CN103613379A - High performance leadless piezoelectric ceramics and preparation technology - Google Patents
High performance leadless piezoelectric ceramics and preparation technology Download PDFInfo
- Publication number
- CN103613379A CN103613379A CN201310541284.0A CN201310541284A CN103613379A CN 103613379 A CN103613379 A CN 103613379A CN 201310541284 A CN201310541284 A CN 201310541284A CN 103613379 A CN103613379 A CN 103613379A
- Authority
- CN
- China
- Prior art keywords
- powder
- lead
- hours
- ball milling
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 239000002994 raw material Substances 0.000 claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 7
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 claims abstract description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 24
- 238000000498 ball milling Methods 0.000 claims description 18
- 239000012153 distilled water Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- 210000001161 mammalian embryo Anatomy 0.000 claims description 3
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 21
- 229910002113 barium titanate Inorganic materials 0.000 abstract description 19
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 abstract description 19
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 6
- 229910052788 barium Inorganic materials 0.000 description 7
- 238000010587 phase diagram Methods 0.000 description 6
- 229940071182 stannate Drugs 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种高性能无铅压电陶瓷及其制备工艺,将原料二氧化钛、碳酸钡、二氧化锡按化学计量比为0.89:1:0.11进行配料、球磨、预烧、二次球磨、造粒、成型,最后用坩埚盖住,并放入烧结炉中,先以2℃/min升温到500℃,保温2小时进行排胶,然后以4℃/min升温到1400℃并保温4小时,然后随炉冷却至室温,即可得到需要的无铅压电陶瓷;本发明的无铅压电陶瓷材料在准四相点处发现了非常高的介电和压电性能,材料的相对介电常数达到~75000,是纯钛酸钡在其居里温度处介电常数的6-7倍;同时压电系数d33达到了697pC/N,相当于纯钛酸钡在室温压电系数的5倍,这也是目前无铅压电陶瓷材料中的最高值。A high-performance lead-free piezoelectric ceramic and its preparation process, the raw materials titanium dioxide, barium carbonate, and tin dioxide are mixed according to the stoichiometric ratio of 0.89:1:0.11, ball milled, pre-fired, secondary ball milled, granulated, and formed , and finally cover it with a crucible and put it into the sintering furnace. First, heat up to 500°C at 2°C/min, keep it warm for 2 hours for debinding, then raise the temperature to 1400°C at 4°C/min and hold it for 4 hours, and then heat it up with the furnace After being cooled to room temperature, the required lead-free piezoelectric ceramic can be obtained; the lead-free piezoelectric ceramic material of the present invention has found very high dielectric and piezoelectric properties at the quasi-quaternary point, and the relative permittivity of the material reaches ~ 75000, which is 6-7 times the dielectric constant of pure barium titanate at its Curie temperature; at the same time, the piezoelectric coefficient d 33 has reached 697pC/N, which is equivalent to 5 times the piezoelectric coefficient of pure barium titanate at room temperature. It is also the highest value among lead-free piezoelectric ceramic materials.
Description
技术领域technical field
本发明涉及压电陶瓷技术领域,特别涉及一种高性能无铅压电陶瓷及其制备工艺。The invention relates to the technical field of piezoelectric ceramics, in particular to a high-performance lead-free piezoelectric ceramic and a preparation process thereof.
背景技术Background technique
压电材料和压电性能与1880年由居里兄弟发现,压电性即指材料在外加力场的情况下会在表面形成累计电荷,形成电场,或者在外加电场时,材料会发生形变。作为机械能和电能之间转化的桥梁,压电材料被广泛应用于探测器,换能器和制动器,比如日常生活中使用的喷墨打印机和手机麦克风,又比如高端研究中原子力显微镜用的探针控制台及超声探测技术。最近,压电材料更是被应用于能量收集和存储。Piezoelectric materials and piezoelectric properties were discovered by the Curie brothers in 1880. Piezoelectricity means that a material will form an accumulated charge on the surface under an external force field to form an electric field, or the material will deform when an external electric field is applied. As a bridge between mechanical energy and electrical energy, piezoelectric materials are widely used in detectors, transducers and actuators, such as inkjet printers and mobile phone microphones used in daily life, and probes for atomic force microscopes in high-end research Console and ultrasonic detection technology. More recently, piezoelectric materials have been used for energy harvesting and storage.
工业上应用最广泛的压电材料是含铅压电材料,如锆钛酸铅等。因为这些含铅压电材料不仅在其准同型相界处有很好的性能,而且具有很好的温度稳定性。但是铅对人体和环境有毒副作用,所以很多发达国家已经禁止了含铅电子产品的生产。因此,开发一种可以替代含铅体系的无铅压电材料变得迫在眉睫。The most widely used piezoelectric materials in industry are leaded piezoelectric materials, such as lead zirconate titanate and so on. Because these lead-containing piezoelectric materials not only have good performance at their quasi-isotropic phase boundaries, but also have good temperature stability. However, lead has toxic and side effects on human body and environment, so many developed countries have banned the production of lead-containing electronic products. Therefore, it is imminent to develop a lead-free piezoelectric material that can replace the lead-containing system.
发明内容Contents of the invention
为了解决现有技术的缺陷,本发明的目的在于提供一种高性能无铅压电陶瓷及其制备工艺,通过特定条件的固相反应法制备出了锡酸钡掺杂的钛酸钡体系,其中在0.89BaTiO3-0.11BaSnO3的准四相点处发现了非常高的介电和压电性能,材料的相对介电常数达到~75000,是纯钛酸钡在其居里温度处介电常数的6-7倍;同时压电系数d33达到了697pC/N,相当于纯钛酸钡在室温压电系数的5倍,这也是目前无铅压电陶瓷材料中的最高值。In order to solve the defects of the prior art, the object of the present invention is to provide a high-performance lead-free piezoelectric ceramic and its preparation process. A barium titanate system doped with barium stannate is prepared by a solid-state reaction method under specific conditions. Among them, very high dielectric and piezoelectric properties are found at the quasi-quaternary point of 0.89BaTiO 3 -0.11BaSnO 3 , and the relative dielectric constant of the material reaches ~75000, which is the dielectric constant of pure barium titanate at its Curie temperature. At the same time, the piezoelectric coefficient d 33 has reached 697pC/N, which is equivalent to 5 times the piezoelectric coefficient of pure barium titanate at room temperature, which is also the highest value among lead-free piezoelectric ceramic materials.
为了达到上述目的,本发明的技术方案为:In order to achieve the above object, technical scheme of the present invention is:
一种高性能无铅压电陶瓷,锡酸钡掺杂的钛酸钡(0.89BaTiO3-0.11BaSnO3),其原料组分按化学计量比即摩尔比为:A high-performance lead-free piezoelectric ceramic, barium titanate (0.89BaTiO 3 -0.11BaSnO 3 ) doped with barium stannate, its raw material components are stoichiometric ratio, that is, molar ratio:
二氧化钛:碳酸钡:二氧化锡=0.89:1:0.11Titanium dioxide: barium carbonate: tin dioxide=0.89:1:0.11
一种高性能无铅压电陶瓷的制备工艺,包括以下步骤:A preparation process of high-performance lead-free piezoelectric ceramics, comprising the following steps:
(1)配料(1) Ingredients
将原料二氧化钛、碳酸钡、二氧化锡按化学计量比即摩尔比为0.89:1:0.11进行配料,药品纯度98%以上;The raw materials titanium dioxide, barium carbonate, and tin dioxide are compounded according to the stoichiometric ratio, that is, the molar ratio is 0.89:1:0.11, and the purity of the drug is more than 98%;
(2)球磨(2) Ball milling
将步骤(1)称量好的原料放入球磨罐中,球磨介质为蒸馏水和氧化锆球,原料、蒸馏水、氧化锆球的质量比为1:2:2,球磨4小时,再将球磨后的混合料置于烘箱80℃进行干燥;Put the raw materials weighed in step (1) into a ball milling tank. The ball milling medium is distilled water and zirconia balls. The mass ratio of raw materials, distilled water, and zirconia balls is 1:2:2. Ball mill for 4 hours, and then ball mill The mixture is placed in an oven at 80°C for drying;
(3)预烧(3) Pre-burning
将步骤(2)干燥好的粉末置入坩埚内,加盖,以4℃/min的速度升温至1150℃,保温4小时,然后随炉冷却至室温;Put the dried powder in step (2) into the crucible, cover it, raise the temperature to 1150°C at a rate of 4°C/min, keep it warm for 4 hours, and then cool to room temperature with the furnace;
(4)二次球磨(4) Secondary ball milling
将步骤(3)预烧好的粉末再次进行球磨,球磨介质为蒸馏水和氧化锆球,原料、蒸馏水、氧化锆球的质量比为1:2:2,此时球磨时间为6小时,并进行烘干;The powder pre-fired in step (3) is ball milled again. The ball milling medium is distilled water and zirconia balls. The mass ratio of raw materials, distilled water, and zirconia balls is 1:2:2. At this time, the ball milling time is 6 hours, and carry out drying;
(5)造粒(5) Granulation
将步骤(4)烘干的粉料进行研磨、过筛,外加占其重量5%的PVA胶,再充分研磨至均匀,过60目和100目的筛网,取60目和100目筛网中间粉料;Grind and sieve the powder dried in step (4), add PVA glue accounting for 5% of its weight, and then fully grind until uniform, pass through 60-mesh and 100-mesh sieves, and take the middle of 60-mesh and 100-mesh sieves Powder;
(6)成型(6) Forming
将步骤(5)过筛后的粉料放入不锈钢模具内,每片0.5g在100MPa的压强下保压1分钟,压制成片状胚体;另外,以2-3g粉料,压强100MPa下制备柱状样品;Put the powder sieved in step (5) into a stainless steel mold, hold 0.5g of each piece under a pressure of 100MPa for 1 minute, and press it into a sheet-shaped embryo body; in addition, use 2-3g of powder under a pressure of 100MPa Prepare columnar samples;
(7)烧结(7) Sintering
在锆板上平铺少许步骤(5)所制的粉末,然后将步骤(6)的胚体放于粉料上,用坩埚盖住,并放入烧结炉中,先以2℃/min升温到500℃,保温2小时进行排胶,然后以4℃/min升温到1400℃并保温4小时,然后随炉冷却至室温,即可得到需要的无铅压电陶瓷。Spread a little powder prepared in step (5) on the zirconium plate, then put the green body of step (6) on the powder, cover it with a crucible, and put it into the sintering furnace, first raise the temperature at 2°C/min Heat at 500°C for 2 hours for debinding, then raise the temperature at 4°C/min to 1400°C and hold for 4 hours, then cool down to room temperature with the furnace to obtain the required lead-free piezoelectric ceramics.
本发明的优点:Advantages of the present invention:
本发明的无铅压电陶瓷材料在准四相点处发现了非常高的介电和压电性能,材料的相对介电常数达到~75000,是纯钛酸钡在其居里温度处介电常数的6-7倍;同时压电系数d33达到了697pC/N,相当于纯钛酸钡在室温压电系数的5倍,这也是目前无铅压电陶瓷材料中的最高值。数据表明材料的性能和其相共存状态有很密切的关系,相共存越多,性能提升越大,这为开发高性能稳定性好的无铅压电材料提供了新的思路。The lead-free piezoelectric ceramic material of the present invention has found very high dielectric and piezoelectric properties at the quasi-quaternary point, and the relative dielectric constant of the material reaches ~75000, which is the dielectric constant of pure barium titanate at its Curie temperature. At the same time, the piezoelectric coefficient d 33 has reached 697pC/N, which is equivalent to 5 times the piezoelectric coefficient of pure barium titanate at room temperature, which is also the highest value among lead-free piezoelectric ceramic materials. The data show that the performance of the material is closely related to its phase coexistence state. The more phases coexist, the greater the performance improvement. This provides a new idea for the development of high-performance and stable lead-free piezoelectric materials.
附图说明Description of drawings
图1为锡酸钡掺杂钛酸钡(BT-xBS)体系的相图,其中QP指0.89BaTiO3-0.11BaSnO3成分的准四相点。Figure 1 is the phase diagram of barium stannate-doped barium titanate (BT-xBS) system, where QP refers to the quasi-quaternary point of 0.89BaTiO 3 -0.11BaSnO 3 components.
图2(a)为BT-xBS体系压电常数d33分布图,图2(b)为BT-xBS体系介电温谱,其中QP指准四相点。Figure 2(a) is the distribution diagram of the piezoelectric constant d 33 of the BT-xBS system, and Figure 2(b) is the dielectric temperature spectrum of the BT-xBS system, where QP refers to the quasi-quaternary point.
图3为两个体系对比实验。图3(a1)为锡酸钡掺杂钛酸钡(BT-xBS)体系相图;图3(a2)为钛酸钙掺杂钛酸钡(BT-xCT)体系相图;图3(b)为两个体系居里温度点出介电性能的比较,其中QP代表准四相点。Figure 3 is a comparative experiment of two systems. Figure 3(a1) is the phase diagram of the barium stannate-doped barium titanate (BT-xBS) system; Figure 3(a2) is the phase diagram of the calcium titanate-doped barium titanate (BT-xCT) system; Figure 3(b ) is a comparison of the dielectric properties of the Curie temperature points of the two systems, where QP represents the quasi-quaternary point.
具体实施方式Detailed ways
下面结合附图对本发明做详细叙述,The present invention is described in detail below in conjunction with accompanying drawing,
本发明一种高性能无铅压电陶瓷,锡酸钡掺杂的钛酸钡(0.89BaTiO3-0.11BaSnO3),其原料组分按化学计量比为:The present invention is a high-performance lead-free piezoelectric ceramic, barium titanate (0.89BaTiO 3 -0.11BaSnO 3 ) doped with barium stannate, and its raw material components are stoichiometrically:
二氧化钛:碳酸钡:二氧化锡=0.89:1:0.11Titanium dioxide: barium carbonate: tin dioxide=0.89:1:0.11
一种高性能无铅压电陶瓷的制备工艺,包括以下步骤:A preparation process of high-performance lead-free piezoelectric ceramics, comprising the following steps:
(1)配料(1) Ingredients
将原料二氧化钛、碳酸钡、二氧化锡按化学计量比(摩尔比)为0.89:1:0.11进行配料;The raw materials titanium dioxide, barium carbonate and tin dioxide are mixed according to the stoichiometric ratio (molar ratio) of 0.89:1:0.11;
(2)球磨(2) Ball milling
将步骤(1)称量好的原料放入球磨罐中,球磨介质为蒸馏水和氧化锆球,原料、蒸馏水、氧化锆球的质量比为1:2:2,球磨4小时,再将球磨后的混合料置于烘箱80℃进行干燥;Put the raw materials weighed in step (1) into a ball milling tank. The ball milling medium is distilled water and zirconia balls. The mass ratio of raw materials, distilled water, and zirconia balls is 1:2:2. Ball mill for 4 hours, and then ball mill The mixture is placed in an oven at 80°C for drying;
(3)预烧(3) Pre-burning
将步骤(2)干燥好的粉末置入坩埚内,加盖,以4℃/min的速度升温至1150℃,保温4小时,然后随炉冷却至室温;Put the dried powder in step (2) into the crucible, cover it, raise the temperature to 1150°C at a rate of 4°C/min, keep it warm for 4 hours, and then cool to room temperature with the furnace;
(4)二次球磨(4) Secondary ball milling
将步骤(3)预烧好的粉末再次进行球磨,球磨介质为蒸馏水和氧化锆球,原料、蒸馏水、氧化锆球的质量比为1:2:2,此时球磨时间为6小时,并进行烘干;The powder pre-fired in step (3) is ball milled again. The ball milling medium is distilled water and zirconia balls. The mass ratio of raw materials, distilled water, and zirconia balls is 1:2:2. At this time, the ball milling time is 6 hours, and carry out drying;
(5)造粒(5) Granulation
将步骤(4)烘干的粉料进行研磨、过筛,外加占其重量5%的PVA胶,再充分研磨至均匀,过60目和100目的筛网,取60目和100目筛网中间粉料;Grind and sieve the powder dried in step (4), add PVA glue accounting for 5% of its weight, and then fully grind until uniform, pass through 60-mesh and 100-mesh sieves, and take the middle of 60-mesh and 100-mesh sieves Powder;
(6)成型(6) Forming
将步骤(5)过筛后的粉料放入不锈钢模具内(直径11mm),每片0.5g在100MPa的压强下保压1分钟,压制成片状胚体;另外,以2-3g粉料,压强100MPa下可以制备柱状样品(直径8mm);Put the powder sieved in step (5) into a stainless steel mold (diameter 11mm), hold 0.5g of each piece at a pressure of 100MPa for 1 minute, and press it into a sheet-shaped embryo; in addition, use 2-3g of powder , columnar samples (diameter 8mm) can be prepared under a pressure of 100MPa;
(7)烧结(7) Sintering
在锆板上平铺少许步骤(5)所制的粉末,然后将步骤(6)的胚体放于粉料上,用坩埚盖住,并放入烧结炉中,先以2℃/min升温到500℃,保温2小时进行排胶,然后以4℃/min升温到1400℃并保温4小时,然后随炉冷却至室温,即可得到需要的无铅压电陶瓷。Spread a little powder prepared in step (5) on the zirconium plate, then put the green body of step (6) on the powder, cover it with a crucible, and put it into the sintering furnace, first raise the temperature at 2°C/min Heat at 500°C for 2 hours for debinding, then raise the temperature at 4°C/min to 1400°C and hold for 4 hours, then cool down to room temperature with the furnace to obtain the required lead-free piezoelectric ceramics.
对本实施例所得无铅压电陶瓷进行电学测试,需要将步骤(7)制得的陶瓷片打磨光滑,然后涂覆银浆制成表面电极。将涂好银浆的片子放在锆板上,置入马弗炉中以4℃/min升温到800℃,保温30分钟,自然冷却;取出片子并将周边侧面的银电极磨掉即可。To conduct an electrical test on the lead-free piezoelectric ceramic obtained in this example, the ceramic sheet prepared in step (7) needs to be polished smooth, and then coated with silver paste to form a surface electrode. Put the silver paste-coated sheet on the zirconium plate, place it in a muffle furnace and raise the temperature to 800°C at 4°C/min, keep it warm for 30 minutes, and cool naturally; take out the sheet and grind off the silver electrodes on the surrounding sides.
进行压电测试时,需要将步骤(8)制备的柱状陶瓷样品进行极化。将步骤(8)得到的柱状陶瓷样品置入硅油中,通电极化30分钟,极化电场为2-3kv/mm或者3倍的矫顽场;静置24小时后进行性能测试。When conducting piezoelectric tests, the columnar ceramic samples prepared in step (8) need to be polarized. Put the columnar ceramic sample obtained in step (8) into silicone oil, conduct electric polarization for 30 minutes, and the polarization electric field is 2-3kv/mm or 3 times the coercive field; perform a performance test after standing for 24 hours.
图1展示了锡酸钡掺杂的钛酸钡(BT-xBS)材料的相图。纯的钛酸钡相变顺序为立方相-四方相-正交相-菱方相(即C-T-O-R)的相变顺序,特别的,这三步相变最后汇聚到一点(相图中BT-11BS,约40摄氏度)。这意味着这四个相(C-T-O-R)基本在0.89BaTiO3-0.11BaSnO3中共存到了一起,因此导致了0.89BaTiO3-0.11BaSnO3拥有非常优异的性能。Figure 1 shows the phase diagram of barium stannate-doped barium titanate (BT-xBS) material. The phase transition sequence of pure barium titanate is cubic phase-tetragonal phase-orthorhombic phase-rhombic phase (i.e. CTOR). In particular, these three phase phase transitions finally converge to one point (BT-11BS in the phase diagram , about 40 degrees Celsius). This means that these four phases (CTOR) basically coexist together in 0.89BaTiO 3 -0.11BaSnO 3 , thus resulting in the excellent performance of 0.89BaTiO 3 -0.11BaSnO 3 .
图2(a)是BT-xBS体系d33压电系数的等值图,可以看见在0.89BaTiO3-0.11BaSnO3的准四相点处,材料d33压电系数达到~700pC/N,是现在报道的最大的无铅陶瓷压电常数。图2(b)是BT-xBS的介电温谱,我们很容易就能发现材料在0.89BaTiO3-0.11BaSnO3的准四相点处得到极大的介电常数,远远高于其他成分和温度。这些结果说明材料在准四相点处的小场动态性能如压电和介电常数都得到了很大的提升,高于其他相界和成分。Figure 2(a) is the equivalent diagram of the piezoelectric coefficient of d 33 in the BT-xBS system. It can be seen that at the quasi-quaternary point of 0.89BaTiO 3 -0.11BaSnO 3 , the piezoelectric coefficient of d 33 of the material reaches ~700pC/N, which is The largest piezoelectric constant reported now for lead-free ceramics. Figure 2(b) is the dielectric temperature spectrum of BT-xBS. We can easily find that the material has a very large dielectric constant at the quasi-quaternary point of 0.89BaTiO 3 -0.11BaSnO 3 , which is much higher than other components. and temperature. These results indicate that the small-field dynamic properties of the material at the quasi-quadruple point, such as piezoelectricity and permittivity, are greatly improved, higher than those of other phase boundaries and compositions.
为了证明准四相点上的性能提升确实来源于准四相共存这个结构条件,我们做了对比实验。如图3所示,我们选取了相同的钛酸钡基体,不同掺杂物锡酸钡和钛酸钙,前者在0.89BaTiO3-0.11BaSnO3形成准四相点而后者没有,其相图如图3(a)(b)所示。结果发现同样是钛酸钡基,从钛酸钡开始进行掺杂,BT-xBS体系在0.89BaTiO3-0.11BaSnO3处的准四相点的引领下有了一个很高的介电峰,而BT-xCT体系却因为没有多相共存点而表现很平庸,只是很小的起伏。这个实验证明了0.89BaTiO3-0.11BaSnO3的准四相点是QP处高性能的直接原因。In order to prove that the performance improvement on the quasi-quaternary point does come from the structural condition of quasi-quaternary coexistence, we conducted a comparative experiment. As shown in Figure 3, we selected the same barium titanate matrix, different dopants barium stannate and calcium titanate, the former forms a quasi-quaternary point at 0.89BaTiO 3 -0.11BaSnO 3 while the latter does not, the phase diagram is as follows Figure 3 (a) (b) shown. It was found that the same barium titanate base was doped from barium titanate, and the BT-xBS system had a very high dielectric peak led by the quasi-quadruple point at 0.89BaTiO 3 -0.11BaSnO 3 , while The performance of the BT-xCT system is very mediocre because there is no multi-phase coexistence point, with only small fluctuations. This experiment proves that the quasi-quadruple point of 0.89BaTiO3-0.11BaSnO3 is the direct cause of the high performance at the QP.
综上所述,在0.89BaTiO3-0.11BaSnO3的准四相点处发现了非常高的介电和压电性能,材料的相对介电常数达到~75000,是纯钛酸钡在其居里温度处介电常数的6-7倍;同时压电系数d33达到了697pC/N,相当于纯钛酸钡在室温压电系数的5倍,这也是目前无铅压电陶瓷材料中的最高值。数据表明材料的性能和其相共存状态有很密切的关系,相共存越多,性能提升越大,这为开发高性能稳定性好的无铅压电材料提供了新的思路。In summary, very high dielectric and piezoelectric properties are found at the quasi-quadruple point of 0.89BaTiO 3 -0.11BaSnO 3 , and the relative permittivity of the material reaches ~75000, which is pure barium titanate at its Curie 6-7 times the dielectric constant at high temperature; at the same time, the piezoelectric coefficient d 33 has reached 697pC/N, which is equivalent to 5 times the piezoelectric coefficient of pure barium titanate at room temperature, which is also the highest among lead-free piezoelectric ceramic materials value. The data show that the performance of the material is closely related to its phase coexistence state. The more phases coexist, the greater the performance improvement. This provides a new idea for the development of high-performance and stable lead-free piezoelectric materials.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310541284.0A CN103613379A (en) | 2013-11-04 | 2013-11-04 | High performance leadless piezoelectric ceramics and preparation technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310541284.0A CN103613379A (en) | 2013-11-04 | 2013-11-04 | High performance leadless piezoelectric ceramics and preparation technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103613379A true CN103613379A (en) | 2014-03-05 |
Family
ID=50164109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310541284.0A Pending CN103613379A (en) | 2013-11-04 | 2013-11-04 | High performance leadless piezoelectric ceramics and preparation technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103613379A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106518121A (en) * | 2016-11-10 | 2017-03-22 | 佛山蓝途科技有限公司 | High-Curie-temperature leadless piezoelectric ceramic and preparation method thereof |
CN108147809A (en) * | 2018-02-06 | 2018-06-12 | 北京元六鸿远电子科技股份有限公司 | Low temperature sintering barium-titanium series microwave dielectric material and preparation method |
WO2019201353A1 (en) * | 2018-04-21 | 2019-10-24 | 西安交通大学 | Method for obtaining lead-free piezoelectric material, and corresponding lead-free piezoelectric material |
CN111333413A (en) * | 2020-03-06 | 2020-06-26 | 中国科学院上海硅酸盐研究所 | Bismuth ferrite-lead titanate-barium titanate ternary system high temperature piezoelectric ceramic material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101627484A (en) * | 2007-03-02 | 2010-01-13 | 埃普科斯股份有限公司 | Piezo-electric material, multi-layer actuator and method for producing a piezo-electric component |
-
2013
- 2013-11-04 CN CN201310541284.0A patent/CN103613379A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101627484A (en) * | 2007-03-02 | 2010-01-13 | 埃普科斯股份有限公司 | Piezo-electric material, multi-layer actuator and method for producing a piezo-electric component |
Non-Patent Citations (2)
Title |
---|
YONGGAO YAO ET AL.: "Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting", 《EUROPHYSICS LETTERS》 * |
山东大学压电铁电物理教研室: "《压电陶瓷及其应用》", 30 November 1974, 山东人民出版社 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106518121A (en) * | 2016-11-10 | 2017-03-22 | 佛山蓝途科技有限公司 | High-Curie-temperature leadless piezoelectric ceramic and preparation method thereof |
CN108147809A (en) * | 2018-02-06 | 2018-06-12 | 北京元六鸿远电子科技股份有限公司 | Low temperature sintering barium-titanium series microwave dielectric material and preparation method |
CN108147809B (en) * | 2018-02-06 | 2022-07-12 | 北京元六鸿远电子科技股份有限公司 | Medium-low temperature sintered barium-titanium series microwave dielectric material and preparation method thereof |
WO2019201353A1 (en) * | 2018-04-21 | 2019-10-24 | 西安交通大学 | Method for obtaining lead-free piezoelectric material, and corresponding lead-free piezoelectric material |
CN112469682A (en) * | 2018-04-21 | 2021-03-09 | 西安交通大学 | Method for obtaining lead-free piezoelectric material and corresponding lead-free piezoelectric material |
JP2021522144A (en) * | 2018-04-21 | 2021-08-30 | 西安交通大学 | How to Get Lead-Free Piezoelectric Materials, Corresponding Lead-Free Piezoelectric Materials |
JP7462275B2 (en) | 2018-04-21 | 2024-04-05 | 西安交通大学 | How to obtain lead-free piezoelectric materials, corresponding lead-free piezoelectric materials |
US12302759B2 (en) | 2018-04-21 | 2025-05-13 | Xi'an Jiaotong University | Method for obtaining lead-free piezoelectric materials and corresponding lead-free piezoelectric materials |
CN111333413A (en) * | 2020-03-06 | 2020-06-26 | 中国科学院上海硅酸盐研究所 | Bismuth ferrite-lead titanate-barium titanate ternary system high temperature piezoelectric ceramic material and preparation method thereof |
CN111333413B (en) * | 2020-03-06 | 2021-08-06 | 中国科学院上海硅酸盐研究所 | Bismuth ferrite-lead titanate-barium titanate ternary system high temperature piezoelectric ceramic material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111302797B (en) | Potassium-sodium niobate-based leadless piezoelectric ceramic and preparation method thereof | |
CN102910902B (en) | BNT-BT-BKT-based perovskite system multielement lead-free piezoelectric ceramic and production method thereof | |
CN101648807A (en) | Calcium barium zirconate titanate base piezoceramics and preparation method thereof | |
CN102924078A (en) | BCTZ-based perovskite system multi-component lead-free piezoelectric ceramic and preparation method thereof | |
CN105272244A (en) | Potassium-sodium niobate based leadless piezoelectric ceramic and preparation method thereof | |
CN105884350A (en) | Barium calcium zirconate titanate leadless piezoelectric ceramic material and preparation method thereof | |
CN101885607A (en) | Barium zirconate titanate-potassium sodium niobate based piezoelectric ceramic and preparation method thereof | |
CN105837205A (en) | Sodium bismuth titanate-system lead-free piezoelectric ceramic and preparation method thereof | |
CN104692799A (en) | High-energy-density zirconium titanium and lead stannate antiferroelectric ceramic and preparation method thereof | |
CN107903055B (en) | Gradient doped sodium bismuth titanate based multilayer lead-free piezoelectric ceramic | |
CN107698252A (en) | Application and preparation method of a kind of ceramic material as high-temperature stable piezoelectric energy collection material | |
CN104291817A (en) | High-Curie-temperature PZT piezoceramic material and preparation method thereof | |
CN103771855A (en) | Potassium-sodium niobate-based leadless piezoelectric ceramic material | |
CN102850050A (en) | Low temperature sintering piezoelectric ceramic material and preparation method thereof | |
CN104725042B (en) | A kind of multiple elements design pyroelectric ceramic material and preparation method thereof | |
CN103613379A (en) | High performance leadless piezoelectric ceramics and preparation technology | |
CN102351533A (en) | Calcium barium zirconate titanate based leadless piezoelectric ceramics with low temperature sintering and high piezoelectric properties and preparation method thereof | |
CN104230333B (en) | A kind of high temperature piezoceramics and preparation method thereof | |
CN107056281A (en) | A kind of Large strain bismuth-sodium titanate base ceramics and preparation method thereof | |
CN112759390A (en) | Has high kpPSN-PZT piezoelectric ceramic and preparation method thereof | |
CN103524129B (en) | Piezoceramic material for ultrasonic emission-type transducers and preparation method | |
CN106986629B (en) | A kind of preparation method of bismuth titanate-based bismuth layered structure ferroelectric ceramic target | |
CN109721352A (en) | A kind of bismuth-sodium titanate base lead-free piezoelectric ceramic and preparation method thereof using the preparation of microwave material research-on-research station | |
CN105622094A (en) | Preparation method of high-electrical-resistivity high-temperature piezoelectric ceramic material | |
CN103539447B (en) | A low-temperature sintered piezoelectric ceramic material and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140305 |