. If none of the eigenvalues of the matrix X is zero, then d=l.
8.将第一个奇异值λ(θ)1作为支持向量机模型的训练输入,输入向量为X={λ(1)1,λ(2)1,…λ(21)1},某个位置出现故障,则输出对应的信号代码,正常则输出0建立支持向量机模型; 8. Take the first singular value λ(θ) 1 as the training input of the support vector machine model, the input vector is X={λ(1) 1 ,λ(2) 1 ,…λ(21) 1 }, a certain If there is a fault in the position, the corresponding signal code will be output, and if it is normal, 0 will be output to establish a support vector machine model;
9.以表格的形式记录支持向量机的输入和输出,在诊断时,将输出结果与该表格进行比对,确保诊断结果的可靠性。表格的纵坐标为训练样本编号,横坐标为支持向量机模型的输出。对于支持向量机只有一个不为0的输出,则确定故障。若是出现两个或两个以上不为0的输出,与表格对比,以表格中相同输出的样本表示的状态为矿用通风机的状态。测试输出的100400000000000000000与表格中轴承4故障的输出100400000000000000000相同,则确定为轴承4故障; 9. Record the input and output of the support vector machine in the form of a table. When diagnosing, compare the output result with the table to ensure the reliability of the diagnosis result. The ordinate of the table is the training sample number, and the abscissa is the output of the support vector machine model. For an SVM with only one non-zero output, a failure is determined. If there are two or more outputs that are not 0, compared with the table, the state represented by the sample with the same output in the table is the state of the mine ventilator. The test output 1004000000000000000000 is the same as the output 100400000000000000000 of the bearing 4 failure in the table, so it is determined to be the bearing 4 failure;
10.根据诊断的结果在上位机上显示矿用通风机的状态,如有状态异常或故障,立即报警和采取控制措施。 10. According to the diagnosis result, the status of the mine ventilator is displayed on the upper computer. If there is any abnormal status or failure, it will immediately call the police and take control measures. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310426466.3A CN103671190B (en) | 2013-09-18 | 2013-09-18 | The early stage mine fan online system failure diagnosis of a kind of intelligence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310426466.3A CN103671190B (en) | 2013-09-18 | 2013-09-18 | The early stage mine fan online system failure diagnosis of a kind of intelligence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103671190A true CN103671190A (en) | 2014-03-26 |
CN103671190B CN103671190B (en) | 2016-04-06 |
Family
ID=50309726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310426466.3A Expired - Fee Related CN103671190B (en) | 2013-09-18 | 2013-09-18 | The early stage mine fan online system failure diagnosis of a kind of intelligence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103671190B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403422A (en) * | 2015-11-30 | 2016-03-16 | 惠州学院 | A Fault Detection System Based on Blind Separation Technology to Diagnose CO2 Air Conditioning in Rescue Cabins |
CN106527169A (en) * | 2017-01-20 | 2017-03-22 | 深圳大图科创技术开发有限公司 | Intelligent home control system based on Bluetooth |
CN108074197A (en) * | 2016-11-11 | 2018-05-25 | 河北新天科创新能源技术有限公司 | The control method of fan trouble data analysis system |
CN108802040A (en) * | 2017-05-04 | 2018-11-13 | 南京市特种设备安全监督检验研究院 | A kind of unmanned plane device and detection method for crane surface defects detection |
CN110107359A (en) * | 2019-05-14 | 2019-08-09 | 安徽理工大学 | A kind of ventilation monitoring device applied in Safety of Coal Mine Production |
CN110374907A (en) * | 2019-07-15 | 2019-10-25 | 山东浪潮人工智能研究院有限公司 | A kind of coal mine blower time series data method of sampling and tool based on concept drift |
CN110702408A (en) * | 2019-09-30 | 2020-01-17 | 佛山科学技术学院 | Bearing state change event monitoring method and device |
CN111577630A (en) * | 2020-03-09 | 2020-08-25 | 华电电力科学研究院有限公司 | Method for diagnosing reason for abnormal high current of booster fan of coal-fired power plant |
CN111578446A (en) * | 2020-05-06 | 2020-08-25 | 济南浪潮高新科技投资发展有限公司 | Coal mine ventilation equipment detection method, equipment and medium |
CN112761980A (en) * | 2021-01-22 | 2021-05-07 | 中车青岛四方机车车辆股份有限公司 | Method and system for evaluating performance of cooling fan for motor train unit |
CN113446252A (en) * | 2021-07-16 | 2021-09-28 | 华北科技学院(中国煤矿安全技术培训中心) | Fault early warning method for mine ventilator |
CN115898925A (en) * | 2022-10-27 | 2023-04-04 | 华能国际电力股份有限公司上海石洞口第二电厂 | Fan fault early warning method based on vibration signal multi-order moment |
CN116821834A (en) * | 2023-08-29 | 2023-09-29 | 浙江北岛科技有限公司 | Vacuum circuit breaker overhauling management system based on embedded sensor |
CN118395216A (en) * | 2024-06-27 | 2024-07-26 | 中核四川环保工程有限责任公司 | Fan fault monitoring method and system based on mathematical coupling under nuclear facility environment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101446814A (en) * | 2007-11-27 | 2009-06-03 | 沈阳创思达自动化系统有限公司 | Temperature fault protection control system of fan system and control method thereof |
CN101587546A (en) * | 2009-06-12 | 2009-11-25 | 浙江大学 | Identification method of lower limb action pattern based on supporting vector multivariate classification |
CN102663032A (en) * | 2012-03-26 | 2012-09-12 | 电子科技大学 | Fiber grating fence invasion event mode recognition method |
CN102982400A (en) * | 2011-08-03 | 2013-03-20 | 通用电气公司 | A system for use with a risk management system |
-
2013
- 2013-09-18 CN CN201310426466.3A patent/CN103671190B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101446814A (en) * | 2007-11-27 | 2009-06-03 | 沈阳创思达自动化系统有限公司 | Temperature fault protection control system of fan system and control method thereof |
CN101587546A (en) * | 2009-06-12 | 2009-11-25 | 浙江大学 | Identification method of lower limb action pattern based on supporting vector multivariate classification |
CN102982400A (en) * | 2011-08-03 | 2013-03-20 | 通用电气公司 | A system for use with a risk management system |
CN102663032A (en) * | 2012-03-26 | 2012-09-12 | 电子科技大学 | Fiber grating fence invasion event mode recognition method |
Non-Patent Citations (2)
Title |
---|
张超,陈建军,杨立东,徐亚兰: "《奇异值熵和支持向量机的齿轮故障诊断》", 《振动、测试与诊断》, 31 October 2011 (2011-10-31) * |
高彩亮,廖志伟,岳苓,黄少先: "《基于小波奇异值和支持向量机的高压线路故障诊断》", 《电力系统保护与控制》, 16 March 2010 (2010-03-16) * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403422A (en) * | 2015-11-30 | 2016-03-16 | 惠州学院 | A Fault Detection System Based on Blind Separation Technology to Diagnose CO2 Air Conditioning in Rescue Cabins |
CN108074197A (en) * | 2016-11-11 | 2018-05-25 | 河北新天科创新能源技术有限公司 | The control method of fan trouble data analysis system |
CN108074197B (en) * | 2016-11-11 | 2021-11-09 | 河北新天科创新能源技术有限公司 | Control method of fan fault data analysis system |
CN106527169A (en) * | 2017-01-20 | 2017-03-22 | 深圳大图科创技术开发有限公司 | Intelligent home control system based on Bluetooth |
CN108802040A (en) * | 2017-05-04 | 2018-11-13 | 南京市特种设备安全监督检验研究院 | A kind of unmanned plane device and detection method for crane surface defects detection |
CN110107359A (en) * | 2019-05-14 | 2019-08-09 | 安徽理工大学 | A kind of ventilation monitoring device applied in Safety of Coal Mine Production |
CN110374907A (en) * | 2019-07-15 | 2019-10-25 | 山东浪潮人工智能研究院有限公司 | A kind of coal mine blower time series data method of sampling and tool based on concept drift |
CN110702408A (en) * | 2019-09-30 | 2020-01-17 | 佛山科学技术学院 | Bearing state change event monitoring method and device |
CN111577630B (en) * | 2020-03-09 | 2021-06-15 | 华电电力科学研究院有限公司 | Method for diagnosing reason for abnormal high current of booster fan of coal-fired power plant |
CN111577630A (en) * | 2020-03-09 | 2020-08-25 | 华电电力科学研究院有限公司 | Method for diagnosing reason for abnormal high current of booster fan of coal-fired power plant |
CN111578446A (en) * | 2020-05-06 | 2020-08-25 | 济南浪潮高新科技投资发展有限公司 | Coal mine ventilation equipment detection method, equipment and medium |
CN111578446B (en) * | 2020-05-06 | 2021-10-22 | 山东浪潮科学研究院有限公司 | Coal mine ventilation equipment detection method, equipment and medium |
CN112761980A (en) * | 2021-01-22 | 2021-05-07 | 中车青岛四方机车车辆股份有限公司 | Method and system for evaluating performance of cooling fan for motor train unit |
CN113446252A (en) * | 2021-07-16 | 2021-09-28 | 华北科技学院(中国煤矿安全技术培训中心) | Fault early warning method for mine ventilator |
CN115898925A (en) * | 2022-10-27 | 2023-04-04 | 华能国际电力股份有限公司上海石洞口第二电厂 | Fan fault early warning method based on vibration signal multi-order moment |
CN115898925B (en) * | 2022-10-27 | 2024-06-04 | 华能国际电力股份有限公司上海石洞口第二电厂 | Fan fault early warning method based on vibration signal multi-order moment |
CN116821834A (en) * | 2023-08-29 | 2023-09-29 | 浙江北岛科技有限公司 | Vacuum circuit breaker overhauling management system based on embedded sensor |
CN116821834B (en) * | 2023-08-29 | 2023-11-24 | 浙江北岛科技有限公司 | Vacuum circuit breaker overhauling management system based on embedded sensor |
CN118395216A (en) * | 2024-06-27 | 2024-07-26 | 中核四川环保工程有限责任公司 | Fan fault monitoring method and system based on mathematical coupling under nuclear facility environment |
CN118395216B (en) * | 2024-06-27 | 2024-08-27 | 中核四川环保工程有限责任公司 | Fan fault monitoring method and system based on mathematical coupling under nuclear facility environment |
Also Published As
Publication number | Publication date |
---|---|
CN103671190B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103671190B (en) | The early stage mine fan online system failure diagnosis of a kind of intelligence | |
CN110067764B (en) | A remote switching and intelligent control device and control method for a local fan in a coal mine | |
CN201936155U (en) | Online monitoring system for bus ventilator based on MODBUS-RTU (remote terminal unit) | |
CN104386449B (en) | On-line checking intelligent protection device is taken turns end to end for mining belt conveyer | |
CN111752147B (en) | A multi-condition process monitoring method with continuous learning ability to improve PCA | |
CN107144303A (en) | A kind of fault detection system of mineral electromechanical equipment, method and device | |
CN103115667B (en) | A kind of sensor-based vibration monitoring device | |
CN113030723A (en) | Alternating current asynchronous motor state monitoring system | |
CN204113701U (en) | A kind of mine fan on-line monitoring and fault diagnosis system | |
CN109826818B (en) | A fault diagnosis method for a mining fan | |
CN105571638A (en) | Machinery device fault combination prediction system and method | |
CN111399413A (en) | All-in-one machine device and method for monitoring running state of rotating equipment | |
CN202075305U (en) | State recording device of full-function rotating machine | |
CN106884809A (en) | A kind of Coal Mine Ventilator real-time fault diagnosis and prior-warning device based on virtual instrument development platform | |
CN105867132B (en) | Combined cycle unit oxygen content in exhaust smoke On-line Measuring Method of the stable state tracking from correction | |
CN115159285B (en) | Elevator state monitoring method and elevator state monitoring device | |
CN110618384A (en) | Motor performance test platform | |
CN118331212B (en) | Industrial electrical machine room environment monitoring system and method with multi-source acquisition and data modeling | |
CN117192042A (en) | A mine gas intelligent inspection system and method | |
CN116520236A (en) | Abnormality detection method and system for intelligent ammeter | |
CN118603207A (en) | A visual power distribution room environment monitoring method, system and device | |
CN103267652B (en) | Intelligent online diagnosis method for early failures of equipment | |
CN118483970A (en) | Mining equipment intelligent control method and system based on digital twinning | |
CN117761416A (en) | Bus duct on-line monitoring system | |
CN103821750B (en) | A kind of ventilator stall based on electric current and surge monitoring and diagnostic method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20190918 |