CN103664531A - Method and device for co-producing cyclohexanol and ethanol - Google Patents
Method and device for co-producing cyclohexanol and ethanol Download PDFInfo
- Publication number
- CN103664531A CN103664531A CN201210560665.9A CN201210560665A CN103664531A CN 103664531 A CN103664531 A CN 103664531A CN 201210560665 A CN201210560665 A CN 201210560665A CN 103664531 A CN103664531 A CN 103664531A
- Authority
- CN
- China
- Prior art keywords
- reactor
- catalyst
- hydrogenation
- reaction
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 128
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 82
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 title claims abstract description 48
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 249
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 149
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 claims abstract description 138
- 238000006243 chemical reaction Methods 0.000 claims abstract description 107
- 238000005886 esterification reaction Methods 0.000 claims abstract description 72
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 claims abstract description 66
- 150000002148 esters Chemical class 0.000 claims abstract description 66
- 230000032050 esterification Effects 0.000 claims abstract description 52
- 238000000926 separation method Methods 0.000 claims abstract description 50
- 238000000066 reactive distillation Methods 0.000 claims abstract description 43
- 239000003054 catalyst Substances 0.000 claims description 173
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 133
- 239000000047 product Substances 0.000 claims description 48
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 42
- 239000002253 acid Substances 0.000 claims description 36
- 239000011964 heteropoly acid Substances 0.000 claims description 30
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 238000010992 reflux Methods 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 18
- 229910052707 ruthenium Inorganic materials 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 18
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- -1 hydrogen ester Chemical class 0.000 claims description 16
- 239000011973 solid acid Substances 0.000 claims description 15
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 13
- 239000002808 molecular sieve Substances 0.000 claims description 12
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 12
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 11
- 239000003456 ion exchange resin Substances 0.000 claims description 11
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 229920003053 polystyrene-divinylbenzene Polymers 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims 3
- 150000001336 alkenes Chemical class 0.000 claims 2
- 230000004048 modification Effects 0.000 claims 2
- 238000012986 modification Methods 0.000 claims 2
- 239000010970 precious metal Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 26
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 238000000895 extractive distillation Methods 0.000 abstract description 8
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract description 2
- 238000012856 packing Methods 0.000 description 19
- 239000010949 copper Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 8
- 239000007791 liquid phase Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 150000001733 carboxylic acid esters Chemical class 0.000 description 7
- 238000004821 distillation Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000036571 hydration Effects 0.000 description 6
- 238000006703 hydration reaction Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052703 rhodium Inorganic materials 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 239000012752 auxiliary agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 208000012839 conversion disease Diseases 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- 238000001612 separation test Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000006004 Quartz sand Substances 0.000 description 3
- 229910052768 actinide Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- FGGJBCRKSVGDPO-UHFFFAOYSA-N hydroperoxycyclohexane Chemical compound OOC1CCCCC1 FGGJBCRKSVGDPO-UHFFFAOYSA-N 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 150000001255 actinides Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000003361 porogen Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 150000003303 ruthenium Chemical class 0.000 description 2
- 150000003304 ruthenium compounds Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 101100412856 Mus musculus Rhod gene Proteins 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- HFYLJNMQIGJQOQ-UHFFFAOYSA-N cyclohexanol;ethanol Chemical compound CCO.OC1CCCCC1 HFYLJNMQIGJQOQ-UHFFFAOYSA-N 0.000 description 1
- GCFAUZGWPDYAJN-UHFFFAOYSA-N cyclohexyl 3-phenylprop-2-enoate Chemical compound C=1C=CC=CC=1C=CC(=O)OC1CCCCC1 GCFAUZGWPDYAJN-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010931 ester hydrolysis Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- UIZVMOZAXAMASY-UHFFFAOYSA-N hex-5-en-1-ol Chemical compound OCCCCC=C UIZVMOZAXAMASY-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/147—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
- C07C29/149—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/10—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/04—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明提供了一种联产环己醇和乙醇的方法,该方法以苯为起始原料,通过苯选择性加氢、环己烯加成酯化、乙酸环己酯加氢来联产环己醇和乙醇。本发明还提供了实现该方法的装置。本发明的特点是:(1)酯化和酯加氢反应均具有很高的选择性,原子利用率很高;(2)过程环境友好;(3)在生产环己醇的同时联产乙醇;(4)采用反应精馏进行加成酯化,不但可以显著提高反应效率,还可以简化萃取精馏分离过程。
The invention provides a method for the co-production of cyclohexanol and ethanol. The method takes benzene as the starting material and co-produces cyclohexyl through selective hydrogenation of benzene, addition and esterification of cyclohexene, and hydrogenation of cyclohexyl acetate. alcohol and ethanol. The invention also provides a device for realizing the method. The characteristics of the present invention are: (1) both esterification and ester hydrogenation reactions have high selectivity and high atom utilization; (2) the process is environmentally friendly; (3) co-production of ethanol while producing cyclohexanol ; (4) Using reactive distillation for addition esterification can not only significantly improve the reaction efficiency, but also simplify the separation process of extractive distillation.
Description
技术领域technical field
本发明涉及一种联产环己醇和乙醇的方法及装置。The invention relates to a method and device for co-producing cyclohexanol and ethanol.
背景技术Background technique
环己醇和乙醇均为重要的化工原料和溶剂。环己醇主要用于生产尼龙6、尼龙66等产品;而乙醇不仅是合成酯类等多种化工产品的原料,还广泛用作汽油的燃料添加剂。Both cyclohexanol and ethanol are important chemical raw materials and solvents. Cyclohexanol is mainly used to produce nylon 6, nylon 66 and other products; ethanol is not only a raw material for synthetic esters and other chemical products, but also widely used as a fuel additive for gasoline.
工业上合成乙醇的方法主要是乙烯直接水合法,但在一些农副产品丰富的国家,发酵法仍是生产乙醇的主要方法。由于我国人口众多且耕地面积不足,而发酵法制乙醇存在着“与口争粮”的问题,因此发酵法不符合我国的国情。另外,发酵法的污染也比较严重。我国石油资源相对不足,而乙烯价格受国际油价的波动影响很大,因此在我国应用乙烯水合法会面临一定的原料成本压力。此外,乙烯直接水合法的反应条件比较苛刻,需要在高温高压下进行。综上所述,开发新的乙醇合成工艺路线是技术和经济发展的必然要求。The method of industrially synthesizing ethanol is mainly the direct hydration method of ethylene, but in some countries rich in agricultural and sideline products, the fermentation method is still the main method of ethanol production. Due to the large population and insufficient arable land in our country, and the problem of "competing with the mouth for food" in the production of ethanol by fermentation, the fermentation method does not conform to the national conditions of our country. In addition, the pollution of the fermentation method is also relatively serious. my country's oil resources are relatively insufficient, and the price of ethylene is greatly affected by fluctuations in international oil prices. Therefore, the application of ethylene hydration in my country will face certain pressure on raw material costs. In addition, the reaction conditions of the ethylene direct hydration method are relatively harsh and need to be carried out under high temperature and high pressure. In summary, the development of new ethanol synthesis process routes is an inevitable requirement for technological and economic development.
CN1022228831A公开了一种乙酸气相加氢制取乙醇的催化剂,该催化剂由主活性组分、助剂和载体三部分组成;载体为活性炭、石墨或多壁纳米碳管中的任意一种,主活性组分为金属W或Mo的任意一种或两种,助剂是Pd、Re、Pt、Rh或Ru的一种或几种;主活性组分的含量为催化剂重量的0.1~30.0%,助剂的含量为催化剂重量的0.1~10.0%,余量为载体。CN1022228831A discloses a catalyst for preparing ethanol by gas-phase hydrogenation of acetic acid. The catalyst is composed of three parts: main active component, auxiliary agent and carrier; the carrier is any one of activated carbon, graphite or multi-walled carbon nanotubes, and the main active The component is any one or two of metal W or Mo, and the auxiliary agent is one or more of Pd, Re, Pt, Rh or Ru; the content of the main active component is 0.1-30.0% of the weight of the catalyst, and the auxiliary agent is The content of the agent is 0.1-10.0% of the weight of the catalyst, and the balance is the carrier.
CN102149661A公开了一种使用铂/锡催化剂由乙酸直接选择性制备乙醇的方法,包括:含乙酸和氢气的进料流在较高温度下与加氢催化剂接触,所述的加氢催化剂包括在适合的催化剂载体上的铂和锡的组和以及任选的负载在所述载体上的第三金属,其中所述的第三金属选自以下金属构成的组:钯、铑、钌、铼。铱、铬、铜、钼、钨、钒和锌。CN102149661A discloses a method for the direct and selective production of ethanol from acetic acid using a platinum/tin catalyst, comprising: a feed stream containing acetic acid and hydrogen is contacted with a hydrogenation catalyst at a relatively high temperature, and the hydrogenation catalyst is included in a suitable The group of platinum and tin on the catalyst support and optionally a third metal supported on the support, wherein the third metal is selected from the group consisting of the following metals: palladium, rhodium, ruthenium, rhenium. Iridium, Chromium, Copper, Molybdenum, Tungsten, Vanadium and Zinc.
工业上,环己醇的生产方法主要有环己烷空气氧化法、苯酚加氢法和环己烯水合法,其中环己烷氧化法的应用最为普遍。Industrially, the production methods of cyclohexanol mainly include cyclohexane air oxidation method, phenol hydrogenation method and cyclohexene hydration method, among which cyclohexane oxidation method is the most common application.
环己烷氧化法是目前最主要的环己醇生产工艺。该工艺利用氧化剂(一般是空气)将环己烷氧化为环己基过氧化氢,环己基过氧化氢分解得到环己醇和环己酮的混合物(俗称KA油)。该工艺的优点是氧化工艺条件缓和、结渣较少、连续运转周期长。缺点是工艺路线长、能耗高、污染大,该工艺的环己烷转化率只有3~5%;特别是在环己基过氧化氢的分解过程中,环己醇的选择性较差,收率低;此外,该工艺还产生大量难处理的废碱液,至今仍是世界性的环保难题。Cyclohexane oxidation is currently the most important cyclohexanol production process. The process uses an oxidant (usually air) to oxidize cyclohexane to cyclohexyl hydroperoxide, and cyclohexyl hydroperoxide is decomposed to obtain a mixture of cyclohexanol and cyclohexanone (commonly known as KA oil). The advantages of this process are mild oxidation process conditions, less slagging, and long continuous operation period. The disadvantage is that the process route is long, the energy consumption is high, and the pollution is large. The conversion rate of cyclohexane in this process is only 3-5%; especially in the decomposition process of cyclohexyl hydroperoxide, the selectivity of cyclohexanol is poor, and the yield In addition, this process also produces a large amount of waste lye that is difficult to handle, which is still a worldwide environmental protection problem.
苯酚加氢法是生产环己醇较为清洁的技术路线,并具有工艺流程短、产品纯度高等优点。苯酚加氢制取环己醇主要采用气相加氢法。该方法通常采用3~5个反应器串联。在负载型Pd催化剂的作用下,在140~170℃及0.1MPa下,环己酮和环己醇的收率可达到90%~95%。然而,该工艺需要汽化苯酚(汽化热69kJ·mol-1)及甲醇(汽化热35.2kJ·mol-1),能耗较高,并且催化剂在使用过程中容易积炭造成活性下降,加之苯酚短缺、价格昂贵且使用贵金属催化剂,使该方法的工业应用受到限制。Phenol hydrogenation is a relatively clean technical route for the production of cyclohexanol, and has the advantages of short process flow and high product purity. The hydrogenation of phenol to cyclohexanol mainly adopts the gas phase hydrogenation method. This method usually adopts 3 to 5 reactors connected in series. Under the action of supported Pd catalyst, the yield of cyclohexanone and cyclohexanol can reach 90%-95% at 140-170°C and 0.1MPa. However, this process needs to vaporize phenol (heat of vaporization 69kJ·mol -1 ) and methanol (heat of vaporization 35.2kJ·mol -1 ), which requires high energy consumption, and the catalyst is prone to carbon deposition during use, resulting in a decrease in activity, and the shortage of phenol , expensive and the use of noble metal catalysts limit the industrial application of this method.
20世纪80年代,日本旭化成公司开发了由苯部分加氢制环己烯、环己烯水合制环己醇的工艺,并于1990年实现了工业化,相关的中国专利申请有CN 1079727A、CN 1414933A和CN101796001A。环己烯水合法是相对较新的环己醇生产方法,该方法的反应选择性高,过程几乎没有三废排放,但存在反应转化率很低、对环己烯纯度要求较高等不足。如采用高硅ZSM-5催化剂,在两个串联浆态反应器中停留2h,环己烯转化率只有12.5%。In the 1980s, Asahi Kasei Corporation of Japan developed a process for producing cyclohexene by partial hydrogenation of benzene and hydration of cyclohexene to produce cyclohexanol, and realized industrialization in 1990. Related Chinese patent applications include CN 1079727A and CN 1414933A and CN101796001A. Cyclohexene hydration is a relatively new production method of cyclohexanol. This method has high reaction selectivity and almost no three wastes in the process. However, there are disadvantages such as low reaction conversion rate and high requirements for cyclohexene purity. If high silicon ZSM-5 catalyst is used, the conversion rate of cyclohexene is only 12.5% after staying in two series slurry reactors for 2 hours.
生产环己烯的传统方法是环己醇脱水法和卤代环己烷脱卤化氢法。苯部分加氢和环己烷氧化脱氢是另外两种制备环己烯的方法。苯部分加氢制备环己烯主要有气相法、液相法和均相络合加氢法。液相法可采用气(氢气)、液(苯)、液(极性溶剂)、固(催化剂)四相反应体系,如可采用在包含催化剂和水的浆料中通入苯和氢气的方法。如采用四相反应体系,水的用量至少要满足能形成油水两相,水中通常加入金属盐,较好的金属盐是硫酸锌或硫酸钴。液相法的反应条件一般为:反应温度25~250℃;氢气分压0.1~20MPa,催化剂用量为水重量的0.001~0.2倍。苯部分加氢催化剂一般以Pt、Pd、Ru、Rh和Ni等金属中的一种或多种为主催化剂组分;为了进一步提高加氢活性和选择性,通常还会在催化剂中引入K、Zr、Hf、Co、Cu、Ag、Fe、Mo、Cr、Mn、Au、la和Zn等金属中的一种或多种作为助剂组分。苯部分加氢催化剂可以是负载型或非负载型催化剂,负载的方法可采用离子交换法、喷淋法、含浸法、蒸发干燥法等,采用的载体可以是天然粘土、海泡石、ZrO2、SiO2、TiO2、Al2O3、La2O3、活性炭、不溶性的硫酸盐、不溶性的磷酸盐或分子筛等。以钌系催化剂为例,负载型催化剂可通过将钌盐单独或与其他金属盐共同浸渍在载体上,然后经干燥、还原来制备;非负载型催化剂可通过钌盐单独或与其他金属盐共同沉淀,然后经干燥、还原来制备,也可以通过直接还原钌化合物或者钌化合物与其他金属化合物的混合物来制备。钌系催化剂及苯加氢的方法和装置在CN102264471A中有详细的描述。The traditional methods for producing cyclohexene are dehydration of cyclohexanol and dehydrohalogenation of halocyclohexane. Partial hydrogenation of benzene and oxidative dehydrogenation of cyclohexane are two other methods for preparing cyclohexene. The partial hydrogenation of benzene to prepare cyclohexene mainly includes gas-phase method, liquid-phase method and homogeneous complexation hydrogenation method. The liquid-phase method can adopt a four-phase reaction system of gas (hydrogen), liquid (benzene), liquid (polar solvent), and solid (catalyst), such as the method of feeding benzene and hydrogen into a slurry containing catalyst and water . If a four-phase reaction system is adopted, the amount of water must be at least sufficient to form an oil-water two-phase, and metal salts are usually added to the water, and the preferred metal salts are zinc sulfate or cobalt sulfate. The reaction conditions of the liquid phase method are generally: reaction temperature 25-250°C; hydrogen partial pressure 0.1-20MPa, catalyst dosage 0.001-0.2 times the weight of water. Catalysts for the partial hydrogenation of benzene generally use one or more of metals such as Pt, Pd, Ru, Rh and Ni as the main catalyst component; in order to further improve hydrogenation activity and selectivity, K, One or more of metals such as Zr, Hf, Co, Cu, Ag, Fe, Mo, Cr, Mn, Au, la and Zn are used as additive components. The partial hydrogenation catalyst of benzene can be a supported or non-supported catalyst. The supported method can be ion exchange method, spray method, impregnation method, evaporative drying method, etc. The carrier used can be natural clay, sepiolite, ZrO 2 , SiO 2 , TiO 2 , Al 2 O 3 , La 2 O 3 , activated carbon, insoluble sulfate, insoluble phosphate or molecular sieve, etc. Taking ruthenium-based catalysts as an example, supported catalysts can be prepared by impregnating ruthenium salts alone or together with other metal salts on the carrier, followed by drying and reducing; unsupported catalysts can be prepared by ruthenium salts alone or together with other metal salts It can be prepared by precipitation, followed by drying and reduction, or by direct reduction of ruthenium compounds or mixtures of ruthenium compounds and other metal compounds. The ruthenium-based catalyst and the method and device for hydrogenation of benzene are described in detail in CN102264471A.
乙酸环己酯是一种带有香蕉或苹果香味的液体,用其配制的果香型香精被广泛用于食品、饮料及化妆品等行业。此外,乙酸环己酯对树脂具有良好的溶解性能,也常被用做高档涂料、油漆的环保型溶剂。最近,本发明人还发现,将其加氢可制取环己醇并联产乙醇,可以预见,乙酸环己酯将成为一种重要的有机合成中间体。Cyclohexyl acetate is a liquid with banana or apple aroma, and the fruity flavor prepared with it is widely used in food, beverage and cosmetic industries. In addition, cyclohexyl acetate has good solubility for resins, and is often used as an environmentally friendly solvent for high-grade paints and paints. Recently, the present inventors also found that cyclohexanol can be produced by hydrogenation and co-produce ethanol. It can be predicted that cyclohexyl acetate will become an important organic synthesis intermediate.
目前,工业上乙酸环己酯的合成方法是乙酸与环己醇酯化反应。醇酸酯化反应需要在酸性催化剂的作用下才能顺利进行。宋桂佳,吴雄岗(化学推进剂与高分子材料,2009,V0l.7(2):P31-33),综述了乙酸和环己醇酯化合成乙酸环己酯的合成研究进展情况。At present, the synthetic method of cyclohexyl acetate in industry is the esterification reaction of acetic acid and cyclohexanol. The alkyd esterification reaction needs to be carried out smoothly under the action of an acidic catalyst. Song Guijia, Wu Xionggang (Chemical Propellants and Polymer Materials, 2009, V0l.7(2):P31-33), reviewed the research progress on the synthesis of cyclohexyl acetate through the esterification of acetic acid and cyclohexanol.
JPA254634/1989公开了一种环己醇和乙酸环己酯的制备方法,采用强酸性离子交换树脂为催化剂,由含水乙酸和环己烯反应合成环己醇和乙酸环己酯。该文献实例中提到的最好结果为,环己烯转化率62.7%,环己醇收率18.4%,乙酸环己酯收率43.7%。JPA254634/1989 discloses a preparation method of cyclohexanol and cyclohexyl acetate, using a strongly acidic ion exchange resin as a catalyst to synthesize cyclohexanol and cyclohexyl acetate by the reaction of aqueous acetic acid and cyclohexene. The best result mentioned in this literature example is that the conversion rate of cyclohexene is 62.7%, the yield of cyclohexanol is 18.4%, and the yield of cyclohexyl acetate is 43.7%.
CN1023115C、JP平-313447公开了一种环己醇的制备方法,采用ZSM5或高硅沸石为催化剂,在水存在下,由乙酸和环己烯反应合成环己醇和乙酸环己酯。该文献中,在120℃反应4h,环己醇和乙酸环己酯的产量分别只有12.5%和65%。CN1023115C and JP Ping-313447 disclose a method for preparing cyclohexanol, using ZSM5 or high silica zeolite as a catalyst to synthesize cyclohexanol and cyclohexyl acetate by reacting acetic acid and cyclohexene in the presence of water. In this document, the yields of cyclohexanol and cyclohexyl acetate were only 12.5% and 65% respectively at 120°C for 4 hours.
EP0461580A2、USP5254721公开了一种由乙酸和环己烯制备乙酸环己酯的方法。该方法采用含钨杂多酸催化剂,杂多酸分子中结晶水含量最好为0~3。文献中给出的最好结果是,在370℃焙烧3h获得的完全不含结晶水的十二硅钨酸催化剂,在200mL压力釜中,加入61.5g乙酸,13.5g环己烯,5g催化剂,在0.5MPa、130℃的条件下反应0.5h,环己烯转化率为95.2%,乙酸环己酯的选择性为99.2%。由此可见,在很高的酸烯比的条件下,环己烯也不能完全转化。EP0461580A2 and USP5254721 disclose a method for preparing cyclohexyl acetate from acetic acid and cyclohexene. The method adopts a tungsten-containing heteropolyacid catalyst, and the crystal water content in the heteropolyacid molecule is preferably 0-3. The best result given in the literature is that the dodecasilic tungstic acid catalyst completely free of crystal water obtained by roasting at 370°C for 3 hours, in a 200mL autoclave, add 61.5g of acetic acid, 13.5g of cyclohexene, and 5g of catalyst, Under the conditions of 0.5MPa and 130℃ for 0.5h, the conversion of cyclohexene was 95.2%, and the selectivity of cyclohexyl acetate was 99.2%. It can be seen that under the condition of very high acid-to-ene ratio, cyclohexene cannot be completely converted.
从现有公开的文献可知,现有文献已经公开了乙酸与环己烯加成酯化反应的各种固体酸催化剂,加成酯化反应一般采用釜式反应器,反应原料为纯环己烯,即使采用很高的酸烯比,也难于实现环己烯的完全转化。As can be known from the existing published literature, the existing literature has disclosed various solid acid catalysts for the addition esterification of acetic acid and cyclohexene. The addition esterification reaction generally adopts a tank reactor, and the reaction raw material is pure cyclohexene , even with a high acid-to-ene ratio, it is difficult to achieve complete conversion of cyclohexene.
反应精馏已广泛用于醇烯醚化、醇酸酯化、酯交换、酯水解、缩醛反应等过程,但迄今为止,未见将反应精馏用于乙酸与环己烯加成酯化过程的报道。Reactive distillation has been widely used in processes such as alcohol-ene etherification, alcohol esterification, transesterification, ester hydrolysis, acetal reaction, etc., but so far, no reactive distillation has been used for the addition and esterification of acetic acid and cyclohexene process reports.
CN86105765A提出一种通过羧酸酯加氢制备醇的方法,该方法是在有还原活化的固体含铜催化剂的存在下,于高温、常压或高压下将羧酸酯加氢,该催化剂除铜之外还含有镁,镧系金属或锕系金属中的至少一种。催化剂在还原活化之前用以下通式表示:CuaM1M2 bAcOx,M1是镁,镧系金属或锕系金属中的至少一种,M2选自Ca,Mo,Rh,Pt,Cr,Zn,Al,Ti,V,Ru,Re,Pd,Ag和Au;A为一种碱金属;a为0.1-4;b为0-1.0;C为0-0.5;x为能满足其它元素对氧总价数要求的数字。该催化剂中的碱金属是一种选择组分,其通过碱金属盐的形式引入催化剂。该方法和催化剂所适用的羧酸酯为C1-C24的无环一元或二元、饱和或不饱和、直链或支链羧酸酯,文献中没有涉及像环己醇这样的环烷醇的制备。CN86105765A proposes a method for preparing alcohol by hydrogenation of carboxylic acid ester, which method is to hydrogenate carboxylic acid ester at high temperature, normal pressure or high pressure in the presence of a reduction-activated solid copper-containing catalyst, and the catalyst removes copper In addition, it also contains magnesium, at least one of lanthanide metals or actinide metals. The catalyst is represented by the following general formula before reduction activation: Cu a M 1 M 2 b A c O x , M 1 is at least one of magnesium, lanthanide metal or actinide metal, M 2 is selected from Ca, Mo, Rh , Pt, Cr, Zn, Al, Ti, V, Ru, Re, Pd, Ag and Au; A is an alkali metal; a is 0.1-4; b is 0-1.0; C is 0-0.5; x is A number that can meet the requirements of other elements for the total valence of oxygen. The alkali metal in the catalyst is an optional component which is introduced into the catalyst in the form of an alkali metal salt. The applicable carboxylate of this method and catalyzer is C1-C24 acyclic monovalent or divalent, saturated or unsaturated, linear or branched chain carboxylate, does not relate to cycloalkanols like cyclohexanol in the literature preparation.
CN1075048C提出一种羧酸酯直接氢化的方法和催化剂,包括使一种或多种酯与氢在下述催化剂存在下接触和反应,该催化剂含有一种铜化合物、一种锌化合物和至少一种选自铝、锆、镁、一种稀土元素的化合物或其混合物作为其组分,通过将这些催化剂组分在200至小于400℃的温度范围内焙烧制得该催化剂,该方法是在液相下,在170~250℃和20.7~138巴表压下进行的。该方法和催化剂所适用的羧酸酯是通过天然油进行酯交换制得的C6~C22二甲酯、C6-C66天然甘油三酯或为天然甘油三酯作酯交换制得的C6~C44化合物。CN1075048C proposes a method and catalyst for direct hydrogenation of carboxylic acid esters, comprising contacting and reacting one or more esters with hydrogen in the presence of a catalyst containing a copper compound, a zinc compound and at least one selected The catalyst is prepared from aluminum, zirconium, magnesium, a compound of a rare earth element or a mixture thereof as its components by calcining these catalyst components at a temperature ranging from 200 to less than 400°C, the method being in a liquid phase , Carried out at 170-250°C and 20.7-138 bar gauge pressure. The carboxylate suitable for the method and catalyst is C6-C22 dimethyl ester obtained by transesterification of natural oil, C6-C66 natural triglyceride or C6-C44 compound obtained by transesterification of natural triglyceride .
US4939307提出一种酯加氢制醇的工艺。将通式为R1-CO-OR2或R4O-CO-R3-CO-OR2(其中R1为H或C1~C20烃基,R2和R4为C1~C20烃基,R3为-(CH2)n-基团,n=1~10)的酯与H2和CO混合,在30~150℃、5~100巴压力下进行加氢反应生成醇,其催化剂由以下组分组成:(a)一种周期表中VIII族金属离子化合物;(b)一种碱金属或碱土金属的醇盐;(c)一种醇。US4939307 proposes a process for ester hydrogenation to alcohol. The general formula is R 1 -CO-OR 2 or R 4 O-CO-R 3 -CO-OR 2 (wherein R 1 is H or C 1 ~ C 20 hydrocarbon group, R 2 and R 4 are C 1 ~ C 20 Hydrocarbon group, R 3 is -(CH 2 )n-group, n=1~10) ester mixed with H 2 and CO, hydrogenation reaction is carried out at 30~150°C, 5~100 bar pressure to form alcohol, which The catalyst is composed of the following components: (a) a group VIII metal ion compound in the periodic table; (b) an alkoxide of an alkali metal or an alkaline earth metal; (c) an alcohol.
US4113662及USP4149021公开了一种酯加氢催化剂,该催化剂由钴、锌、铜的元素、氧化物、氢氧化物或碳酸盐组成,该催化剂最适用的羧酸酯为聚乙醇酸交酯,文献中未提及环烷醇的制备。US4113662 and USP4149021 disclose a kind of ester hydrogenation catalyst, and this catalyst is made up of the element of cobalt, zinc, copper, oxide, hydroxide or carbonate, and the most suitable carboxylate of this catalyst is polyglycolide, The preparation of cycloalkanols is not mentioned in the literature.
US4611085公开了一种C1-C20羧酸酯气相加氢制醇的方法,其催化剂是由一种VIII族元素、一种助剂和炭载体组成,其中所述的VIII族元素包括Ru、Ni、Rh,助剂包括IA(除Li外)、IIA族(Be和Mg除外)、镧系和锕系元素,炭载体的BET比表面积大于100m2/g。加氢反应在100~400℃,气体空速100~120000h-1条件下进行。该催化剂中的碱金属是以碱金属盐的形式引入的,如碱金属的硝酸盐、碳酸盐或乙酸盐。该方法适用于反应条件下能汽化的羧酸酯,羧酸酯中的醇衍生部分碳数最好小于5且与氧相连的碳最好是伯碳。US4611085 discloses a method for gas-phase hydrogenation of C 1 -C 20 carboxylic acid esters to produce alcohols. The catalyst is composed of a VIII group element, an auxiliary agent and a carbon carrier, wherein the VIII group element includes Ru, Ni, Rh, additives include IA (except Li), IIA group (except Be and Mg), lanthanide and actinide elements, and the BET specific surface area of the carbon support is greater than 100m 2 /g. The hydrogenation reaction is carried out under the conditions of 100-400°C and gas space velocity of 100-120000h -1 . The alkali metals in the catalyst are introduced in the form of alkali metal salts, such as alkali metal nitrates, carbonates or acetates. The method is applicable to carboxylic acid esters that can be vaporized under reaction conditions. The carbon number of the alcohol-derived moiety in the carboxylic acid esters is preferably less than 5 and the carbon connected to oxygen is preferably a primary carbon.
GB2250287A公开了一种脂肪酸酯加氢制醇的方法,该方法的特点是加氢采用含铜催化剂并在酯原料中加入一定量的水来维持催化剂的活性。其适用的羧酸酯为C12~C18的脂肪酸甲酯。GB2250287A discloses a method for hydrogenating fatty acid esters to produce alcohols. The method is characterized in that a copper-containing catalyst is used for hydrogenation and a certain amount of water is added to the ester raw material to maintain the activity of the catalyst. The applicable carboxylate is C12-C18 fatty acid methyl ester.
从已公开文献可知,现有技术中没有任何关于乙酸环己酯加氢能联产环己醇和乙醇的信息公开,更没有通过苯选择性加氢、环己烯加成酯化、乙酸环己酯加氢来制备环己醇和乙醇的信息公开。It can be seen from the published literature that there is no information disclosure about the co-production of cyclohexanol and ethanol through the hydrogenation of cyclohexyl acetate in the prior art, and there is no selective hydrogenation of benzene, cyclohexene addition esterification, cyclohexyl acetate Information on the hydrogenation of esters to produce cyclohexanol and ethanol.
发明内容Contents of the invention
本发明提供了一种联产环己醇和乙醇的方法,该方法以苯为起始原料,通过苯选择性加氢、环己烯加成酯化、乙酸环己酯加氢来联产环己醇和乙醇。本发明还提供了可实现上述方法的装置。The invention provides a method for the co-production of cyclohexanol and ethanol. The method takes benzene as the starting material and co-produces cyclohexyl through selective hydrogenation of benzene, addition and esterification of cyclohexene, and hydrogenation of cyclohexyl acetate. alcohol and ethanol. The invention also provides a device capable of realizing the above method.
本发明中,对于物流,以“A/B”代表A和B的混合物;对于催化剂,“A/B”代表“活性组分/载体”。In the present invention, for stream, "A/B" represents the mixture of A and B; for catalyst, "A/B" represents "active component/carrier".
一种联产环己醇和乙醇的方法,包括:A method for the coproduction of cyclohexanol and ethanol, comprising:
(1)在苯加氢制环己烯的条件下,苯和氢气发生加氢反应,得到含环己烯物流;(1) Under the conditions of hydrogenation of benzene to cyclohexene, benzene and hydrogen undergo a hydrogenation reaction to obtain a stream containing cyclohexene;
(2)将步骤(1)得到的含环己烯物流与乙酸接触,在第一催化剂的作用下发生加成酯化反应;对反应产物进行分离,得到乙酸环己酯物流;(2) contacting the cyclohexene-containing stream obtained in step (1) with acetic acid, and an addition esterification reaction occurs under the action of the first catalyst; separating the reaction product to obtain a cyclohexyl acetate stream;
(3)将步骤(2)得到的乙酸环己酯物流与氢气接触,在第二催化剂的作用下发生酯加氢反应;对反应产物进行分离,得到环己醇和乙醇。(3) The cyclohexyl acetate stream obtained in step (2) is contacted with hydrogen, and ester hydrogenation reaction occurs under the action of the second catalyst; the reaction product is separated to obtain cyclohexanol and ethanol.
以下分别说明上述三个步骤。The above three steps will be described respectively below.
一、苯加氢制环己烯1. Benzene hydrogenation to cyclohexene
本发明对苯加氢制环己烯的方法及催化剂没有特别的限定,现有可利用苯加氢制备环己烯的方法及苯加氢催化剂均可为本发明所用。本发明优选采用液相法工艺。苯加氢催化剂优选采用钌系催化剂,更优选采用含钴和/或锌的钌系催化剂。含钴和/或锌的钌系催化剂可用共沉淀或浸渍同一载体的方法来制备。The method and catalyst for hydrogenation of benzene to cyclohexene are not particularly limited in the present invention, and the existing method for preparing cyclohexene by hydrogenation of benzene and the catalyst for hydrogenation of benzene can be used in the present invention. The present invention preferably adopts liquid phase process. The benzene hydrogenation catalyst is preferably a ruthenium-based catalyst, more preferably a ruthenium-based catalyst containing cobalt and/or zinc. Ruthenium-based catalysts containing cobalt and/or zinc can be prepared by co-precipitation or impregnation of the same carrier.
步骤(1)中,苯加氢得到的含环己烯物流主要是由环己烷、环己烯和未反应的苯组成的混合物,该物流直接作为下一步骤的原料,不需对其分离。In step (1), the cyclohexene-containing stream obtained by benzene hydrogenation is mainly a mixture of cyclohexane, cyclohexene and unreacted benzene, which is directly used as the raw material for the next step without separation .
二、环己烯加成酯化2. Addition and esterification of cyclohexene
本发明中,“加成酯化反应”是指羧酸对烯烃双键加成生成酯的反应。In the present invention, "addition esterification reaction" refers to a reaction in which a carboxylic acid is added to an olefin double bond to form an ester.
步骤(2)中,所述的第一催化剂为酸催化剂,既可以是液体酸催化剂,也可以是固体酸催化剂。所述的液体酸催化剂既可以是无机酸,如硫酸、磷酸等;也可以是有机酸,如甲基苯磺酸、胺基磺酸等。本发明优选采用固体酸催化剂。所述的固体酸催化剂可选自强酸型离子交换树脂催化剂、杂多酸催化剂和分子筛催化剂中的一种或几种。In step (2), the first catalyst is an acid catalyst, either a liquid acid catalyst or a solid acid catalyst. The liquid acid catalyst can be an inorganic acid, such as sulfuric acid, phosphoric acid, etc.; it can also be an organic acid, such as toluenesulfonic acid, sulfamic acid, etc. The present invention preferably uses a solid acid catalyst. The solid acid catalyst can be selected from one or more of strong acid ion exchange resin catalysts, heteropolyacid catalysts and molecular sieve catalysts.
所述的强酸型离子交换树脂催化剂既包括普通的大孔磺酸型聚苯乙烯-二乙烯基苯树脂,也包括经卤素原子改性后的磺酸型树脂。这类树脂很容易从市场中购得,也可以按经典文献记载的方法制取。大孔磺酸型聚苯乙烯-二乙烯基苯树脂的制备方法通常是将苯乙烯和二乙烯基苯的混合物在高速搅拌的条件下滴入含有分散剂、引发剂、致孔剂的水相体系中进行悬浮共聚,将所得到的聚合物小球(白球)从体系中分离出来,用溶剂抽去其中的致孔剂,再以二氯乙烷为溶剂、浓硫酸为磺化剂,进行磺化反应,最后经过滤、洗涤等工序,最后制得产品。在普通强酸型离子交换树脂的骨架中引入卤素原子,如氟、氯、溴等,可进一步提高树脂的耐温性能和酸强度。这种含卤素的强酸性耐高温树脂至少可以通过以下两种途径获得,一种途径是在磺化苯乙烯树脂骨架的苯环上引入卤素原子,例如氯原子,由于卤素元素的强吸电子作用不仅可使苯环稳定、而且还可以提高苯环上磺酸基团的酸性,这样可使树脂催化剂的酸强度函数(Hammett函数)H0≤-8,而且可以在150℃以上长期使用,此类树脂可从市场上方便购买到,比如国外ROHM&HASS公司生产的Amberlyst 45树脂,国内河北冀中化工厂生产的D008树脂等;另一种途径将树脂骨架上的氢全部用氟取代,由于氟的强吸电子性,使其具有超强的酸性和超高的热稳定性,酸强度函数(Hammett函数)H0可小于-12,而耐热温度达到250℃以上,这类耐高温强酸性树脂的典型例子是DuPont公司生产的Nafion树脂。The strong acid ion exchange resin catalyst includes not only ordinary macroporous sulfonic acid polystyrene-divinylbenzene resin, but also sulfonic acid resin modified by halogen atoms. This kind of resin is easy to buy from the market, and can also be prepared according to the methods recorded in classic literature. The preparation method of macroporous sulfonic acid polystyrene-divinylbenzene resin is usually to drop the mixture of styrene and divinylbenzene into the water phase containing dispersant, initiator and porogen under the condition of high-speed stirring. Carry out suspension copolymerization in the system, separate the obtained polymer balls (white balls) from the system, use a solvent to remove the porogen, and then use dichloroethane as a solvent and concentrated sulfuric acid as a sulfonating agent to carry out Sulfonation reaction, and finally through filtration, washing and other processes, the final product is obtained. Introducing halogen atoms, such as fluorine, chlorine, bromine, etc., into the skeleton of ordinary strong acid ion exchange resin can further improve the temperature resistance and acid strength of the resin. This halogen-containing strongly acidic high-temperature resistant resin can be obtained at least through the following two ways. One way is to introduce a halogen atom, such as a chlorine atom, into the benzene ring of the sulfonated styrene resin skeleton. Due to the strong electron-withdrawing effect of the halogen element It can not only stabilize the benzene ring, but also increase the acidity of the sulfonic acid group on the benzene ring, so that the acid strength function (Hammett function) of the resin catalyst can be H0≤-8, and it can be used for a long time above 150°C. Resins can be easily purchased from the market, such as Amberlyst 45 resin produced by foreign ROHM & HASS companies, D008 resin produced by Hebei Jizhong Chemical Factory in China, etc.; another way is to replace all the hydrogen on the resin skeleton with fluorine. Electron-absorbing properties make it super acidic and super thermally stable. The acid strength function (Hammett function) H0 can be less than -12, and the heat-resistant temperature can reach above 250 ° C. This type of high-temperature-resistant strong acid resin is typical An example is Nafion resin produced by DuPont Corporation.
所述的杂多酸催化剂既可以是杂多酸和/或杂多酸酸式盐,也可以是负载杂多酸和/或杂多酸酸式盐的催化剂。杂多酸及其酸式盐的酸强度函数H0可小于-13.15,而且可以在高达300℃以上长期使用。所述的杂多酸及其酸式盐包括Keggin结构、Dawson、Anderson结构、Silverton结构的杂多酸及其酸式盐。优选keggin结构的杂多酸及其酸式盐,如十二磷钨酸(H3PW12O40·xH2O)、十二硅钨酸(H4SiW12O40·xH2O)、十二磷钼酸(H3PMo12O40·xH2O)、十二磷钼钒酸(H3PMo12-yVyO40·xH2O)等。所述的杂多酸酸式盐优选酸式磷钨酸铯盐(Cs2.5H0.5P12WO40),其酸强度函数H0小于-13.15,而且比表面积可达100m2/g以上。所述的杂多酸催化剂可以选自上述优选杂多酸和杂多酸酸式盐中的一种或几种。所述负载杂多酸和/或杂多酸酸式盐的催化剂中,载体一般为SiO2和/或活性炭。The heteropolyacid catalyst can be heteropolyacid and/or heteropolyacid acid salt, or a catalyst supporting heteropolyacid and/or heteropolyacid acid salt. The acid strength function H0 of the heteropoly acid and its acid salt can be less than -13.15, and can be used for a long time up to 300°C. The heteropolyacid and its acid salt include Keggin structure, Dawson, Anderson structure, Silverton structure heteropoly acid and its acid salt. Heteropolyacids with keggin structure and their acid salts are preferred, such as dodecaphosphotungstic acid (H 3 PW 12 O 40 ·xH 2 O), dodecasilicatetungstic acid (H 4 SiW 12 O 40 ·xH 2 O), Dodecaphosphomolybdic acid (H 3 PMo 12 O 40 ·xH 2 O), dodecaphosphomolybdovanadate (H 3 PMo 12- yV y O 40 ·xH 2 O), etc. The heteropolyacid acid salt is preferably cesium phosphotungstate (Cs 2.5 H 0.5 P 12 WO 40 ), whose acid strength function H0 is less than -13.15, and the specific surface area can reach more than 100 m 2 /g. The heteropolyacid catalyst can be selected from one or more of the above-mentioned preferred heteropolyacids and heteropolyacid acid salts. In the catalyst supporting heteropolyacid and/or heteropolyacid acid salt, the carrier is generally SiO2 and/or activated carbon.
所述的固体酸催化剂还可以是分子筛催化剂。所述的分子筛可以是Hβ、HY和HZSM-5中的一种或几种,优选是用氟或磷改性的Hβ、HY和HZSM-5中的一种或几种。这些分子筛经过氟、磷改性后,可以进一步提高的分子筛的酸性和催化性能。The solid acid catalyst can also be a molecular sieve catalyst. The molecular sieve can be one or more of Hβ, HY and HZSM-5, preferably one or more of Hβ, HY and HZSM-5 modified with fluorine or phosphorus. After these molecular sieves are modified by fluorine and phosphorus, the acidity and catalytic performance of the molecular sieve can be further improved.
以下具体说明步骤(2)的两种实施方式。Two implementations of step (2) are described in detail below.
第一种实施方式:The first implementation mode:
催化剂采用固体酸催化剂。步骤(2)中,可采用一个或多个并联的反应器,反应器类型可选自釜式反应器、固定床反应器、沸腾床反应器和流化床反应器中的一种或几种。优选采用一个或多个并联的管式固定床反应器。更优选采用一个或多个并联的管壳列管式反应器。反应器的操作方式既可以是间歇的方式,也可以是连续的方式,优选采用连续操作方式。固定床反应器可采用绝热的或等温方式操作。绝热反应器可采用筒式反应器,催化剂固定在反应器中,反应器外壁进行保温绝热,由于加成酯化反应为放热反应,因此需要控制反应物浓度以控制反应器床层温升,或采用部分反应产物冷却后循环至反应器入口以稀释反应物浓度。等温反应器可采用管壳列管式反应器,催化剂固定在列管中,在壳程通过冷却水以移走反应的放出的热量。The catalyst adopts solid acid catalyst. In step (2), one or more parallel reactors can be used, and the reactor type can be selected from one or more of tank reactors, fixed bed reactors, ebullating bed reactors and fluidized bed reactors . Preference is given to using one or more parallel tubular fixed-bed reactors. More preferably one or more shell-and-tube reactors connected in parallel are used. The operation mode of the reactor can be a batch mode or a continuous mode, preferably a continuous operation mode. Fixed bed reactors can be operated adiabatically or isothermally. The adiabatic reactor can be a cylinder reactor, the catalyst is fixed in the reactor, and the outer wall of the reactor is kept insulated. Since the addition esterification reaction is an exothermic reaction, it is necessary to control the concentration of the reactants to control the temperature rise of the reactor bed. Or use part of the reaction product to cool and then circulate to the reactor inlet to dilute the reactant concentration. The isothermal reactor can be a shell-and-tube reactor. The catalyst is fixed in the tube, and cooling water is passed through the shell to remove the heat released by the reaction.
反应温度一般为50~200℃,优化反应温度为60~120℃。The reaction temperature is generally 50-200°C, and the optimal reaction temperature is 60-120°C.
所述的加成酯化反应的压力与反应温度有关。由于加成酯化反应在液相中进行,因此反应压力应保证反应处于液相状态。一般来说,反应压力为常压~10MPa,优化压力为常压~1MPa。The pressure of the addition esterification reaction is related to the reaction temperature. Since the addition esterification reaction is carried out in the liquid phase, the reaction pressure should ensure that the reaction is in the liquid phase state. Generally speaking, the reaction pressure is normal pressure ~ 10MPa, and the optimal pressure is normal pressure ~ 1MPa.
所述的加成酯化反应的酸烯摩尔比一般为0.2~20:1,优化条件为1.2~3:1。The acid-to-ene molar ratio of the addition esterification reaction is generally 0.2-20:1, and the optimal condition is 1.2-3:1.
所述的加成酯化反应中,液体进料空速一般为0.5~20h-1,优化条件为0.5~5h-1。In the above-mentioned addition esterification reaction, the liquid feed space velocity is generally 0.5-20h -1 , and the optimum condition is 0.5-5h -1 .
在上述条件下,加成酯化反应的环己烯转化一般能达到80%以上,而酯化反应的选择性可达到99%以上。Under the above conditions, the conversion of cyclohexene in the addition esterification reaction can generally reach more than 80%, while the selectivity of the esterification reaction can reach more than 99%.
步骤(2)的反应产物主要由环己烷、苯、乙酸和乙酸环己酯组成,还有一定量的未反应环己烯,该产物的分离可在设置有精馏分离部分和/或萃取精馏分离部分的加成酯化产物分离单元中进行。一种可选的分离方式是,对酯化产物物流进行精馏分离,得到由环己烷/环己烯/苯物流、乙酸物流和乙酸环己酯物流。环己烷/环己烯/苯物流可在另外设置的加氢装置中进行加氢制备环己烷,乙酸物流可作为步骤(2)反应进料的一部分,乙酸环己酯物流作为步骤(3)反应的原料。本发明也可以进一步对环己烷/环己烯/苯物流进行萃取精馏分离,一种可选的分离方案是,采用萃取精馏将其分离成环己烷/环己烯物流和苯物流,苯物流可作为步骤(1)反应进料的一部分,环己烷/环己烯物流可进行加氢制备环己烷;另一种可选的分离方案是,采用萃取精馏将其分离成环己烷物流、环己烯物流和苯物流,苯物流可作为步骤(1)反应进料的一部分,环己烯物流可作为步骤(2)反应进料的一部分,环己烷物流作为副产品出装置。本发明还可以通过精馏分离脱除上述乙酸环己酯物流中的重组分,将脱除重组分后的乙酸环己酯物流作为步骤(3)反应的原料,分离出的重组分物流作为副产品排出装置。The reaction product of step (2) is mainly composed of cyclohexane, benzene, acetic acid and cyclohexyl acetate, and there is a certain amount of unreacted cyclohexene. It is carried out in the addition esterification product separation unit of the distillation separation part. An optional separation method is to carry out rectification separation on the esterification product stream to obtain cyclohexane/cyclohexene/benzene stream, acetic acid stream and cyclohexyl acetate stream. The cyclohexane/cyclohexene/benzene stream can be hydrogenated to prepare cyclohexane in an additional hydrogenation unit, the acetic acid stream can be used as a part of the reaction feed in step (2), and the cyclohexyl acetate stream can be used as a step (3) ) raw materials for the reaction. The present invention can also carry out extractive distillation separation to cyclohexane/cyclohexene/benzene stream further, a kind of optional separation scheme is, adopt extractive distillation to separate it into cyclohexane/cyclohexene stream and benzene stream , the benzene stream can be used as a part of the reaction feed in step (1), and the cyclohexane/cyclohexene stream can be hydrogenated to produce cyclohexane; another optional separation scheme is to separate it into Cyclohexane stream, cyclohexene stream and benzene stream, benzene stream can be used as a part of step (1) reaction feed, cyclohexene stream can be used as a part of step (2) reaction feed, and cyclohexane stream is exported as by-product device. The present invention can also remove the heavy component in the above-mentioned cyclohexyl acetate stream through rectification separation, and use the cyclohexyl acetate stream after removing the heavy component as the raw material for the step (3) reaction, and the separated heavy component stream as a by-product discharge device.
具体地说,加成酯化产物分离单元可设置一个脱碳六组分塔和一个脱乙酸塔。加成酯化产物首先进入脱碳六组分塔进行分离,此塔可采用常压操作,通过控制塔釜加热量、回流比、塔顶和塔釜采出量,从塔顶采出环己烷/环己烯/苯物流,从脱碳六组分塔塔釜采出的物流进入脱乙酸塔进行分离,此塔也可采用常压操作,通过控制塔釜加热量、回流比、塔顶和塔釜采出量,从塔顶采出乙酸物流,从塔釜采出乙酸环己酯物流。所述酯化产物分离单元可以再设置一个萃取精馏塔,将环己烷/环己烯/苯物流进一步分离成环己烷/环己烯物流和苯物流;或者再设置两个萃取精馏塔,将环己烷/环己烯/苯物流进一步分离成环己烷物流、环己烯物流和苯物流。加成酯化产物分离单元还可以再设置一个脱重组分塔,从脱乙酸塔塔釜采出的乙酸环己酯物流进入脱重组分塔,进一步脱除物流中的重组分,从而获得脱除重组分的乙酸环己酯物流。Specifically, the addition esterification product separation unit can be provided with a decarburization six-component tower and a deacetic acid tower. The addition esterification product first enters the decarburization six-component tower for separation. This tower can be operated under normal pressure. By controlling the heating capacity of the tower bottom, the reflux ratio, the output of the tower top and the tower bottom, cyclohexene is extracted from the top of the tower. The alkane/cyclohexene/benzene stream, the stream extracted from the decarburization six-component tower tank enters the deacetic acid tower for separation. This tower can also be operated under normal pressure. And tower still extraction, extract acetic acid stream from tower top, extract cyclohexyl acetate stream from tower still. The esterification product separation unit can be provided with an extractive rectification tower, and the cyclohexane/cyclohexene/benzene stream is further separated into a cyclohexane/cyclohexene stream and a benzene stream; or two extractive distillation towers can be set again The tower further separates the cyclohexane/cyclohexene/benzene stream into cyclohexane stream, cyclohexene stream and benzene stream. The addition esterification product separation unit can also be provided with a deheavy component tower, and the cyclohexyl acetate stream extracted from the deacetate tower tank enters the deheavy component tower to further remove the heavy component in the stream, thereby obtaining the removal Heavy component cyclohexyl acetate stream.
第二种实施方式:The second implementation mode:
催化剂采用固体酸催化剂。步骤(2)中,采用一个或多个并联的反应精馏塔,在进行加成酯化反应的同时,进行反应产物的分离,从反应精馏塔塔底得到乙酸环己酯物流,从反应精馏塔塔顶得到环己烷/苯/乙酸物流。The catalyst adopts solid acid catalyst. In step (2), adopt one or more parallel reactive distillation towers, while carrying out addition esterification reaction, carry out the separation of reaction product, obtain cyclohexyl acetate stream from the bottom of reactive distillation tower, from reaction The cyclohexane/benzene/acetic acid stream is obtained from the top of the rectifying tower.
所述反应精馏塔的理论塔板数为10~150,在理论塔板数的1/3至2/3位置之间布置固体酸催化剂;相对于催化剂的总装填体积,液体进料空速为0.2~20h-1;反应精馏塔的操作压力为-0.0099MPa至5MPa;催化剂装填区的温度在50~200℃之间;回流比为0.1~100:1。The theoretical plate number of the reactive distillation column is 10-150, and the solid acid catalyst is arranged between 1/3 to 2/3 of the theoretical plate number; relative to the total loading volume of the catalyst, the liquid feed space velocity 0.2-20h -1 ; the operating pressure of the reactive distillation tower is -0.0099MPa to 5MPa; the temperature of the catalyst loading area is between 50-200°C; the reflux ratio is 0.1-100:1.
所述的反应精馏塔在形式上与普通精馏塔相同,一般由塔体、塔顶冷凝器、回流罐、回流泵、塔釜和再沸器等组成。塔的类型可以是板式塔,也可以是填料塔,还可以是两者的组合。可采用的板式塔类型包括浮阀塔、筛板塔、泡罩塔等。填料塔所使用的填料可采用散堆填料,如鲍尔环、θ环、马鞍型填料、阶梯环填料等;也可以采用规整填料,如波纹板填料、波纹丝网填料等。The reactive distillation column is the same in form as an ordinary distillation column, and generally consists of a column body, a top condenser, a reflux tank, a reflux pump, a column kettle, and a reboiler. The type of column can be a tray column, a packed column, or a combination of both. The types of tray columns that can be used include valve columns, sieve tray columns, bubble cap columns, etc. The packing used in the packed tower can be random packing, such as Pall ring, θ ring, saddle packing, stepped ring packing, etc.; it can also be structured packing, such as corrugated plate packing, corrugated wire mesh packing, etc.
根据本发明所提供的方法,在反应精馏塔内布置有固体酸催化剂。本领域技术人员清楚地知道,反应精馏塔中的催化剂布置方式应满足以下两点要求:(1)要能提供足够的用于汽液两相通过的通道,或有比较大的床层空隙率(一般要求至少50%以上),以保证汽液两相能够对流通过,而不造成液泛;(2)要有良好的传质性能,反应物要从流体相传递到催化剂内进行反应,同时反应产物要从催化剂中传递出来。现有文献中已公开多种催化剂在反应精馏塔中的布置方式,这些布置方式均可为本发明所采用。现有催化剂在反应塔中的布置方式可分为以下三种:(1)将催化剂以精馏填料的方式直接布置在塔中,主要方式有将一定大小和形状催化剂颗粒与精馏填料机械混合、或将催化剂夹在规整填料之间与规整填料组成整体填料,或将催化剂直接制成精馏填料形状;(2)将催化剂装入气液可透过的小容器内并将其布置于反应塔的塔板上,或将催化剂布置在反应塔的降液管中;(3)将催化剂直接以固定床方式装入反应塔中,液相直接流过催化剂床层,而为气相设立专用的通道,采用这种方式在装有催化剂的部位,由催化剂床层和精馏塔盘交替设置,塔盘上的液体经降液管和再分布器进入下一催化剂床层,在床层中进行加成反应,催化剂床层下部的液体通过液体收集器进入下一塔盘。According to the method provided by the present invention, a solid acid catalyst is arranged in the reactive distillation column. Those skilled in the art know clearly that the catalyst arrangement in the reactive distillation column should meet the following two requirements: (1) It should be able to provide enough channels for the passage of vapor-liquid two-phase, or have a relatively large bed gap rate (generally at least 50%) to ensure that the gas-liquid two-phase can flow through without causing flooding; (2) to have good mass transfer performance, the reactant should be transferred from the fluid phase to the catalyst for reaction, At the same time, the reaction product is transferred from the catalyst. Various arrangements of catalysts in the reactive distillation column have been disclosed in the existing literature, and all of these arrangements can be adopted in the present invention. The arrangement of existing catalysts in the reaction tower can be divided into the following three types: (1) The catalyst is directly arranged in the tower in the form of rectification packing. The main method is to mechanically mix catalyst particles of a certain size and shape with rectification packing , or the catalyst is sandwiched between the structured packing and the structured packing to form an integral packing, or the catalyst is directly made into the shape of the rectification packing; (2) The catalyst is placed in a small gas-liquid permeable container and placed in the reaction The catalyst is placed on the tray of the tower, or the catalyst is arranged in the downcomer of the reaction tower; (3) The catalyst is directly loaded into the reaction tower in the form of a fixed bed, and the liquid phase flows directly through the catalyst bed layer, and a dedicated gas phase is set up. In this way, the catalyst bed and the rectification tray are alternately arranged at the position where the catalyst is installed. The liquid on the tray enters the next catalyst bed through the downcomer and the redistributor, and is carried out in the bed. Addition reaction, the liquid in the lower part of the catalyst bed enters the next tray through the liquid collector.
所述的反应精馏塔必须具有足够的理论塔板数和反应塔板数才能满足反应和分离要求。所述反应精馏塔的理论塔板数优选为30~100,在理论塔板数的1/3至2/3位置之间布置固体酸催化剂。The reactive distillation column must have enough theoretical plate numbers and reaction plate numbers to meet the reaction and separation requirements. The theoretical plate number of the reactive distillation column is preferably 30-100, and the solid acid catalyst is arranged between 1/3 to 2/3 of the theoretical plate number.
本发明中,需要保证反应物有足够的停留时间,以实现环己烯的完全转化。相对于催化剂的总装填体积,液体进料空速优选为0.5~5h-1。In the present invention, it is necessary to ensure that the reactants have sufficient residence time to realize the complete conversion of cyclohexene. The space velocity of the liquid feed is preferably 0.5 to 5 h -1 relative to the total loading volume of the catalyst.
本发明中,反应精馏塔的操作压力可以在负压、常压和加压条件下操作。反应精馏塔的操作压力优选为常压至1MPa。In the present invention, the operating pressure of the reactive distillation column can be operated under negative pressure, normal pressure and pressurized conditions. The operating pressure of the reactive distillation column is preferably from normal pressure to 1 MPa.
反应精馏塔的操作温度与反应精馏塔的压力有关,可通过调节反应塔的操作压力来调节反应塔的温度分布,使催化剂装填区的温度在催化剂的活性温度范围内。催化剂装填区的温度优选在60~120℃之间。The operating temperature of the reactive distillation tower is related to the pressure of the reactive distillation tower. The temperature distribution of the reaction tower can be adjusted by adjusting the operating pressure of the reaction tower so that the temperature of the catalyst loading area is within the active temperature range of the catalyst. The temperature of the catalyst loading zone is preferably between 60°C and 120°C.
反应精馏塔的回流比应同时满足分离和反应的要求,一般情况下,增大回流比有利于提高分离能力和反应转化率,但同时会增大过程能耗。所述的回流比优选为0.5~10:1。The reflux ratio of the reactive distillation column should meet the requirements of separation and reaction at the same time. In general, increasing the reflux ratio is conducive to improving the separation ability and reaction conversion rate, but at the same time it will increase the energy consumption of the process. The reflux ratio is preferably 0.5˜10:1.
根据本发明提供的方法,从反应精馏塔底得到的乙酸环己酯物流作为步骤(3)反应的原料。对于反应精馏塔顶得到的环己烷/苯/乙酸物流,可采用精馏将其分离成环己烷/苯物流和乙酸物流,乙酸物流可作为步骤(2)反应进料的一部分;环己烷/苯物流可在另外设置的加氢装置中加氢制备环己烷,也可以通过萃取精馏将其分离成环己烷物流和苯物流,苯物流可作为步骤(1)反应进料的一部分,环己烷物流作为副产品出装置。具体地说,环己烷/苯/乙酸物流可在一个脱碳六组分塔进行精馏分离,此塔可采用常压操作,通过控制塔釜加热量、回流比、塔顶和塔釜采出量,从塔顶采出环己烷/苯物流,从塔釜采出乙酸物流;环己烷/苯物流可以进另外设置的加氢装置,或者进入萃取精馏塔,进一步分离成环己烷物流和苯物流。According to the method provided by the present invention, the cyclohexyl acetate stream obtained from the bottom of the reactive distillation column is used as the raw material for the reaction in step (3). For the hexanaphthene/benzene/acetic acid flow that the reactive distillation tower top obtains, can adopt rectification to separate it into hexanaphthene/benzene flow and acetic acid flow, the acetic acid flow can be used as a part of step (2) reaction feed; The hexane/benzene stream can be hydrogenated in an additional hydrogenation unit to prepare cyclohexane, or it can be separated into cyclohexane stream and benzene stream by extractive distillation, and the benzene stream can be used as the reaction feed of step (1) Part of the cyclohexane stream exits the unit as a by-product. Specifically, the cyclohexane/benzene/acetic acid stream can be rectified and separated in a decarburization six-component tower. This tower can be operated at normal pressure. output, the cyclohexane/benzene stream is extracted from the top of the tower, and the acetic acid stream is extracted from the tower bottom; the cyclohexane/benzene stream can enter an additional hydrogenation unit, or enter an extractive distillation tower, and be further separated into cyclohexane alkanes and benzene streams.
三、乙酸环己酯加氢3. Hydrogenation of cyclohexyl acetate
根据本发明所提供的方法,由加成酯化产物分离得到的乙酸环己酯物流被送入酯加氢反应器进行加氢反应。步骤(3)中,可设置一个或多个并联的反应器,反应器类型选自釜式反应器、固定床反应器、沸腾床反应器和流化床反应器中的一种或几种。步骤(3)中,优选设置一个或多个并联的管式固定床反应器。步骤(3)中,更优选设置一个或多个并联的管壳列管式反应器,酯加氢催化剂固定在列管中,在壳程通过冷却介质移走反应放出的热量。According to the method provided by the present invention, the cyclohexyl acetate stream obtained by separating the addition esterification product is sent to an ester hydrogenation reactor for hydrogenation reaction. In step (3), one or more parallel reactors can be set, and the reactor type is selected from one or more of tank reactors, fixed bed reactors, ebullating bed reactors and fluidized bed reactors. In step (3), one or more parallel tubular fixed-bed reactors are preferably set up. In step (3), it is more preferable to set up one or more parallel shell-and-tube reactors, the ester hydrogenation catalyst is fixed in the tubes, and the heat released by the reaction is removed through the cooling medium at the shell side.
所述的第二催化剂为酯加氢催化剂。尽管现有公开的文献主要是关于羧酸甲酯或羧酸乙酯的加氢,如常采用脂肪酸甲酯加氢来制取高碳醇,顺丁烯二酸甲酯加氢制取1,4-丁二醇,1,6-己二酸二甲酯加氢制取1,6-己二醇等,未见有任何关于环烷醇衍生的羧酸酯加氢反应的报道,但本发明人发现,乙酸环己酯的加氢可采用现有的酯加氢催化剂。酯的加氢一般采用铜系催化剂,钌系催化剂以及贵金属系催化剂,以铜系催化剂最为常用。铜系酯加氢催化剂以铜为主催化剂,再添加铬、铝、锌、钙、镁、镍、钛、锆、钨、钼、钌、铂、钯、铼、镧、钍、金等的一种或多种组分作为助催化剂或添加剂组分。铜系酯加氢催化剂可方便从市场中购得,也可以采用共沉淀法进行制取。通常的制备方法是将各金属的可溶性盐溶液放入中和釜中,在一定的温度和搅拌速率下,加入碱溶液(氢氧化钠、碳酸钠、氨水、尿素等)进行中和到PH8~12生长沉淀,沉淀经老化、过滤、洗涤、干燥、焙烧、成型等工序而成,最后在氢气气氛中还原即可制成最终的酯加氢催化剂。钌系催化剂一般的组成:Ru/Al2O3或Ru-Sn/Al2O3。贵金属系催化剂一般的组成:Pt/Al2O3、Pd-Pt/Al2O3或Pd/C。The second catalyst is an ester hydrogenation catalyst. Although the existing published literature is mainly about the hydrogenation of methyl carboxylate or ethyl carboxylate, as usual, hydrogenation of fatty acid methyl esters is used to produce higher alcohols, and methyl maleate is hydrogenated to produce 1,4 -butanediol, 1,6-hexanedioic acid dimethyl ester hydrogenation produces 1,6-hexanediol etc., do not see any report about the carboxylic acid ester hydrogenation reaction of naphthenic alcohol derivation, but the present invention It has been found that existing ester hydrogenation catalysts can be used for the hydrogenation of cyclohexyl acetate. The hydrogenation of esters generally uses copper-based catalysts, ruthenium-based catalysts and noble metal-based catalysts, with copper-based catalysts being the most commonly used. Copper-based ester hydrogenation catalysts use copper as the main catalyst, and add chromium, aluminum, zinc, calcium, magnesium, nickel, titanium, zirconium, tungsten, molybdenum, ruthenium, platinum, palladium, rhenium, lanthanum, thorium, gold, etc. One or more components are used as co-catalysts or additive components. Copper-based ester hydrogenation catalysts can be easily purchased from the market, and can also be prepared by co-precipitation. The usual preparation method is to put the soluble salt solution of each metal into the neutralization kettle, and add alkali solution (sodium hydroxide, sodium carbonate, ammonia water, urea, etc.) at a certain temperature and stirring speed to neutralize to pH8~ 12 Growth and precipitation, the precipitation is formed through aging, filtration, washing, drying, roasting, molding and other processes, and finally reduced in a hydrogen atmosphere to make the final ester hydrogenation catalyst. The general composition of ruthenium catalysts: Ru/Al 2 O 3 or Ru-Sn/Al 2 O 3 . The general composition of noble metal catalysts: Pt/Al 2 O 3 , Pd-Pt/Al 2 O 3 or Pd/C.
本发明中,酯加氢催化剂可选自铜系催化剂、钌系催化剂和贵金属系催化剂中一种或几种,优选为铜系催化剂,更优选为含锌和/或铬的铜系催化剂。In the present invention, the ester hydrogenation catalyst can be selected from one or more of copper-based catalysts, ruthenium-based catalysts and noble metal-based catalysts, preferably copper-based catalysts, more preferably copper-based catalysts containing zinc and/or chromium.
酯加氢反应单元既可以间歇的方式操作,也可以连续的方式进行。间歇式反应一般采用反应釜作反应器,将乙酸环己酯和加氢催化剂投入反应釜中,通入氢气在一定的温度和压力下进行反应,反应结束后将反应产物采用从釜中卸出,分离出产物,再投入下一批物料进行反应。连续加氢反应可采用管壳列管式反应器,加氢催化剂固定在列管中,在壳程通过冷却水以移走反应的放出的热量。The ester hydrogenation reaction unit can be operated either batchwise or continuously. The batch reaction generally uses a reactor as a reactor, puts cyclohexyl acetate and a hydrogenation catalyst into the reactor, feeds hydrogen to react at a certain temperature and pressure, and discharges the reaction product from the reactor after the reaction is completed. , The product is separated, and then put into the next batch of materials for reaction. The shell-and-tube reactor can be used for the continuous hydrogenation reaction. The hydrogenation catalyst is fixed in the tube, and cooling water is passed through the shell to remove the heat released by the reaction.
乙酸环己酯加氢反应温度与选择的加氢催化剂有关,对于铜系加氢催化剂,一般加氢反应温度为150~400℃,优化反应温度为200~300℃。反应压力为常压~20MPa,优化压力为4~10MPa。The hydrogenation reaction temperature of cyclohexyl acetate is related to the selected hydrogenation catalyst. For copper-based hydrogenation catalysts, the general hydrogenation reaction temperature is 150-400°C, and the optimal reaction temperature is 200-300°C. The reaction pressure is from normal pressure to 20MPa, and the optimal pressure is from 4 to 10MPa.
乙酸环己酯加氢反应的氢酯摩尔比的控制很重要。高的氢酯比有利于酯的加氢,但过高的氢酯比将会增加氢气压缩循环的能耗。一般氢酯比为1~1000:1,优化条件为5~100:1。The control of the hydrogen ester molar ratio in the cyclohexyl acetate hydrogenation reaction is very important. A high hydrogen-to-ester ratio is beneficial to the hydrogenation of esters, but too high a hydrogen-to-ester ratio will increase the energy consumption of the hydrogen compression cycle. Generally, the ratio of hydrogen to ester is 1-1000:1, and the optimal condition is 5-100:1.
加氢反应中,酯的进料空速的大小与选用催化剂的活性有关。高活性催化剂可采用较高的空速。对于选定的催化剂,反应转化率随反应空速的增加而降低。为了满足一定的转化率,必须将空速限定在一定范围内。一般酯的液体进料空速为0.1~20h-1,优化条件为0.2~2h-1。如果采用间歇式反应,则反应时间为0.5~20h,优选为1~5h。In the hydrogenation reaction, the feed space velocity of the ester is related to the activity of the selected catalyst. Higher activity catalysts can use higher space velocities. For the selected catalyst, the reaction conversion decreases with the increase of the reaction space velocity. In order to meet a certain conversion rate, the space velocity must be limited within a certain range. Generally, the liquid feeding space velocity of the ester is 0.1-20h -1 , and the optimum condition is 0.2-2h -1 . If a batch reaction is adopted, the reaction time is 0.5-20 h, preferably 1-5 h.
酯加氢反应产物主要含有乙醇和环己醇,还可能含有一定量的乙酸乙酯和环己酮,同时还可能含有一定量的未反应的乙酸环己酯,以及少量高沸物(二聚酮),这些混合物可采用精馏和/或萃取精馏的方法进行分离,优选采用精馏分离。精馏分离可以采用间歇方案,也可以采用连续的流程方案。间歇精馏,即将酯加氢产物投入精馏塔釜中,依次从塔顶蒸出乙醇、乙酸乙酯、环己醇、环己酮、乙酸环己酯,塔釜残留少量的高沸物。本发明优选采用连续精馏来分离酯加氢产物。连续精馏需要利用一系列精馏塔分离各种组分。可根据各组分的分离的先后顺序设计各种分离流程,本发明优选顺序分离的流程方案,即酯加氢产物分离单元依次设置用于脱乙醇塔、脱环己醇塔、乙酸环己酯回收塔。酯加氢产物先进入脱乙醇塔分离得到乙醇,然后进入脱环己醇塔分离得到环己醇,最后进入乙酸环己酯回收塔回收未反应的乙酸环己酯,塔釜残留少量的高沸物送出装置。本发明也可以只设置一个精馏塔,只将乙醇分离出,得到含有少量杂质的环己醇。The ester hydrogenation reaction product mainly contains ethanol and cyclohexanol, may also contain a certain amount of ethyl acetate and cyclohexanone, and may also contain a certain amount of unreacted cyclohexyl acetate, and a small amount of high boilers (dimerization Ketones), these mixtures can be separated by rectification and/or extractive distillation, preferably by rectification. Distillation and separation can adopt a batch scheme or a continuous process scheme. Batch rectification, that is, put the ester hydrogenation product into the rectification column, and distill ethanol, ethyl acetate, cyclohexanol, cyclohexanone, and cyclohexyl acetate from the top of the column in turn, leaving a small amount of high boilers remaining in the column. The present invention preferably adopts continuous rectification to separate ester hydrogenation products. Continuous distillation requires the separation of the various components using a series of distillation columns. Various separation processes can be designed according to the sequence of separation of each component. The process scheme of the preferred sequence separation of the present invention, that is, the ester hydrogenation product separation unit is sequentially arranged for the de-ethanol tower, the de-cyclohexanol tower, the cyclohexyl acetate recovery tower. The ester hydrogenation product first enters the ethanol removal tower to separate to obtain ethanol, then enters the decyclohexanol tower to obtain cyclohexanol, and finally enters the cyclohexyl acetate recovery tower to recover unreacted cyclohexyl acetate, and a small amount of high boiling delivery device. In the present invention, only one rectifying tower can be arranged, and only ethanol is separated to obtain cyclohexanol containing a small amount of impurities.
步骤(3)中,经反应产物分离后,得到的乙酸环己酯物流可作为步骤(3)反应进料的一部分。In step (3), after the reaction product is separated, the obtained cyclohexyl acetate stream can be used as a part of the reaction feed of step (3).
本发明提供了一种联产环己醇和乙醇的装置,包括依次相联的苯加氢反应单元、加成酯化反应单元、加成酯化产物分离单元、酯加氢反应单元和酯加氢产物分离单元。The invention provides a device for the co-production of cyclohexanol and ethanol, comprising a sequentially connected benzene hydrogenation reaction unit, an addition esterification reaction unit, an addition esterification product separation unit, an ester hydrogenation reaction unit and an ester hydrogenation reaction unit Product separation unit.
本领域技术人员根据本发明提供的方法,可容易地确定各单元及设备间的管线连接方式。According to the method provided by the present invention, those skilled in the art can easily determine the pipeline connection mode between each unit and equipment.
所述的苯加氢反应单元设置有一个或多个并联的反应器,反应器类型选自固定床反应器和/或釜式反应器。The benzene hydrogenation reaction unit is provided with one or more parallel reactors, and the reactor type is selected from fixed bed reactors and/or tank reactors.
所述的加成酯化反应单元设置有一个或多个并联的反应器,反应器类型选自釜式反应器、固定床反应器、沸腾床反应器和流化床反应器中的一种或几种。The addition esterification reaction unit is provided with one or more parallel reactors, and the reactor type is selected from one or more of tank reactors, fixed bed reactors, ebullating bed reactors and fluidized bed reactors Several kinds.
所述的加成酯化反应单元至少设置一个反应精馏塔。The addition esterification reaction unit is provided with at least one reactive distillation column.
所述反应精馏塔前,还串联设置一个预酯化反应器,所述的预酯化反应器为釜式反应器、固定床反应器、流化床反应器或沸腾床反应器。A pre-esterification reactor is arranged in series before the reactive distillation tower, and the pre-esterification reactor is a tank reactor, a fixed-bed reactor, a fluidized-bed reactor or an ebullated-bed reactor.
所述的加成酯化产物分离单元至少设置一个精馏塔。The addition esterification product separation unit is provided with at least one rectification tower.
所述的酯加氢反应单元设置一个或多个并联的反应器,反应器类型选自釜式反应器、固定床反应器、沸腾床反应器和流化床反应器中的一种或几种。所述的酯加氢反应单元优选设置一个或多个并联的管壳列管式反应器。The ester hydrogenation reaction unit is provided with one or more parallel reactors, and the reactor type is selected from one or more of tank reactors, fixed bed reactors, ebullating bed reactors and fluidized bed reactors . The ester hydrogenation reaction unit is preferably provided with one or more parallel shell-and-tube reactors.
所述的酯加氢产物分离单元至少设置一个精馏塔。The ester hydrogenation product separation unit is provided with at least one rectification tower.
本发明还提供了另一种联产环己醇和乙醇的装置,包括依次相联的苯加氢反应单元、加成酯化反应单元、酯加氢反应单元和酯加氢产物分离单元;所述的加成酯化反应单元设置一个或多个并联的反应精馏塔。The present invention also provides another device for the co-production of cyclohexanol and ethanol, comprising a sequentially connected benzene hydrogenation reaction unit, an addition esterification reaction unit, an ester hydrogenation reaction unit and an ester hydrogenation product separation unit; The addition esterification reaction unit is provided with one or more parallel reactive distillation columns.
本领域技术人员根据本发明提供的方法,可容易地确定各单元及设备间的管线连接方式。According to the method provided by the present invention, those skilled in the art can easily determine the pipeline connection mode between each unit and equipment.
所述的苯加氢反应单元设置有一个或多个并联的反应器,反应器类型选自固定床反应器和/或釜式反应器。The benzene hydrogenation reaction unit is provided with one or more parallel reactors, and the reactor type is selected from fixed bed reactors and/or tank reactors.
所述的反应精馏塔前,还串联设置一个预酯化反应器;所述的预酯化反应器为釜式反应器、固定床反应器、流化床反应器或沸腾床反应器。A pre-esterification reactor is arranged in series before the reactive distillation tower; the pre-esterification reactor is a tank reactor, a fixed-bed reactor, a fluidized-bed reactor or an ebullated-bed reactor.
所述的酯加氢反应单元设置一个或多个并联的反应器,反应器类型选自釜式反应器、固定床反应器、沸腾床反应器和流化床反应器中的一种或几种。The ester hydrogenation reaction unit is provided with one or more parallel reactors, and the reactor type is selected from one or more of tank reactors, fixed bed reactors, ebullating bed reactors and fluidized bed reactors .
所述的酯加氢反应单元设置一个或多个并联的管壳列管式反应器。The ester hydrogenation reaction unit is provided with one or more parallel shell-and-tube reactors.
所述的酯加氢产物分离单元至少设置一个精馏塔。The ester hydrogenation product separation unit is provided with at least one rectification tower.
本发明为生产环己醇提供了一条高效率、低成本的新技术路线。本发明的特点是:(1)酯化和酯加氢反应均具有很高的选择性,因此原子利用率很高;(2)过程环境友好;(3)在生产环己醇的同时联产乙醇,即通过间接的方式将廉价的乙酸转化成价格高而市场容量巨大的乙醇,大大增加过程的经济性;(4)采用反应精馏进行加成酯化,不但可以显著提高反应效率,还可以简化萃取精馏分离过程,大大减少投资和运营成本。The invention provides a high-efficiency, low-cost new technology route for producing cyclohexanol. The characteristics of the present invention are: (1) both esterification and ester hydrogenation reactions have high selectivity, so the utilization rate of atoms is high; (2) the process is environmentally friendly; (3) co-production while producing cyclohexanol Ethanol, which converts cheap acetic acid into ethanol with high price and huge market capacity through an indirect method, which greatly increases the economy of the process; (4) Addition esterification by reactive distillation can not only significantly improve the reaction efficiency, but also The extractive distillation separation process can be simplified, and the investment and operation costs can be greatly reduced.
附图说明Description of drawings
图1为本发明的第一种实施方式的示意流程图。Fig. 1 is a schematic flow chart of the first embodiment of the present invention.
图2为本发明的第二种实施方式的示意流程图。Fig. 2 is a schematic flowchart of a second embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图简要说明本发明优选的两种工艺流程。Two preferred process flows of the present invention are briefly described below in conjunction with the accompanying drawings.
第一种工艺流程中,加成酯化反应器采用釜式反应器、管式固定床反应器、沸腾床反应器或流化床反应器。如图1所示:苯和氢气进入苯加氢反应器1,在苯加氢催化剂的作用下,进行加氢反应,苯加氢产物物流经管线11进入加成酯化反应器2,与经管线21进入的乙酸混合,在固体酸催化剂的作用下,进行加成酯化反应,加成酯化产物物流经管线22进入加成酯化产物分离单元3,经过分离得到环己烷物流31、环己烯物流32、苯物流33、乙酸物流34和乙酸环己酯物流35,苯物流循环回苯加氢反应器1,环己烯物流和乙酸物流循环回加成酯化反应器2,乙酸环己酯物流进入酯加氢反应器4,在酯加氢催化剂的作用下,与氢气接触进行酯加氢反应,酯加氢产物物流进入酯加氢产物分离单元5,经过分离得到环己醇物流52、乙醇物流53、乙酸环己酯物流51和高沸物物流54,环己醇物流和乙醇物流作为产品出装置,高沸物物流作为副产品出装置,乙酸环己酯物流循环回酯加氢反应器4。In the first process flow, the addition esterification reactor adopts a tank reactor, a tubular fixed bed reactor, an ebullated bed reactor or a fluidized bed reactor. As shown in Figure 1: benzene and hydrogen enter benzene hydrogenation reactor 1, under the effect of benzene hydrogenation catalyst, carry out hydrogenation reaction, benzene hydrogenation product stream enters
第二种工艺流程中,加成酯化反应器采用反应精馏塔。如图2所示:苯和氢气进入苯加氢反应器1,在苯加氢催化剂的作用下,进行加氢反应,苯加氢产物物流经管线11进入反应精馏塔2,与经管线21进入的乙酸混合,在固体酸催化剂的作用下,进行加成酯化反应,同时进行加成酯化产物的分离,从反应精馏塔2塔顶得到环己烷/苯/乙酸物流,从反应精馏塔2塔底得到乙酸环己酯物流;环己烷/苯/乙酸物流经管线22进入加成酯化产物分离单元3,经过分离得到环己烷物流、苯物流和乙酸物流,环己烷物流作为副产品出装置,苯物流循环回苯加氢反应器1,乙酸物流循环回加成酯化反应器2,乙酸环己酯物流进入酯加氢反应器4,在酯加氢催化剂的作用下,与氢气接触进行酯加氢反应,酯加氢产物物流进入酯加氢产物分离单元5,经过分离得到环己醇物流52、乙醇物流53、乙酸环己酯物流51和高沸物物流54,环己醇物流和乙醇物流作为产品出装置,高沸物物流作为副产品出装置,乙酸环己酯物流循环回酯加氢反应器4。In the second process flow, the addition esterification reactor adopts a reactive distillation tower. As shown in Figure 2: benzene and hydrogen enter benzene hydrogenation reactor 1, under the effect of benzene hydrogenation catalyst, carry out hydrogenation reaction, benzene hydrogenation product flow enters
以下通过实施例进一步说明本发明,但并不因此而限制本发明。The present invention is further illustrated by the following examples, but the present invention is not limited thereto.
实施例1Example 1
本实施例说明苯选择性加氢制环己烯的方法。This example illustrates the method for the selective hydrogenation of benzene to cyclohexene.
将苯和氢气按摩尔比1:3注入装填有钌颗粒催化剂的加氢反应器,在反应温度135℃、压力4.5MPa、停留时间15min的条件下进行苯加氢反应,反应产物分离出氢气后,收集液体产物,连续运行1000h。试验结束后,对收集的液体产物进行气相色谱分析,其组成为:苯53.3%,环己烯35.4%,环己烷11.3%。Benzene and hydrogen are injected into the hydrogenation reactor filled with ruthenium particle catalyst at a molar ratio of 1:3, and the benzene hydrogenation reaction is carried out under the conditions of a reaction temperature of 135°C, a pressure of 4.5MPa, and a residence time of 15min. After the reaction product is separated from the hydrogen , Collect the liquid product and run continuously for 1000h. After the test, the collected liquid product was analyzed by gas chromatography, and its composition was: 53.3% benzene, 35.4% cyclohexene, and 11.3% cyclohexane.
实施例2Example 2
将100mL大孔强酸性氢型离子交换树脂(实验室按经典的文献方法合成,将含有15%二乙烯基苯的苯乙烯溶液进行悬浮共聚制成白球,再经浓硫酸磺化制得,测得其交换容量为5.2mmolH+/g干基)装入φ32×4×1000mm带有夹套的不锈钢管反应器中的中部,两端填充一定量的石英沙。将乙酸和环己烯原料(苯53.3%,环己烯35.4%,环己烷11.3%)按一定的流量分别由计量泵打入反应器中进行反应,在反应管外部夹套中通入热水以控制反应温度,通过反应器出口背压阀控制反应器压力。反应器出口产物由在线取样阀取样进行在线色谱分析,由产物组成计算出环己烯转化率和乙酸环己酯选择性。反应条件和结果见表1。100mL of macroporous strongly acidic hydrogen-type ion exchange resin (synthesized in the laboratory according to the classic literature method, suspension copolymerization of styrene solution containing 15% divinylbenzene to make white balls, and then sulfonated with concentrated sulfuric acid, measured Its exchange capacity is 5.2mmolH + /g dry basis) into the middle part of a stainless steel tube reactor with a jacket of φ32×4×1000mm, and a certain amount of quartz sand is filled at both ends. The raw materials of acetic acid and cyclohexene (53.3% benzene, 35.4% cyclohexene, and 11.3% cyclohexane) are pumped into the reactor by a metering pump at a certain flow rate for reaction, and heat is introduced into the external jacket of the reaction tube. Water is used to control the reaction temperature, and the reactor pressure is controlled through the reactor outlet back pressure valve. The outlet product of the reactor was sampled by an online sampling valve for online chromatographic analysis, and the conversion of cyclohexene and the selectivity of cyclohexyl acetate were calculated from the composition of the product. The reaction conditions and results are shown in Table 1.
由表1可知,采用强酸型离子交换树脂催化剂催化环己烯原料与乙酸反应,环己烯转化率大于80%,酯产物选择性大于99%,运行600小时,催化剂活性和选择性稳定不变。It can be seen from Table 1 that the strong acid ion exchange resin catalyst is used to catalyze the reaction of cyclohexene raw material and acetic acid, the conversion rate of cyclohexene is greater than 80%, the selectivity of ester products is greater than 99%, and the catalyst activity and selectivity are stable after 600 hours of operation. .
表1强酸性离子交换树脂催化乙酸与环己烷/环己烯/苯酯化试验数据Table 1 Strong acidic ion exchange resin catalyzed acetic acid and cyclohexane/cyclohexene/phenyl esterification test data
实施例3Example 3
试验装置、方法和原料同实施例2,所不同的是催化剂为磷改性的Hβ分子筛催化剂(由硅铝比为50的Hβ分子筛经85%的磷酸改性,再与氧化铝捏合挤条成型,经120℃烘干,500℃焙烧制得,磷含量为2%)。反应条件和结果见表2。由表2可见,环己烯与乙酸反应转化率大于80%,酯产物选择性大于99%,运行480小时,催化剂活性和选择性稳定不变。The test device, method and raw materials are the same as in Example 2, except that the catalyst is a phosphorus-modified Hβ molecular sieve catalyst (the Hβ molecular sieve with a silicon-aluminum ratio of 50 is modified with 85% phosphoric acid, and then kneaded with alumina to form , obtained by drying at 120°C and roasting at 500°C, with a phosphorus content of 2%). The reaction conditions and results are shown in Table 2. It can be seen from Table 2 that the reaction conversion rate of cyclohexene and acetic acid is greater than 80%, the selectivity of ester product is greater than 99%, and the catalyst activity and selectivity are stable after running for 480 hours.
表2 Hβ分子筛催化剂催化乙酸与环己烷/环己烯/苯酯化试验数据Table 2 Hβ molecular sieve catalyst catalyzed esterification test data of acetic acid and cyclohexane/cyclohexene/phenyl
实施例4Example 4
收集实施例2和3的加成酯化产物,进行精馏分离试验。精馏采用高2m直径为40mm的玻璃塔精馏装置,塔柱装有Ф3mm的不锈钢θ网环高效精馏填料,塔釜为体积5的L玻璃烧瓶,装料量为4L,通过电热套对塔釜进行加热,通过调压器调节塔釜加热量。塔的回流采用回流比调节器进行控制。精馏分离结果见表3。Collect the addition esterification product of
表3加成酯化产物精馏分离试验结果Table 3 Addition esterification product distillation separation test result
实施例5~6用于说明采用反应精馏制备乙酸环己酯的方法。
实施例5~6中所进行的试验均是在如下规格的反应精馏模式试验装置进行的:模式装置的主体为直径(内径)为50mm,高为3m的不锈钢塔,塔的下部连接体积为5L的塔釜,釜内配置有10KW的电加热棒,此加热棒由智能控制器通过可控硅(SCR)控制塔釜加热量。塔顶连接有换热面积为0.5m2的冷凝器,塔顶蒸汽经此冷凝器冷凝成液体后进入一个体积为2L的回流罐。回流罐中的液体经回流泵部分回流至反应塔,部分采出作为轻组分。塔的操作参数由智能型自动化控制仪表显示和控制。塔回流量由回流调节阀控制,塔顶采出量由回流罐的液位控制器控制。塔釜采出量由塔釜液位控制器调节塔釜排料阀进行控制。乙酸和环己烯原料分别装入30L储罐中,并通过计量泵打入相应的预热器中预热到一定温度后进入反应塔,进料速度由计量泵控制、电子秤精确计量。The tests carried out in Examples 5 to 6 are all carried out in the reactive distillation model test device of the following specifications: the main body of the model device is a stainless steel tower with a diameter (inner diameter) of 50mm and a height of 3m, and the lower connecting volume of the tower is The 5L tower kettle is equipped with a 10KW electric heating rod in the kettle. The heating rod is controlled by an intelligent controller through a silicon controlled rectifier (SCR). A condenser with a heat exchange area of 0.5m2 is connected to the top of the tower, and the steam at the top of the tower is condensed into a liquid by the condenser and then enters a reflux tank with a volume of 2L. The liquid in the reflux tank is partially refluxed to the reaction tower through the reflux pump, and part of it is extracted as light components. The operating parameters of the tower are displayed and controlled by intelligent automatic control instruments. The reflux flow of the tower is controlled by the reflux regulating valve, and the output at the top of the tower is controlled by the liquid level controller of the reflux tank. The production volume of the tower kettle is controlled by adjusting the tower kettle discharge valve by the tower kettle liquid level controller. The raw materials of acetic acid and cyclohexene are put into 30L storage tanks respectively, and are pumped into corresponding preheaters through metering pumps to preheat to a certain temperature before entering the reaction tower. The feeding speed is controlled by metering pumps and accurately measured by electronic scales.
实施例5Example 5
将耐高温磺酸型离子交换树脂(牌号为Amberlyst 45,由Rhom&Hass公司生产)用多级高速粉碎机粉碎成粒度小于200目(0.074mm)的粉料,加入制孔剂、润滑剂、抗氧剂和粘合剂在高速混合机上混合均匀,再在密炼机上于180℃密炼10min,使物料完全塑化,之后注入模具中制成直径为5mm,高5mm,壁厚为1mm拉西环型树脂催化剂填料。将此填料1950mL装入模式反应塔的中部(高1m,相当于8块理论塔板)上下各装入直径为3mm、长6mm的玻璃弹簧填料1950mL(装填高度为1m,相当于10块理论塔板)。将环己烯原料和乙酸分别由计量泵打入预热器预热后进入反应塔,调节塔釜加热量和塔顶回流量连续进行反应,稳定操作下的反应条件和反应结果见表4。The high-temperature-resistant sulfonic acid ion exchange resin (the brand name is Amberlyst 45, produced by Rhom&Hass Company) was crushed into a powder with a particle size of less than 200 mesh (0.074mm) with a multi-stage high-speed pulverizer, and pore-forming agents, lubricants, and antioxidants were added. The agent and adhesive are mixed evenly on a high-speed mixer, and then internally kneaded on an internal mixer at 180°C for 10 minutes to make the material completely plasticized, and then injected into a mold to make a Raschig ring with a diameter of 5mm, a height of 5mm, and a wall thickness of 1mm. type resin catalyst filler. Put 1950mL of this packing into the middle of the model reaction tower (1m in height, equivalent to 8 theoretical trays) and 1950mL of glass spring packing with a diameter of 3mm and a length of 6mm (filling height is 1m, equivalent to 10 theoretical trays). plate). The cyclohexene raw material and acetic acid were pumped into the preheater by the metering pump to preheat and enter the reaction tower, and the reaction was carried out continuously by adjusting the heating capacity of the tower kettle and the reflux flow at the top of the tower. The reaction conditions and reaction results under stable operation are shown in Table 4.
表4耐高温磺酸型离子交换树脂催化剂的反应精馏试验数据The reactive distillation test data of table 4 high temperature resistant sulfonic acid type ion exchange resin catalyst
根据试验数据计算环己烯的转化率98.8%,乙酸环己酯选择性98.0%。According to the experimental data, the conversion rate of cyclohexene is calculated as 98.8%, and the selectivity of cyclohexyl acetate is 98.0%.
实施例6Example 6
将φ3~4的球型H0.5Cs2.5PW12O40/SiO2催化剂(由H0.5Cs2.5PW12O40粉末和粒度小于200目的粗孔硅胶粉末,在混料机中充分混合后,在糖衣机中以硅溶胶为粘合机滚球成型,再经烘干、焙烧而成)夹入钛丝网波板中,制成直径为50mm、高50mm的圆柱型规整填料。将此填料型催化剂L装入模式反应塔的中部(高1m,相当于12块理论塔板)上下各装入直径为4mm、高为4mm的1950mL玻璃弹簧填料(装填高度为1m,相当于15块理论塔板)。将环己烯原料和乙酸分别由计量泵打入预热器预热后进入反应塔,调节塔釜加热量和塔顶回流量连续进行反应,稳定操作下的反应条件和反应结果见表5。Spherical H 0.5 Cs 2.5 PW 12 O 40 /SiO 2 catalyst with a diameter of 3-4 (composed of H 0.5 Cs 2.5 PW 12 O 40 powder and coarse-pore silica gel powder with a particle size of less than 200 meshes is fully mixed in a mixer, then In the sugar coating machine, silica sol is used as a bonding machine to roll the ball into shape, and then dried and roasted) sandwiched into a titanium wire mesh wave plate to make a cylindrical structured packing with a diameter of 50mm and a height of 50mm. Put this packed catalyst L into the middle of the model reaction tower (1m in height, equivalent to 12 theoretical trays), and put 1950mL glass spring packing with a diameter of 4mm and a height of 4mm in the upper and lower parts (the packing height is 1m, equivalent to 15 block theoretical plate). The cyclohexene raw material and acetic acid were pumped into the preheater by the metering pump to preheat and enter the reaction tower, and the heating capacity of the tower reactor and the reflux flow at the top of the tower were adjusted for continuous reaction. The reaction conditions and reaction results under stable operation are shown in Table 5.
表5 H0.5Cs2.5PW12O40/SiO2催化剂的反应精馏试验数据Table 5 Reactive distillation test data of H 0.5 Cs 2.5 PW 12 O 40 /SiO 2 catalyst
根据试验数据计算环己烯的转化率99.35%,乙酸环己酯选择性99.6%。According to the experimental data, the conversion rate of cyclohexene is calculated to be 99.35%, and the selectivity of cyclohexyl acetate is 99.6%.
实施例7~8用于说明乙酸环己酯的加氢方法。Embodiments 7-8 are used to illustrate the hydrogenation method of cyclohexyl acetate.
实施例7Example 7
加氢原料为纯度99.6%的乙酸环己酯。The raw material for hydrogenation is cyclohexyl acetate with a purity of 99.6%.
将40g铜锌铝酯加氢催化剂(实验室合成,组成为CuO 40.5%,ZnO29.6%,Al2O3 30.4%。由铜、锌、铬的硝酸盐溶液,加入氢氧化钠溶液中和至PH=9.0,经离心分离,洗涤,干燥,压片成型,焙烧制得)装入φ20×2.5×800mm带有夹套的不锈钢管反应器中的中部,两端填充一定量的石英沙。通入氢气(500mL/min)在280℃、6MPa条件下还原24h后,降至加氢反应的温度和压力。将乙酸环己酯由计量泵打入反应器中,氢气经质量流量控制器进入反应系统进行加氢反应,通过反应管外部夹套中通入导热油控制反应温度,通过反应器出口背压阀控制反应器压力。反应产物通过反应器后部的直线取样阀取样进行在线色谱分析。反应条件和结果见表6。表6结果表明,采用铜锌铝催化剂,乙酸环己酯加氢反应转化率最高可达到99.0%以上,环己醇选择性大于99.9%,运行1000小时,转化率和选择性均未下降。40g copper zinc aluminum ester hydrogenation catalyst (laboratory synthesis, composition is CuO 40.5%, ZnO29.6%, Al 2 O 3 30.4%. By the nitrate solution of copper, zinc, chromium, add sodium hydroxide solution to neutralize to PH=9.0, centrifuged, washed, dried, pressed into tablets, and roasted) into the middle of a φ20×2.5×800mm stainless steel tube reactor with a jacket, and a certain amount of quartz sand is filled at both ends. Pass in hydrogen (500mL/min) and reduce for 24h under the conditions of 280°C and 6MPa, then drop to the temperature and pressure of hydrogenation reaction. The cyclohexyl acetate is pumped into the reactor by the metering pump, the hydrogen gas enters the reaction system through the mass flow controller for hydrogenation reaction, the reaction temperature is controlled by introducing heat transfer oil into the outer jacket of the reaction tube, and the reaction temperature is controlled by the back pressure valve at the outlet of the reactor. Control the reactor pressure. The reaction product is sampled through the linear sampling valve at the rear of the reactor for online chromatographic analysis. The reaction conditions and results are shown in Table 6. The results in Table 6 show that, using the copper-zinc-aluminum catalyst, the conversion rate of cyclohexyl acetate hydrogenation reaction can reach more than 99.0%, and the selectivity of cyclohexanol is greater than 99.9%. After 1000 hours of operation, the conversion rate and selectivity have not decreased.
表6铜锌铝酯加氢催化剂的乙酸环己酯加氢试验数据The cyclohexyl acetate hydrogenation test data of table 6 copper-zinc-aluminum ester hydrogenation catalyst
实施例8Example 8
加氢原料为纯度99.6%的乙酸环己酯。The raw material for hydrogenation is cyclohexyl acetate with a purity of 99.6%.
将40g铜铬酯加氢催化剂(市售,太原市欣吉达化工有限公司生产,牌号为C1-XH-1,CuO含量为55%,直径5mm片剂,破碎成10~20目颗粒)装入φ20×2.5×800mm带有夹套的不锈钢管反应器中的中部,两端填充一定量的石英沙。通入氢气(500mL/min)在280℃、6MPa条件下还原24h后,降至反应得温度和压力。将乙酸环己酯由计量泵打入反应器中,氢气经质量流量控制器进入反应系统进行加氢反应,通过反应管外部夹套中通入导热油控制反应温度,通过反应器出口背压阀控制反应器压力。反应产物通过反应器后部的直线取样阀取样进行在线色谱分析。反应条件和结果见表7。表7结果表明,采用铜锌铝催化剂,乙酸环己酯加氢反应转化率最高可达到98.0%以上,环己醇选择性大于99.9%,运行500小时,转化率和选择均未下降。Put 40g copper chromium ester hydrogenation catalyst (commercially available, produced by Taiyuan Xinjida Chemical Co., Ltd., brand name is C1-XH-1, CuO content is 55%, diameter 5mm tablet, crushed into 10-20 mesh particles) Enter the middle part of the φ20×2.5×800mm jacketed stainless steel tube reactor, and fill a certain amount of quartz sand at both ends. Pass in hydrogen (500mL/min) and reduce for 24h under the conditions of 280°C and 6MPa, then drop to the reaction temperature and pressure. The cyclohexyl acetate is pumped into the reactor by the metering pump, the hydrogen enters the reaction system through the mass flow controller for hydrogenation reaction, the heat transfer oil is introduced into the outer jacket of the reaction tube to control the reaction temperature, and the reaction temperature is controlled by the back pressure valve at the outlet of the reactor. Control the reactor pressure. The reaction product is sampled through the linear sampling valve at the rear of the reactor for online chromatographic analysis. The reaction conditions and results are shown in Table 7. The results in Table 7 show that, using the copper-zinc-aluminum catalyst, the conversion rate of cyclohexyl acetate hydrogenation reaction can reach more than 98.0%, and the selectivity of cyclohexanol is greater than 99.9%. After 500 hours of operation, the conversion rate and selectivity have not decreased.
表7铜铬酯加氢催化剂的乙酸环己酯加氢试验数据The cyclohexyl acetate hydrogenation test data of copper chromium ester hydrogenation catalyst of table 7
实施例9Example 9
收集实例7~8的反应产物4000g,进行精馏分离试验。精馏采用高2m玻璃塔,塔柱装有Ф3mm的不锈钢θ网环高效精馏填料,塔釜为5L玻璃烧瓶,通过电热套进行加热,通过调压器调节塔釜加热量。塔的回流采用回流比调节器进行控制。精馏分离结果见表8。Collect the reaction product 4000g of example 7~8, carry out rectifying separation test. The rectification adopts a glass tower with a height of 2m. The tower column is equipped with Ф3mm stainless steel θ mesh ring high-efficiency rectification packing. The tower kettle is a 5L glass flask, which is heated by an electric heating mantle and the heating capacity of the tower kettle is adjusted by a pressure regulator. The reflux of the tower is controlled by a reflux ratio regulator. The distillation separation results are shown in Table 8.
表8乙酸环己酯加氢产物的精馏分离试验数据The rectification separation test data of cyclohexyl acetate hydrogenation product of table 8
Claims (50)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210560665.9A CN103664531B (en) | 2012-09-18 | 2012-12-20 | Method and device for co-producing cyclohexanol and ethanol |
TW102133691A TWI612031B (en) | 2012-09-18 | 2013-09-17 | Method and device for co-production of cyclohexanol and alkanol |
KR1020157010078A KR102008352B1 (en) | 2012-09-18 | 2013-09-17 | Method and device for coproducing cyclohexanol and alkanol |
US14/429,189 US9561991B2 (en) | 2012-09-18 | 2013-09-17 | Process and apparatus for co-producing cyclohexanol and alkanol |
PCT/CN2013/001100 WO2014044020A1 (en) | 2012-09-18 | 2013-09-17 | Method and device for coproducing cyclohexanol and alkanol |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210348062.2 | 2012-09-18 | ||
CN201210347119.7 | 2012-09-18 | ||
CN201210347472.5 | 2012-09-18 | ||
CN201210347472 | 2012-09-18 | ||
CN2012103474725 | 2012-09-18 | ||
CN2012103471197 | 2012-09-18 | ||
CN2012103480622 | 2012-09-18 | ||
CN201210348062 | 2012-09-18 | ||
CN201210347119 | 2012-09-18 | ||
CN201210560665.9A CN103664531B (en) | 2012-09-18 | 2012-12-20 | Method and device for co-producing cyclohexanol and ethanol |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103664531A true CN103664531A (en) | 2014-03-26 |
CN103664531B CN103664531B (en) | 2015-07-01 |
Family
ID=50303427
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210560665.9A Active CN103664531B (en) | 2012-09-18 | 2012-12-20 | Method and device for co-producing cyclohexanol and ethanol |
CN201210559175.7A Active CN103664528B (en) | 2012-09-18 | 2012-12-20 | A kind of method of producing cyclohexanol |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210559175.7A Active CN103664528B (en) | 2012-09-18 | 2012-12-20 | A kind of method of producing cyclohexanol |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN103664531B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108863792B (en) * | 2018-04-24 | 2021-03-23 | 广东天龙精细化工有限公司 | Comprehensive utilization method of isocoumaene |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105765A (en) * | 1985-07-23 | 1987-01-28 | Bp化学有限公司 | Method by carboxylicesters hydrogenation preparing alcohol |
EP0461580A2 (en) * | 1990-06-11 | 1991-12-18 | MITSUI TOATSU CHEMICALS, Inc. | Process for producing cyclohexyl acetate |
CN101796001A (en) * | 2007-09-05 | 2010-08-04 | 旭化成化学株式会社 | Method of separating cyclohexene and production process |
CN102146019A (en) * | 2011-02-22 | 2011-08-10 | 湖南长岭石化科技开发有限公司 | Method for preparing alcohols from olefin |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5390242A (en) * | 1977-01-18 | 1978-08-08 | Toray Ind Inc | Preparation of cyclohexanol |
DE10209701A1 (en) * | 2002-03-06 | 2003-09-18 | Basf Ag | Process for the preparation of cyclohexanol from benzene |
CN101851151B (en) * | 2010-05-17 | 2013-04-24 | 河北工业大学 | Method for preparing cyclohexanol by using cyclohexene |
-
2012
- 2012-12-20 CN CN201210560665.9A patent/CN103664531B/en active Active
- 2012-12-20 CN CN201210559175.7A patent/CN103664528B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105765A (en) * | 1985-07-23 | 1987-01-28 | Bp化学有限公司 | Method by carboxylicesters hydrogenation preparing alcohol |
EP0461580A2 (en) * | 1990-06-11 | 1991-12-18 | MITSUI TOATSU CHEMICALS, Inc. | Process for producing cyclohexyl acetate |
CN101796001A (en) * | 2007-09-05 | 2010-08-04 | 旭化成化学株式会社 | Method of separating cyclohexene and production process |
CN102146019A (en) * | 2011-02-22 | 2011-08-10 | 湖南长岭石化科技开发有限公司 | Method for preparing alcohols from olefin |
Also Published As
Publication number | Publication date |
---|---|
CN103664531B (en) | 2015-07-01 |
CN103664528B (en) | 2016-05-25 |
CN103664528A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI612031B (en) | Method and device for co-production of cyclohexanol and alkanol | |
CN103910603B (en) | A kind of method of coproduction hexalin and ethanol | |
CA2899318C (en) | Production of higher alcohols | |
CN104557465A (en) | Method for coproducing cyclohexanol and alkanol | |
CN103880598B (en) | A kind of method of coproduction hexalin and ethanol and device | |
EP2809643B1 (en) | Ethyl acetate production | |
CN103664529B (en) | Method for coproducing cyclohexanol and ethanol | |
CN103769094B (en) | A kind of eggshell catalyst for selective hydrogenation reaction, preparation method and application | |
CN105330523A (en) | Method for preparing cyclopentanone by taking biomass resource as raw material | |
CN103172492A (en) | Preparation method of sec-butyl alcohol | |
CN103910602A (en) | Method for producing cyclohexanol | |
WO2015085002A1 (en) | Production of butyl acetate from ethanol | |
CN103664587B (en) | Method for preparing cyclohexyl acetate and method for preparing cyclohexanol ethanol | |
CN103664530A (en) | Method for coproducing cyclohexanol and ethanol | |
CN108003017B (en) | Separation method of cyclohexyl acetate, production method of cyclohexyl acetate, production method of cyclohexanol, and cyclohexanol production device | |
CN110818566A (en) | A kind of method for preparing cyclopentanol from cyclopentene | |
CN103664586B (en) | Method for preparing cyclohexyl acetate and method for preparing cyclohexanol ethanol | |
CN106117025A (en) | Sec-butyl alcohol Dichlorodiphenyl Acetate secondary butyl ester transfer hydrogenation produces the process of butanone simultaneously | |
CN103664531B (en) | Method and device for co-producing cyclohexanol and ethanol | |
CN109534954B (en) | A kind of method and device for co-production of cyclohexanol and ethanol | |
CN103880599B (en) | A method and device for co-producing cyclohexanol and ethanol | |
CN114933514B (en) | Preparation method of bio-based isooctyl alcohol | |
CN107226771B (en) | Separation method of stream containing cyclohexane and acetic acid and production method of cyclohexyl acetate and method for co-production of cyclohexanol and ethanol | |
CN103880597A (en) | Co-production method and device of cyclohexanol and ethanol | |
CN101993341B (en) | Method for producing glycol through hydrogenation of oxalic ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250114 Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen Patentee after: CHINA PETROLEUM & CHEMICAL Corp. Country or region after: China Patentee after: Sinopec Petrochemical Research Institute Co.,Ltd. Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen Patentee before: CHINA PETROLEUM & CHEMICAL Corp. Country or region before: China Patentee before: RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC |