CN103605493A - 基于图形处理单元的并行排序学习方法及系统 - Google Patents

基于图形处理单元的并行排序学习方法及系统 Download PDF

Info

Publication number
CN103605493A
CN103605493A CN201310632348.8A CN201310632348A CN103605493A CN 103605493 A CN103605493 A CN 103605493A CN 201310632348 A CN201310632348 A CN 201310632348A CN 103605493 A CN103605493 A CN 103605493A
Authority
CN
China
Prior art keywords
document
inquiry
partial order
model parameter
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310632348.8A
Other languages
English (en)
Other versions
CN103605493B (zh
Inventor
叶允明
范希贤
黄晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201310632348.8A priority Critical patent/CN103605493B/zh
Publication of CN103605493A publication Critical patent/CN103605493A/zh
Application granted granted Critical
Publication of CN103605493B publication Critical patent/CN103605493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种基于图形处理单元的并行排序学习方法及系统,该并行排序学习方法包括构建查询及文档偏序对:针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本;模型参数训练:估计评分函数中关于每个特征的权重参数取值;文档评分:根据模型参数训练步骤中估计出的模型参数和文档评分函数计算每个文档的得分;文档排序:根据每个文档的得分,选择排序算法对文档进行排序,然后把排序后的结果提供给查询用户。本发明的有益效果是本发明的基于图形处理单元的并行排序学习方法及系统,提高排序学习中数据计算速度。

Description

基于图形处理单元的并行排序学习方法及系统
技术领域
本发明涉及基于互联网的数据处理方法及系统,尤其涉及基于图形处理单元的并行排序学习方法及系统。
背景技术
随着网络技术的发展,信息获取变得越来越容易.但从海量且日新月异的互联网上检索信息,在检索过程中还要满足用户所需的响应时间和结果准确度,变得越来越困难。搜索引擎是从海量数据获取有用的信息的一个重要手段.而如何为用户返回与其查询最相关的信息,是搜索引擎发展和吸引用户的一个重要决定因素。
商业搜索引擎和推荐系统普遍存在排序问题,互联网搜索引擎提供商的竞争日趋白热化,搜索引擎对于任意查询能有TB甚至PB量级的规模,每天可能达到亿次级的查询规模。每次查询的返回结果靠人工专家去分类判定然后给出排序结果是不现实的,排序最终归为人工智能问题。
排序学习是一种机器学习任务:查询集和每个查询的一系列文档作为输入,通过训练一个系统在未知等级的测试集上获取最优化的预计排名作为输出。排序学习的提出在互联网搜索、商务网站推荐等领域都引起研究工作者的兴趣与深入研究。研究人员在研究信息检索中发掘各种新问题新技术并在历届的SIGIR会议上发表探讨,近些年来,排序学习在该会议上是一个热门的研究问题,同时互联网大规模的信息对于排序学习算法的性能是一个重大的挑战,也是排序学习算法后续研究工作的一个方向。
但是,目前技术在排序学习中出现了由于海量数据导致计算速度慢的问题。
发明内容
为了解决现有技术中的问题,本发明提供了一种基于图形处理单元的并行排序学习方法。
本发明提供了一种基于图形处理单元的并行排序学习方法,包括如下步骤:
构建查询及文档偏序对:针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本,根据每一个查询的相关度列表构建成文档偏序对集;
模型参数训练:根据文档偏序对集估计模型参数,通过估计评分函数中关于每个特征的权重参数取值;
文档评分:根据模型参数训练步骤中估计出的模型参数和文档评分函数计算每个文档的得分;
文档排序:根据每个文档的得分,选择排序算法对文档进行排序,然后把排序后的结果提供给查询用户。
作为本发明的进一步改进,在所述构建查询及文档偏序对步骤中,在训练样本中,每一个查询对应一个文档列表,列表中给出文档与查询语句的相关度;在所述文档评分步骤中,采用线性评分模型,其评分模型函数为
Figure BDA0000426029190000021
公式中,Θi为模型参数向量中的第i维,fji文档dj中的第i个特征值;在所述文档排序步骤中,采用双调排序对文档进行排序。
作为本发明的进一步改进,在所述模型参数训练步骤中,采用最大似然方法估计模型参数,似然函数为:
Figure BDA0000426029190000031
公式中,q是查询集Q中的一个查询,Θ为要估计的模型参数,i、j分别为第i、j个文档,(q,i,j)表示第q个查询项,由第i、j个文档组成的查询及文档偏序对,DS为所有查询及文档偏序对样本集,δ为指示函数,为在模型参Θ下产生查询及文档偏序对
Figure BDA0000426029190000033
的概率。
作为本发明的进一步改进,在所述构建查询及文档偏序对步骤中,针对每个查询开启一个核函数的线程,采用基于图形处理的多线程并行构建查询及文档偏序对;在所述模型参数训练步骤中,针对于每个查询及文档偏序对开启一个核函数的线程,采用基于图形处理的多线程并行更新模型参数;在文档评分步骤中,针对于每个文档开启一个核函数的线程,采用基于图形处理的多线程并行文档评分。
本发明还公开了一种基于图形处理单元的并行排序学习系统,包括:
并行构建查询及文档偏序对模块:用于针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本,根据每一个查询的相关度列表构建成文档偏序对集;
并行模型参数训练模块:根据文档偏序对集估计模型参数,通过用于估计评分函数中关于每个特征的权重参数取值;
并行文档评分模块:用于根据模型参数训练步骤中估计出的模型参数和文档评分函数计算每个文档的得分;
并行文档排序模块:用于根据每个文档的得分,选择排序算法对文档进行排序,然后把排序后的结果提供给查询用户。
作为本发明的进一步改进,在所述并行构建查询及文档偏序对模块中,在训练样本中,每一个查询对应一个文档列表,列表中给出文档与查询语句的相关度;在所述文档评分步骤中,采用线性评分模型,其评分模型函数为
Figure BDA0000426029190000041
公式中,Θi为模型参数向量中的第i维,fji文档dj中的第i个特征值;在所述文档排序步骤中,采用双调排序对文档进行排序。
作为本发明的进一步改进,在所述并行模型参数训练模块中,采用最大似然方法估计模型参数,似然函数为:
Figure BDA0000426029190000042
公式中,q是查询集Q中的一个查询,Θ为要估计的模型参数,i、j分别为第i、j个文档,(q,i,j)表示第q个查询项,由第i、j个文档组成的查询及文档偏序对,DS为所有查询及文档偏序对样本集,δ为指示函数,
Figure BDA0000426029190000043
为在模型参Θ下产生查询及文档偏序对
Figure BDA0000426029190000044
的概率。
作为本发明的进一步改进,在所述并行构建查询及文档偏序对模块中,针对每个查询开启一个核函数的线程,采用基于图形处理的多线程并行构建查询及文档偏序对;在所述并行模型参数训练模块中,针对于每个查询及文档偏序对开启一个核函数的线程,采用基于图形处理的多线程并行更新模型参数;在并行文档评分模块中,针对于每个文档开启一个核函数的线程,采用基于图形处理的多线程并行文档评分。
作为本发明的进一步改进,该并行排序学习系统采用CPU和GPU协作框架设计,串行执行代码运行在CPU上,并行执行代码运行在GPU上,通过GPU提供的数据传输方式来交换显存与内存之间的数据,所述并行构建查询及文档偏序对模块、所述并行模型参数训练模块、所述并行文档评分模块、所述并行文档排序模块均运行在所述GPU上。
作为本发明的进一步改进,CPU控制系统的调度给GPU分配任务,为GPU准备运行空间,GPU在CPU准备好的环境下并行执行计算任务。
本发明的有益效果是:本发明的基于图形处理单元的并行排序学习方法及系统,提高排序学习中数据计算速度。
附图说明
图1是本发明的并行排序学习模型的系统框图。
图2是本发明的训练集原始数据示意图。
图3是本发明的原始查询训练集转化为文档偏序对集示意图。
图4为本发明的CPU及GPU硬件架构图。
图5为本发明的模块图。
图6为本发明的并行排序学习方法的CPU和GPU协作框架示意图。
图7为本发明的多线程构建查询及文档偏序对流程图。
图8为本发明的多线程模型参数更新流程图。
图9为本发明的多线程文档评分流程图。
图10为本发明使用的双调排序流程图。
具体实施方式
如图1所示,本发明公开了一种基于图形处理单元的并行排序学习方法,包括如下步骤:
100构建查询及文档偏序对:针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本。
具体实施过程如下:基于偏序对的排序学习算法的主要思想是,对于任一个查询,对任意两个不同相关度的文档中,都可以得到一个训练实例对。在训练模型时,要使得二类分类的误差最小,即尽可能的分对所有文档偏序对。
在训练样本中,每一个查询对应一个文档列表,列表中给出文档与查询语句的相关度,如图2,其中
Figure BDA0000426029190000061
表示在第j个查询中的第i个文档,表示第i个文档与第j个查询的相关度,n为文档数目,m为查询数目。图3为根据查询q下两个文档间的相关度大小,得到一个文档间的相关度大小比较结果示意图。图中任一个小格表示一个文档偏序对,即模型的一个训练样本。由于用户更关心的是相关度高的文档排在前面,目标优化是使得相关度高的文档尽可能的预测正确。本文发明实施过程中采用大于偏序关系,如图3所示
Figure BDA0000426029190000063
大于偏序关系用1表示,小于关系用-1表示。
101模型参数训练:模型训练是本发明中最重要的一步.模型训练的目的是估计评分函数中每个特征的权重参数取值,本发明采用的是最大似然参数估计对贝叶斯个性化排序学习模型的参数进行估计。
具体实施过程如下:贝叶斯个性化排序学习模型训练的目的是要估计评分函数中关于每个特征的权重参数取值,最大似然估计和贝叶斯参数估计是常用的办法。最大似然估计相对于贝叶斯参数估计有收敛性好,简单易用等优点。因此,本发明实施中采用最大似然方法估计模型参数。最大似然估计是把要预测的参数看作是已知的量,但取值未知,最后使得模型符合训练样本的概率最大的一系列值为所要的参数值。
模型训练是在给定查询集合下,通过最大化后验概率模型为每个文档中找出其正确的排名。然后,根据模型对未标注样本进行等级预测。本发明假设结果文档集合中的文档相关度等级符合某种概率分布,表示为p(Θ)。由贝叶斯公式得到后验概率可表示为:
Figure BDA0000426029190000071
公式中,Θ为模型参数,
Figure BDA0000426029190000072
为一个查询及文档偏序对样本。由于在给定训练集下,
Figure BDA0000426029190000073
可以看成一个常量,因此可以得到概率模型
Figure BDA0000426029190000074
本发明假定两两查询是相对独立的,并对于每个查询,每一对文档之间也是相互独立的。因此对于所有查询q∈Q的所有输入样本对,上式的似然估计函数
Figure BDA0000426029190000075
可以表示为所有输入样本对的乘积,数学形式表示为公式
Figure BDA0000426029190000076
公式中,q是查询集Q中的一个查询,Θ为要估计的模型参数,i、j分别为第i、j个文档,(q,i,j)表示第q个查询下,由第i、j个文档组成的查询及文档偏序对,DS为所有查询及文档偏序对样本集,
Figure BDA0000426029190000077
为在模型参Θ下产生查询及文档偏序对
Figure BDA0000426029190000078
的概率。δ是一个指示函数,表示为公式
Figure BDA0000426029190000079
由于在具体实施中,本发明之采用大于偏序关系,即采用的所有指示函数δ(b)为真的偏序关系。因此似然函数可以简写为
Figure BDA00004260291900000710
在本发明中,定义产生文档偏序对的概率为
Figure BDA00004260291900000711
其中xqij(Θ)=F(Θ,di)-F(Θ,dj),表示在参数为Θ下,文档di与文档dj的评分之差。评分函数F(Θ,di)将在文档评分步骤中介绍。
参数估计中,具体的概率p(Θ)未知,但假设其参数形式是已知的,唯一未知的是参数向量Θ的值,这也是最大似然估计的基本思想。本发明种假设p(Θ)符合0均值,协方差矩阵为ΣΘ的正态分布,数学形式表示为公式:
p(Θ)~N(0,ΣΘ)
结合高斯密度函数上述公式可转换为公式:
p ( Θ ) = 1 2 π σ exp [ - 1 2 Θ 2 σ ]
公式中σ为正态分布标准差。本发明中设为∑ΘΘI,Θ为模型的参数向量。通过最大化似然估计来获得最优化的检索排序结果过程可形式化为公式
Figure BDA0000426029190000082
采用梯度下降方法对上面似然函数进行参数估计,对上面公式求导得
Figure BDA0000426029190000083
梯度下降法每次迭代的前进方向是由其梯度相反方向决定,使得每次迭代都能使目标函数逐步收敛。梯度下降算法首先对Θ随机赋值,根据训练样本改变Θ的值,使的目标函数按梯度下降的方向进行收敛,直到满足算法结束条件,算法终止。
102文档评分:即根据101步骤中估计出的模型参数和文档评分函数计算每个文档的得分。
具体实施过程如下:在文档评分步骤中,本发明采用线性评分排序学习模型(Linear Scoring Learning to Rank Model,LSLRM),其评分模型函数设计为
F ( Θ , d j ) = Σ i Θ i f ji
公式中,Θi为模型参数向量中的第i维,fji文档dj中的第i个特征值。
103文档排序:根据每个文档的得分,选择合适的排序算法对文档进行排序,然后把排序后的结果提供给查询用户。
具体实施过程如下:在本实施过程中,采用了双调排序。对于双调排序,首先要建立一个双调序列。如果把一个有序序列由小到大、另一个有序序列从大到小接在一起,就构成了一个双调序列。因此所谓双调序列是指序列要么先单调递增然后再单调递减,要么先单调递减然后又单调递增。然后进行双调归并,也就是将双调序列不断的划分,分成若干个小的子双调序列,这就是双调归并的过程。在本实施中采用双调排序是为了方法后面的并行化过程。
在本发明中还构建一种基于图形处理单元的并行排序学习系统,包括硬件部分和软件部分,硬件部分:采用CPU及GPU协作框架设计,串行执行代码运行在CPU上,并行执行代码运行在GPU上,通过GPU提供的数据传输方式来交换显存与内存之间的数据;软件部分分为四个模块,包括并行构建查询及文档偏序对模块,并行模型参数训练模块,并行文档评分模块和并行文档排序模块四个部分。所述并行构建查询及文档偏序对模块是根据每一个查询的相关度列表构建成文档偏序对集。所述并行模型参数训练模块是根据查询及文档偏序对集,估计出模型参数.每一个文档偏序对作为一个样本参与参数估计。所述并行文档评分模块是根据模型参数和待排序文档特征值,通过评分函数进行计算每个文档的得分。所述并行文档排序模块是采用并行化排序方法,根据文档得分,对文档进行排序。
具体实施过程如下:该并行排序学习系统采用CPU及GPU框架的设计,如图4为系统的硬件框架,CPU控制系统的调度,给图形处理单元分配任务,为图形处理单元准备运行空间等,图形处理单元在CPU准备好的环境下,并行执行计算任务。图5为系统模块框图,系统分为四个并行化模块,包括并行构建查询及文档偏序对模块,并行模型参数训练模块,并行文档评分模块和并行文档排序模块。图6为本发明基于图形处理单元的并行排序学习系统的软件协作框架,系统利用统一计算设备架构(ComputeUnified Device Architecture,简称“CUDA”)编程平台对排序学习算法过程进行加速。
在基于CPU及GPU协作框架的设计中,通过对CPU和GPU的协作任务进行合理的分配和框架设计,充分利用CPU和GPU的各自优势,为算法进行加速。本系统将其任务分为两部分来进行分配,一部分是在CPU上具有明显运行优势的任务,一部分是在图形处理单元上明显具有运行优势的任务。适合在CPU上运行的任务主要包括:模型初始化,数据的I及O操作,算法逻辑流程的控制,核函数的调用。适合在图形处理单元上运行的任务主要是数据运算类任务包括:并行构建查询及文档偏序对,针对每个文档训练模型参数,文档评分和对文档排序。
在系统软件方面,主要通过为各模块设计核函数来实现算法的加速运行。在并行构建查询及文档偏序对模块中,系统设计一个核函数,该核函数为每个查询在图形处理单元上分配一个线程,共开启m个线程,m为训练集上的查询数,构建出所有的查询及文档偏序对集,其核函数的计算流程为图7,在图7中,对查询q来说,文档i的相关性高于文档j。所以,输出文档篇序对<q,i,j>,
Figure BDA0000426029190000111
代表对于查询q,文档i的相关性。
在并行模型参数训练模块中,系统为该模块设计了一个核函数更新模型参数。如图8,系统为该模块申请与偏序对同样数量的线程。每个线程针对一个文档偏序对进行更新模型参数。每一轮都要针对所有的样本更新一次,然后再CPU对所有模型参数进行合并。在图8中,如下公式的
Figure BDA0000426029190000112
的含义为:
Figure BDA0000426029190000113
是似然函数关于Θ的梯度(推导过程见101模型参数训练),α是梯度下降的步长参数。该公式为采用梯度下降法求Θ的值。
在并行文档评分模块中,系统为该模块设计了一个核函数计算每个文档的得分,如图9。系统为每个文档开设一个线程,多线程并行计算文档得分。在图9中,该
Figure BDA0000426029190000114
是一个评分函数,即,根据模型参数训练模块中估计出参数Θ的值,对文档dj进行评分,fji代表文档j的第i个特征的值。该评分结果用于文档排序模块对文档进行排序。
在并行文档排序模块中,系统采用适合于GPU计算的双调排序,其过程如图10。
本发明的提出了一种基于图形处理单元的并行排序学习方法及系统。同时,利用图形处理单元(GPU)和中央处理器(CPU)之间的计算能力的互补性,本发明设计了一套基于CPU及GPU协作框架的并行化排序学习系统。系统硬件部分设计为CPU及GPU协作框架,软件部分设计分四个模块:并行构建查询及文档偏序对,并行模型参数训练,并行文档评分和并行文档排序.本发明的基于图形处理单元的贝叶斯个性化并行化排序学习方法及系统,可以充分利用图形处理设备的高并行性,有效的提高算法的排序性能,非常适合于处理大规模的排序学习问题。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种基于图形处理单元的并行排序学习方法,其特征在于,包括如下步骤:
构建查询及文档偏序对:针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本,根据每一个查询的相关度列表构建成文档偏序对集;
模型参数训练:根据文档偏序对集估计模型参数,通过估计评分函数中关于每个特征的权重参数取值;
文档评分:根据模型参数训练步骤中估计出的模型参数和文档评分函数计算每个文档的得分;
文档排序:根据每个文档的得分,选择排序算法对文档进行排序,然后把排序后的结果提供给查询用户。
2.根据权利要求1所述的并行排序学习方法,其特征在于:在所述构建查询及文档偏序对步骤中,在训练样本中,每一个查询对应一个文档列表,列表中给出文档与查询语句的相关度;在所述文档评分步骤中,采用线性评分模型,其评分模型函数为
Figure FDA0000426029180000011
公式中,Θi为模型参数向量中的第i维,fji文档dj中的第i个特征值;在所述文档排序步骤中,采用双调排序对文档进行排序。
3.根据权利要求1所述的并行排序学习方法,其特征在于:在所述模型参数训练步骤中,采用最大似然方法估计模型参数,似然函数为:
公式中,q是查询集Q中的一个查询,Θ为要估计的模型参数,i、j分别为第i、j个文档,(q,i,j)表示第q个查询项,由第i、j个文档组成的查询及文档偏序对,DS为所有查询及文档偏序对样本集,δ为指示函数,
Figure FDA0000426029180000021
为在模型参Θ下产生查询及文档偏序对
Figure FDA0000426029180000022
的概率。
4.根据权利要求1所述的并行排序学习方法,其特征在于:在所述构建查询及文档偏序对步骤中,针对每个查询开启一个核函数的线程,采用基于图形处理的多线程并行构建查询及文档偏序对;在所述模型参数训练步骤中,针对于每个查询及文档偏序对开启一个核函数的线程,采用基于图形处理的多线程并行更新模型参数;在文档评分步骤中,针对于每个文档开启一个核函数的线程,采用基于图形处理的多线程并行文档评分。
5.一种基于图形处理单元的并行排序学习系统,其特征在于,包括:并行构建查询及文档偏序对模块:用于针对每个查询,根据训练集中文档与查询的相关度构建出文档偏序对,每一个文档偏序对为一个模型的训练样本,根据每一个查询的相关度列表构建成文档偏序对集;
并行模型参数训练模块:用于根据文档偏序对集估计模型参数,通过估计评分函数中关于每个特征的权重参数取值;
并行文档评分模块:用于根据模型参数训练步骤中估计出的模型参数和文档评分函数计算每个文档的得分;
并行文档排序模块:用于根据每个文档的得分,选择排序算法对文档进行排序,然后把排序后的结果提供给查询用户。
6.根据权利要求5所述的并行排序学习系统,其特征在于:在所述并行构建查询及文档偏序对模块中,在训练样本中,每一个查询对应一个文档列表,列表中给出文档与查询语句的相关度;在所述文档评分步骤中,采用线性评分模型,其评分模型函数为
Figure FDA0000426029180000031
公式中,Θi为模型参数向量中的第i维,fji文档dj中的第i个特征值;在所述文档排序步骤中,采用双调排序对文档进行排序。
7.根据权利要求5所述的并行排序学习系统,其特征在于:在所述并行模型参数训练模块中,采用最大似然方法估计模型参数,似然函数为:
公式中,q是查询集Q中的一个查询,Θ为要估计的模型参数,i、j分别为第i、j个文档,(q,i,j)表示第q个查询项,由第i、j个文档组成的查询及文档偏序对,DS为所有查询及文档偏序对样本集,δ为指示函数,
Figure FDA0000426029180000033
为在模型参Θ下产生查询及文档偏序对
Figure FDA0000426029180000034
的概率。
8.根据权利要求5所述的并行排序学习系统,其特征在于:在所述并行构建查询及文档偏序对模块中,针对每个查询开启一个核函数的线程,采用基于图形处理的多线程并行构建查询及文档偏序对;在所述并行模型参数训练模块中,针对于每个查询及文档偏序对开启一个核函数的线程,采用基于图形处理的多线程并行更新模型参数;在并行文档评分模块中,针对于每个文档开启一个核函数的线程,采用基于图形处理的多线程并行文档评分。
9.根据权利要求5至8任一项所述的并行排序学习系统,其特征在于:该并行排序学习系统采用CPU和GPU协作框架设计,串行执行代码运行在CPU上,并行执行代码运行在GPU上,通过GPU提供的数据传输方式来交换显存与内存之间的数据,所述并行构建查询及文档偏序对模块、所述并行模型参数训练模块、所述并行文档评分模块、所述并行文档排序模块均运行在所述GPU上。
10.根据权利要求9所述的并行排序学习系统,其特征在于:CPU控制系统的调度给GPU分配任务,为GPU准备运行空间,GPU在CPU准备好的环境下并行执行计算任务。
CN201310632348.8A 2013-11-29 2013-11-29 基于图形处理单元的并行排序学习方法及系统 Active CN103605493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310632348.8A CN103605493B (zh) 2013-11-29 2013-11-29 基于图形处理单元的并行排序学习方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310632348.8A CN103605493B (zh) 2013-11-29 2013-11-29 基于图形处理单元的并行排序学习方法及系统

Publications (2)

Publication Number Publication Date
CN103605493A true CN103605493A (zh) 2014-02-26
CN103605493B CN103605493B (zh) 2016-09-28

Family

ID=50123724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310632348.8A Active CN103605493B (zh) 2013-11-29 2013-11-29 基于图形处理单元的并行排序学习方法及系统

Country Status (1)

Country Link
CN (1) CN103605493B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106844024A (zh) * 2016-12-30 2017-06-13 中国科学院计算技术研究所 一种自学习运行时间预测模型的gpu/cpu调度方法及系统
CN107330516A (zh) * 2016-04-29 2017-11-07 腾讯科技(深圳)有限公司 模型参数训练方法、装置及系统
CN108958702A (zh) * 2017-05-27 2018-12-07 华为技术有限公司 一种排序网络、排序方法及排序装置
CN110569622A (zh) * 2019-09-18 2019-12-13 中国电建集团成都勘测设计研究院有限公司 一种基于多目标优化的挡土墙优化设计方法
CN112100493A (zh) * 2020-09-11 2020-12-18 北京三快在线科技有限公司 文档排序方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090037401A1 (en) * 2007-07-31 2009-02-05 Microsoft Corporation Information Retrieval and Ranking
US20100250523A1 (en) * 2009-03-31 2010-09-30 Yahoo! Inc. System and method for learning a ranking model that optimizes a ranking evaluation metric for ranking search results of a search query
CN101957859A (zh) * 2010-10-15 2011-01-26 西安电子科技大学 基于集成支撑矢量机排序的信息检索方法
CN102043776A (zh) * 2009-10-14 2011-05-04 南开大学 与查询相关的多排序模型集成算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090037401A1 (en) * 2007-07-31 2009-02-05 Microsoft Corporation Information Retrieval and Ranking
US20100250523A1 (en) * 2009-03-31 2010-09-30 Yahoo! Inc. System and method for learning a ranking model that optimizes a ranking evaluation metric for ranking search results of a search query
CN102043776A (zh) * 2009-10-14 2011-05-04 南开大学 与查询相关的多排序模型集成算法
CN101957859A (zh) * 2010-10-15 2011-01-26 西安电子科技大学 基于集成支撑矢量机排序的信息检索方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孙鹤立 等: "查询依赖的有序多超平面排序学习模型", 《软件学报》, vol. 22, no. 11, 15 November 2011 (2011-11-15) *
李茂西 等: "基于ListMLE排序学习方法的机器译文自动评价研究", 《中文信息学报》, vol. 27, no. 4, 15 July 2013 (2013-07-15), pages 22 - 29 *
涂新辉 等: "基于排序学习的文本概念标注方法研究", 《北京大学学报(自然科学版)》, vol. 49, no. 1, 26 October 2012 (2012-10-26), pages 153 - 158 *
花贵春 等: "面向排序学习的特征分析的研究", 《计算机工程与应用》, vol. 47, no. 17, 11 June 2011 (2011-06-11), pages 122 - 127 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107330516A (zh) * 2016-04-29 2017-11-07 腾讯科技(深圳)有限公司 模型参数训练方法、装置及系统
CN106844024A (zh) * 2016-12-30 2017-06-13 中国科学院计算技术研究所 一种自学习运行时间预测模型的gpu/cpu调度方法及系统
CN106844024B (zh) * 2016-12-30 2020-06-05 中国科学院计算技术研究所 一种自学习运行时间预测模型的gpu/cpu调度方法及系统
CN108958702A (zh) * 2017-05-27 2018-12-07 华为技术有限公司 一种排序网络、排序方法及排序装置
CN108958702B (zh) * 2017-05-27 2021-01-15 华为技术有限公司 一种排序网络、排序方法及排序装置
CN110569622A (zh) * 2019-09-18 2019-12-13 中国电建集团成都勘测设计研究院有限公司 一种基于多目标优化的挡土墙优化设计方法
CN110569622B (zh) * 2019-09-18 2022-05-20 中国电建集团成都勘测设计研究院有限公司 一种基于多目标优化的挡土墙优化设计方法
CN112100493A (zh) * 2020-09-11 2020-12-18 北京三快在线科技有限公司 文档排序方法、装置、设备及存储介质
CN112100493B (zh) * 2020-09-11 2024-04-26 北京三快在线科技有限公司 文档排序方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN103605493B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Zhang et al. An improved quantile regression neural network for probabilistic load forecasting
CN103745273B (zh) 一种半导体制造过程的多性能预测方法
CN105893609A (zh) 一种基于加权混合的移动app推荐方法
CN108985335B (zh) 核反应堆包壳材料辐照肿胀的集成学习预测方法
CN104657496A (zh) 一种计算信息热度值的方法和设备
CN108090510A (zh) 一种基于间隔优化的集成学习方法及装置
Gul et al. Mid-term electricity load prediction using CNN and Bi-LSTM
CN104966105A (zh) 一种鲁棒机器错误检索方法与系统
CN106022954A (zh) 基于灰色关联度的多重bp神经网络负荷预测方法
CN103605493A (zh) 基于图形处理单元的并行排序学习方法及系统
CN109635245A (zh) 一种鲁棒宽度学习系统
CN110619419B (zh) 城市轨道交通的客流预测方法
CN107358294A (zh) 一种基于Elman神经网络的需水预测方法
CN103617203B (zh) 基于查询驱动的蛋白质-配体绑定位点预测方法
CN107798426A (zh) 基于原子分解和交互式模糊满意度的风功率区间预测方法
CN105740354A (zh) 自适应潜在狄利克雷模型选择的方法及装置
CN110310012B (zh) 数据分析方法、装置、设备及计算机可读存储介质
CN105224577A (zh) 一种多标签文本分类方法及系统
CN112508244A (zh) 一种用户级综合能源系统多元负荷预测方法
CN108830405B (zh) 基于多指标动态匹配的实时电力负荷预测系统及其方法
CN110489616A (zh) 一种基于Ranknet和Lambdamart算法的搜索排序方法
CN104572915A (zh) 一种基于内容环境增强的用户事件相关度计算方法
CN104217296A (zh) 一种上市公司绩效综合评价方法
CN104698838A (zh) 基于论域动态划分和学习的模糊调度规则挖掘方法
CN105354644A (zh) 一种基于集成经验模态分解和1-范数支持向量机分位数回归的金融时间序列预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant