CN103603767B - A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork - Google Patents

A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork Download PDF

Info

Publication number
CN103603767B
CN103603767B CN201310426365.6A CN201310426365A CN103603767B CN 103603767 B CN103603767 B CN 103603767B CN 201310426365 A CN201310426365 A CN 201310426365A CN 103603767 B CN103603767 B CN 103603767B
Authority
CN
China
Prior art keywords
speed
optimal
sliding mode
wind speed
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310426365.6A
Other languages
Chinese (zh)
Other versions
CN103603767A (en
Inventor
刘涛
李晓辉
杜明
王旭东
韩磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310426365.6A priority Critical patent/CN103603767B/en
Publication of CN103603767A publication Critical patent/CN103603767A/en
Application granted granted Critical
Publication of CN103603767B publication Critical patent/CN103603767B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种基于滑模的极值搜索控制参数自适应调整方法,包括步骤有:(1)每隔采样周期Δt,从发电机输出端采集t时刻(当前时刻)的实际输出功率ps(t),从风速测量装置得到当前风速;(2)导出当前风速下的最佳转速;(3)计算调整系数γ;(4)基于滑模的极值搜索控制的参数调整,如果|ps(t)-pwmax(t)|>ξ,ξ为小槛值,则令Z0=Z0×γ、U0=U0×γ;否则,保持Z0、U0不变,t=t+Δt并转到第②步;(5)控制系统通过滑模运动快速调整发电机转速ωr到其最佳转速ωref;(6)使输出的功率曲线最接近最佳功率曲线。本发明根据当前风速环境自动调整控制系统参数,使输出的功率曲线更加接近最佳曲线,使风能利用系数Cp恢复到最大值。

The present invention relates to an adaptive adjustment method of extreme value search control parameters based on sliding mode, including the following steps: (1) collecting the actual output power p s at time t (current time) from the generator output terminal every sampling period Δt (t), get the current wind speed from the wind speed measurement device; (2) derive the optimal speed at the current wind speed; (3) calculate the adjustment coefficient γ; (4) adjust the parameters of the extreme value search control based on the sliding mode, if |p s (t)-p wmax (t)|>ξ, ξ is a small threshold, then set Z 0 =Z 0 ×γ, U 0 =U 0 ×γ; otherwise, keep Z 0 and U 0 unchanged, t =t+Δt and go to step ②; (5) The control system quickly adjusts the generator speed ω r to its optimal speed ω ref through sliding mode motion; (6) Make the output power curve closest to the optimal power curve. The invention automatically adjusts the parameters of the control system according to the current wind speed environment, makes the output power curve closer to the optimal curve, and restores the wind energy utilization coefficient C p to the maximum value.

Description

一种基于滑模的极值搜索控制参数自适应调整方法A method for adaptive adjustment of control parameters based on sliding mode extreme value search

技术领域technical field

本发明属于双馈型变速恒频风力发电系统技术领域,尤其是一种基于滑模的极值搜索控制参数自适应调整方法。The invention belongs to the technical field of double-fed variable-speed constant-frequency wind power generation systems, in particular to an adaptive adjustment method for extreme value search control parameters based on sliding mode.

背景技术Background technique

近十年来风力发电技术在世界范围内取得了迅猛发展,风电系统单机功率由上世纪90年代的几千W增大到了目前的5-6MW。如何在有效的风速范围内最大限度提高风能的利用率而提高风电场的工作效率,即风电系统最大风能追踪和调节问题,一直是风电场出力调节和控制的一个热点问题。In the past ten years, wind power generation technology has achieved rapid development in the world. The power of a single wind power system has increased from several thousand W in the 1990s to the current 5-6MW. How to maximize the utilization of wind energy within the effective wind speed range and improve the efficiency of wind farms, that is, the problem of tracking and adjusting the maximum wind energy of the wind power system, has always been a hot issue in the regulation and control of wind farm output.

有关风电系统最大风能追踪问题,国内外研究人员提出了众多有意义的算法及策略。采用最佳叶尖速比法来实现最大风能追踪,该方法控制原理简单,但需要对风速进行实时精确的测量,降低了控制的精确度。采用所谓的爬山法实现机组最大风能追踪,但该方法的缺点是控制器的精度尚有待进一步提高。将WRBFN神经网络与爬山算法相结合来解决爬山算法控制精度不够高的缺点,但还只能适用于直驱永磁式变速恒频风电系统。基于仿真试验获得与既定风速曲线相对应的最佳出力曲线的所谓功率反馈法以实现最大风能追踪控制,由于风速曲线是随机变化的,如何对于变化非常复杂的不同的风速曲线而快速地获得有代表性的最佳功率风速控制曲线是该方法需要克服的难点。基于滑模变结构控制策略的最佳风能追踪方法,该方法具有无差跟踪及响应速度快的特点,但其缺点是在最大功率点附近可能会产生振荡。基于模糊控制策略的最大风能追踪策略,该方法的最大优点是无需对被控对象进行精确建模,但控制器控制精度相对较低。基于摄动极值搜索的风电最大出力追踪方法,该方法也无需对控制对象建立精确的模型,但由于需额外引入激励信号及高通滤波器,一方面降低了控制的反应速度,另一方面也增加了控制系统的复杂性。基于滑模的极值搜索控制,该控制方法不但不需控制对象的数学模型,而且控制原理简单,控制效果好,缺点是该控制方法存在三个参数,如果参数设置不当会大大降低控制的品质,而传统方法是采用仿真的方法,进行反复地人为参数调整,而得到具有比较好的控制品质的参数,当系统结构发生变化时,又要进行相应的调整,因此非常繁琐。可以看出,当前对于风电最大风能追踪控制方法各有优点,但也均存在一定问题。Regarding the problem of tracking the maximum wind energy of wind power systems, researchers at home and abroad have proposed many meaningful algorithms and strategies. The optimal tip speed ratio method is used to achieve maximum wind energy tracking. This method has a simple control principle, but requires real-time and accurate measurement of wind speed, which reduces the control accuracy. The so-called hill-climbing method is used to realize the maximum wind energy tracking of the unit, but the disadvantage of this method is that the accuracy of the controller needs to be further improved. Combining the WRBFN neural network with the hill-climbing algorithm solves the shortcomings of the hill-climbing algorithm's control accuracy, but it can only be applied to direct-drive permanent magnet variable-speed constant-frequency wind power systems. The so-called power feedback method to obtain the optimal output curve corresponding to the given wind speed curve based on the simulation test is used to realize the maximum wind energy tracking control. Since the wind speed curve changes randomly, how to quickly obtain effective wind speed curves for different wind speed curves with very complicated changes? The representative optimal power wind speed control curve is the difficulty that this method needs to overcome. The optimal wind energy tracking method based on the sliding mode variable structure control strategy has the characteristics of no error tracking and fast response, but its disadvantage is that oscillation may occur near the maximum power point. Based on the maximum wind energy tracking strategy of fuzzy control strategy, the biggest advantage of this method is that it does not need to accurately model the controlled object, but the control accuracy of the controller is relatively low. The wind power maximum output tracking method based on perturbation extremum search does not need to establish an accurate model for the control object. Increased the complexity of the control system. Based on sliding mode extreme value search control, this control method not only does not need the mathematical model of the control object, but also has a simple control principle and good control effect. The disadvantage is that this control method has three parameters. If the parameters are not set properly, the control quality will be greatly reduced. , while the traditional method is to use the simulation method to repeatedly adjust the artificial parameters to obtain parameters with better control quality. When the system structure changes, it needs to be adjusted accordingly, so it is very cumbersome. It can be seen that the current maximum wind energy tracking control methods for wind power have their own advantages, but there are also certain problems.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提供一种基于滑模的极值搜索控制参数自适应调整方法,该方法能根据双馈型变速恒频风电机组的控制结构及当前的风速环境自动调整基于滑模的极值搜索控制(SM-ESC)的ρ、Z0、U0三个参数,从而使SM-ESC的控制品质保持最佳,最终达到提高风能利用率、实现风电系统的最大风能追踪的目的。。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a sliding mode based extreme value search control parameter adaptive adjustment method, which can automatically Adjust the three parameters of ρ, Z 0 , and U 0 of the sliding mode-based extreme value search control (SM-ESC), so as to maintain the best control quality of SM-ESC, and finally improve the utilization rate of wind energy and realize the maximum value of the wind power system. The purpose of wind energy tracking. .

本发明解决其技术问题是采取以下技术方案实现的:The present invention solves its technical problem and realizes by taking the following technical solutions:

一种基于滑模的极值搜索控制参数自适应调整方法,包括步骤如下:A method for adaptive adjustment of control parameters based on sliding mode extremum search, comprising the following steps:

(1)每隔采样周期Δt,从发电机输出端采集t时刻(当前时刻)的实际输出功率ps(t),从风速测量装置得到当前风速;(1) Every sampling period Δt, the actual output power p s (t) at time t (current moment) is collected from the output terminal of the generator, and the current wind speed is obtained from the wind speed measuring device;

(2)导出当前风速下的最佳转速;(2) Deriving the best rotational speed under the current wind speed;

(3)计算调整系数γ;(3) Calculate the adjustment coefficient γ;

(4)基于滑模的极值搜索控制的参数调整,如果|ps(t)-pwmax(t)|>ξ,ξ为小槛值,则令Z0=Z0×γ、U0=U0×γ;否则,保持Z0、U0不变,t=t+Δt并转到第②步;(4) Parameter adjustment of extreme value search control based on sliding mode, if |ps (t)-p wmax ( t )|>ξ, ξ is a small threshold, then let Z 0 =Z 0 ×γ, U 0 =U 0 ×γ; otherwise, keep Z 0 and U 0 unchanged, t=t+Δt and go to step ②;

(5)当ps(t)=pwmax(t)时,基于滑模的极值搜索控制结构中的参数Z0、U0为该控制系统的最佳参数,控制系统通过滑模运动快速调整发电机转速ωr到其最佳转速ωref(5) When p s (t)=p wmax (t), the parameters Z 0 and U 0 in the extreme value search control structure based on sliding mode are the optimal parameters of the control system, and the control system moves quickly through the sliding mode Adjust the generator speed ω r to its optimum speed ω ref ;

(6)通过风能转换系统,运行在最佳转速ωref的风电机组输出当前风速下的最大功率pwmax,通过参数调整,最终获得一组最佳参数,使输出的功率曲线最接近最佳功率曲线。(6) Through the wind energy conversion system, the wind turbine operating at the optimal speed ω ref outputs the maximum power p wmax under the current wind speed, and finally obtains a set of optimal parameters through parameter adjustment, so that the output power curve is closest to the optimal power curve.

而且,所述步骤(2)导出当前风速下的最佳转速的具体方法为:风能利用率Cp取最大值0.475,根据式计算出t时刻风速v下的最大功率pwmax(t),最大功率对应的转速为当前风速下的最佳转速ωrefMoreover, the specific method for deriving the optimal rotational speed under the current wind speed in the step (2) is as follows: the wind energy utilization rate C p takes the maximum value of 0.475, according to the formula Calculate the maximum power p wmax (t) at the wind speed v at time t, and the speed corresponding to the maximum power is the optimal speed ω ref at the current wind speed.

而且,所述步骤(3)计算调整系数γ所采用的公式为:根据式计算调整系数γ。Moreover, the formula used to calculate the adjustment coefficient γ in the step (3) is: according to the formula Computes the adjustment factor γ.

本发明的优点和积极效果是:Advantage and positive effect of the present invention are:

本发明对基于滑模的极值搜索控制进行改进,增加了参数自适应调整模块,应用于双馈型变速恒频风力发电系统中,能够根据当前风速环境自动调整控制系统参数,使控制品质最佳,进而使输出的功率曲线更加接近最佳曲线;在最大风能追踪效果上风速变化后能迅速调整转速保持叶尖速比λ为其最佳值,使风能利用系数Cp恢复到最大值。The present invention improves the extremum search control based on sliding mode, adds a parameter self-adaptive adjustment module, and applies it to a double-fed variable-speed constant-frequency wind power generation system. It can automatically adjust the control system parameters according to the current wind speed environment, so that the control quality is the best. In order to make the output power curve closer to the optimal curve; in the maximum wind energy tracking effect, after the wind speed changes, the speed can be quickly adjusted to keep the tip speed ratio λ at its optimal value, so that the wind energy utilization coefficient C p can be restored to the maximum value.

附图说明Description of drawings

图1基于滑模的极值搜索控制应用到风电中的结构框图;Figure 1 is a structural block diagram of the extreme value search control based on sliding mode applied to wind power;

图2基于滑模的极值搜索控制的双馈发电机转子侧PWM的控制策略框图;Fig. 2 Control strategy block diagram of doubly-fed generator rotor side PWM based on sliding mode extremum search control;

图3有参数自适应调整与无参数调整所得的风电最佳出力曲线对比图;Fig. 3 is a comparison chart of the optimal wind power output curve obtained with parameter adaptive adjustment and without parameter adjustment;

图4增加参数自适应调整的基于滑模极值搜索控制结构框图;Figure 4 adds a block diagram of the control structure based on sliding mode extreme value search for parameter adaptive adjustment;

图5为本发明效果验证时使用的风速模型;Fig. 5 is the wind speed model used when the effect verification of the present invention;

图6本专利方法与未进行参数自适应调整SM-ESC、最佳叶尖速比法以及基于摄动的ESC法ωr的对比效果;Fig. 6 The comparison effect between this patent method and the SM-ESC without parameter adaptive adjustment, the optimal tip speed ratio method and the perturbation-based ESC method ω r ;

图7本专利方法与未进行参数自适应调整SM-ESC、最佳叶尖速比法以及基于摄动的ESC法ps对比效果图。Fig. 7 The comparison effect diagram of the patented method and the SM-ESC without parameter adaptive adjustment, the optimal tip speed ratio method and the perturbation-based ESC method p s .

具体实施方式detailed description

以下结合附图对本发明实施例做进一步详述,需要强调的是,以下实施方式是说明性的,而不是限定性的,不能以此实施方式作为对本发明的限定。The embodiments of the present invention will be described in further detail below in conjunction with the accompanying drawings. It should be emphasized that the following embodiments are illustrative, not restrictive, and should not be used as limitations of the present invention.

一种基于滑模的极值搜索控制参数自适应调整方法,该系统包括:含参数自适应调整模块的基于滑模的极值搜索控制系统,该系统输出一个发电机最佳转速参考值ωref,风能转换系统通过跟踪该转速参考值来输出最大功率,输出的功率再反馈到含参数自适应调整模块的基于滑模的极值搜索控制系统中,这样一个反馈系统就能保证风电系统随时调整其转速从而使输出的功率最大化。A sliding mode based extreme value search control parameter adaptive adjustment method, the system includes: a sliding mode based extreme value search control system including a parameter adaptive adjustment module, the system outputs an optimal generator speed reference value ω ref , the wind energy conversion system outputs the maximum power by tracking the speed reference value, and the output power is fed back to the extreme value search control system based on the sliding mode with the parameter adaptive adjustment module. Such a feedback system can ensure that the wind power system can be adjusted at any time Its speed thus maximizes the output power.

步骤如下:Proceed as follows:

(1)每隔采样周期Δt,从发电机输出端采集t时刻(当前时刻)的实际输出功率ps(t),从风速测量装置得到当前风速;风能利用率Cp取最大值0.475,根据式计算出t时刻风速v下的最大功率pwmax(t),如图1所示,最大功率对应的转速为当前风速下的最佳转速ωref(1) Every sampling period Δt, the actual output power p s (t) at time t (current moment) is collected from the output terminal of the generator, and the current wind speed is obtained from the wind speed measuring device; the maximum value of wind energy utilization C p is 0.475, according to Mode Calculate the maximum power p wmax (t) under the wind speed v at time t, as shown in Figure 1, the speed corresponding to the maximum power is the best speed ω ref under the current wind speed;

(2)根据式 γ = | p w max ( t ) - p w max ( t - Δt ) | | p s ( t ) - p s ( t - Δt ) | 计算调整系数γ;(2) According to the formula γ = | p w max ( t ) - p w max ( t - Δt ) | | p the s ( t ) - p the s ( t - Δt ) | Calculate the adjustment factor γ;

(3)如图2所示,基于滑模的极值搜索控制的参数调整模块,如果|ps(t)-pwmax(t)|>ξ,ξ为比较小的槛值,则令Z0=Z0×γ、U0=U0×γ;否则,则保持Z0、U0不变。t=t+Δt并转到第②步;(3) As shown in Figure 2, the parameter adjustment module of the extremum search control based on sliding mode, if |ps (t)-p wmax ( t )|>ξ, ξ is a relatively small threshold, then let Z 0 =Z 0 ×γ, U 0 =U 0 ×γ; otherwise, keep Z 0 and U 0 unchanged. t=t+Δt and go to step ②;

(4)当ps(t)=pwmax(t)时,基于滑模的极值搜索控制结构中的参数Z0、U0为该控制系统的最佳参数,控制系统能通过滑模运动快速调整发电机转速ωr到其最佳转速ωref(4) When p s (t)=p wmax (t), the parameters Z 0 and U 0 in the extreme value search control structure based on sliding mode are the optimal parameters of the control system, and the control system can move through the sliding mode Quickly adjust the generator speed ω r to its optimum speed ω ref ;

(5)通过风能转换系统,运行在最佳转速ωref的风电机组输出当前风速下的最大功率pwmax,如图3所示,通过参数调整,最终获得一组最佳参数,使输出的功率曲线最接近最佳功率曲线。(5) Through the wind energy conversion system, the wind turbine operating at the optimal speed ω ref outputs the maximum power p wmax under the current wind speed, as shown in Figure 3, and finally obtains a set of optimal parameters through parameter adjustment, so that the output power The curve is closest to the optimal power curve.

为了验证上述改进后的基于滑模的极值搜索控制方法在最大风能追踪和机械转矩控制上的效果,本专利在PSCAD/EMTDC仿真平台上搭建了变速恒频风电机组的控制模型,采用的双馈电机参数如表1所示,风轮机组的参数如表2所示。In order to verify the effect of the above-mentioned improved sliding mode-based extreme value search control method on maximum wind energy tracking and mechanical torque control, this patent builds a control model of variable-speed constant-frequency wind turbines on the PSCAD/EMTDC simulation platform. The parameters of the DFIG are shown in Table 1, and the parameters of the wind turbine are shown in Table 2.

表1双馈异步发电机参数Table 1 Parameters of doubly-fed asynchronous generator

额定容量Rated Capacity 额定电压为1Rated voltage is 1 频率frequency 5MVA5MVA 10KV10KV 50HZ50HZ

表2风轮机组参数Table 2 Wind turbine parameters

初始参数ρ、Z0、U0分别为:0.015、1.125、0.077;Δt取0.1s。图4所示是仿真所用的平均值为8m/s的随机风速曲线,持续时间为3000秒;图5是叶尖速比λ和风能利用系数Cp的变化曲线。从图5可以看出,λ在最佳值7附近波动,Cp则在最大值0.475及以下波动,波动范围不大,并且减小后能迅速恢复到最大值,说明采用本文控制策略之后能保证风力机大多数情况下运行在λopt和Cpmax附近,实现了最大风能追踪目的。The initial parameters ρ, Z 0 , U 0 are: 0.015, 1.125, 0.077 respectively; Δt is taken as 0.1s. Figure 4 shows the random wind speed curve with an average value of 8m/s used in the simulation, and the duration is 3000 seconds; Figure 5 shows the change curve of the blade tip speed ratio λ and the wind energy utilization coefficient Cp . It can be seen from Figure 5 that λ fluctuates around the optimal value of 7, and C p fluctuates at the maximum value of 0.475 and below, the fluctuation range is not large, and can quickly return to the maximum value after being reduced, indicating that the control strategy in this paper can It is guaranteed that the wind turbine operates near λ opt and C pmax in most cases, and realizes the purpose of tracking the maximum wind energy.

为了更直观地观察基于滑模的极值搜索控制进行最大风能追踪的控制效果,本专利分别搭建了最佳叶尖速比法和基于摄动的极值搜索法的模型与基于滑模的极值搜索空控制进行比较,当风速由9m/s突然增大到10m/s时,三种方法的转子转速ωr和定子输出有功功率ps的变化情况如附图6和附图7,可以看出基于滑模的极值搜索控制比另外两种方法更加接近最佳曲线,因此采用改进后的极值搜索法不仅在控制原理上有优势(该方法唯一需要的输入变量是发电机输出的有功功率,这就避免了许多传统方法存在的复杂问题,比如风速的快速准确测量、对风轮机模型和参数的要求以及需要梯度传感器等),在控制效果上也较其他方法好。In order to more intuitively observe the control effect of the maximum wind energy tracking based on the sliding mode extreme search control, this patent respectively builds the models of the optimal tip speed ratio method and the perturbation based extreme value search method and the extreme value search method based on the sliding mode. When the wind speed suddenly increases from 9m/s to 10m/s, the changes of rotor speed ω r and stator output active power p s of the three methods are shown in Figure 6 and Figure 7, which can be It can be seen that the extreme value search control based on sliding mode is closer to the optimal curve than the other two methods, so the improved extreme value search method not only has advantages in the control principle (the only input variable required by this method is the generator output Active power, which avoids the complex problems of many traditional methods, such as fast and accurate measurement of wind speed, requirements for wind turbine models and parameters, and the need for gradient sensors, etc.), and the control effect is better than other methods.

综上所述,本发明专利对基于滑模的极值搜索控制进行改进,增加了参数自适应调整模块,应用到双馈型变速恒频风电机组中,使SM-ESC的控制品质保持最佳,最终达到提高风能利用率、实现风电系统的最大风能追踪的目的。In summary, the invention patent improves the extreme value search control based on sliding mode, adds a parameter adaptive adjustment module, and applies it to double-fed variable-speed constant-frequency wind turbines to maintain the best control quality of SM-ESC , and finally achieve the purpose of improving the utilization rate of wind energy and realizing the maximum wind energy tracking of the wind power system.

Claims (2)

1.一种基于滑模的极值搜索控制参数自适应调整方法,其特征在于包括步骤如下:1. A sliding mode-based extreme value search control parameter adaptive adjustment method is characterized in that comprising steps as follows: (1)每隔采样周期Δt,从发电机输出端采集当前t时刻的实际输出功率ps(t),从风速测量装置得到当前风速;(1) Every sampling period Δt, collect the actual output power p s (t) at the current moment t from the output terminal of the generator, and obtain the current wind speed from the wind speed measuring device; (2)导出当前风速下的最佳转速;(2) Deriving the best rotational speed under the current wind speed; (3)计算调整系数γ;计算调整系数γ所采用的公式为:根据式计算调整系数γ;(3) Calculate the adjustment coefficient γ; the formula used to calculate the adjustment coefficient γ is: according to the formula Calculate the adjustment factor γ; (4)基于滑模的极值搜索控制的参数调整,如果|ps(t)-pwmax(t)|>ξ,ξ为小槛值,则令Z0=Z0×γ、U0=U0×γ;否则,保持Z0、U0不变,t=t+Δt并转到第(2)步;(4) Parameter adjustment of extremum search control based on sliding mode, if |ps (t)-p wmax ( t )|>ξ, ξ is a small threshold, then let Z 0 =Z 0 ×γ, U 0 =U 0 ×γ; otherwise, keep Z 0 and U 0 unchanged, t=t+Δt and go to step (2); (5)当ps(t)=pwmax(t)时,基于滑模的极值搜索控制结构中的参数Z0、U0为该控制系统的最佳参数,控制系统通过滑模运动快速调整发电机转速ωr到其最佳转速ωref(5) When p s (t)=p wmax (t), the parameters Z 0 and U 0 in the extremum search control structure based on sliding mode are the optimal parameters of the control system, and the control system moves quickly through the sliding mode Adjust the generator speed ω r to its optimum speed ω ref ; (6)通过风能转换系统,运行在最佳转速ωref的风电机组输出当前风速下的最大功率pwmax,通过参数调整,最终获得一组最佳参数,使输出的功率曲线最接近最佳功率曲线。(6) Through the wind energy conversion system, the wind turbine operating at the optimal speed ω ref outputs the maximum power p wmax under the current wind speed, and finally obtains a set of optimal parameters through parameter adjustment, so that the output power curve is closest to the optimal power curve. 2.根据权利要求1所述的基于滑模的极值搜索控制参数自适应调整方法,其特征在于:所述步骤(2)导出当前风速下的最佳转速的具体方法为:风能利用率Cp取最大值0.475,根据式计算出t时刻风速v下的最大功率pwmax(t),最大功率对应的转速为当前风速下的最佳转速ωref2. the extreme value search control parameter adaptive adjustment method based on sliding mode according to claim 1, is characterized in that: the specific method of described step (2) deriving the optimal rotating speed under the current wind speed is: wind energy utilization rate C p takes the maximum value of 0.475, according to the formula Calculate the maximum power p wmax (t) at the wind speed v at time t, and the speed corresponding to the maximum power is the optimal speed ω ref at the current wind speed.
CN201310426365.6A 2013-09-18 2013-09-18 A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork Active CN103603767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310426365.6A CN103603767B (en) 2013-09-18 2013-09-18 A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310426365.6A CN103603767B (en) 2013-09-18 2013-09-18 A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork

Publications (2)

Publication Number Publication Date
CN103603767A CN103603767A (en) 2014-02-26
CN103603767B true CN103603767B (en) 2016-03-30

Family

ID=50122015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310426365.6A Active CN103603767B (en) 2013-09-18 2013-09-18 A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork

Country Status (1)

Country Link
CN (1) CN103603767B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850166A (en) * 2014-08-29 2015-08-19 国家电网公司 Photovoltaic power generation maximum power tracking method adopting sliding mode layer extremum searching control
CN104410107B (en) * 2014-11-27 2016-09-14 江苏科技大学 A Passive Integral Sliding Mode Control Method for Doubly-fed Wind Power System
CN104460819B (en) * 2014-12-23 2016-04-13 桂林电子科技大学 A kind of maximum power point of photovoltaic array sliding mode tracking control method and system
CN106527567A (en) * 2016-06-30 2017-03-22 国家电网公司 Maximum power tracking method for photovoltaic power generation based on self-adaptive slip-form layer extremum searching
CN108979957B (en) * 2018-07-16 2019-08-02 中南大学 Obtain the non-linear predication control method of Variable Speed Wind Power Generator maximal wind-energy
US10890346B2 (en) * 2018-08-21 2021-01-12 Johnson Controls Technology Company Extremum-seeking control system for on/off systems
CN109687788B (en) * 2018-12-27 2020-12-01 浙江工业大学 A speed sensorless control method for a doubly-fed wind power generation system
CN109707565B (en) * 2019-01-29 2021-04-27 中南大学 Maximum wind energy capture control method by using inertia of large wind turbine
CN111431192A (en) * 2020-03-24 2020-07-17 云南电网有限责任公司电力科学研究院 Method, device and system for restraining low-frequency oscillation of power grid by using additional damping
CN115576209B (en) * 2022-12-08 2023-03-31 南京理工大学紫金学院 A UAV Position Tracking Control Method Based on Extremum Search

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639038A (en) * 2009-08-14 2010-02-03 江南大学 FPGA-based maximum power tracking controller of wind power system
CN102072083A (en) * 2010-12-27 2011-05-25 西安理工大学 Maximum wind energy tracking method for double-fed wind power generation system
JP4998885B2 (en) * 2007-10-04 2012-08-15 国立大学法人 琉球大学 Maximum power tracking controller for wind turbine generator
EP1746285A3 (en) * 2005-07-20 2012-09-05 General Electric Company Method and apparatus for controlling windfarms and windfarms controlled thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746285A3 (en) * 2005-07-20 2012-09-05 General Electric Company Method and apparatus for controlling windfarms and windfarms controlled thereby
JP4998885B2 (en) * 2007-10-04 2012-08-15 国立大学法人 琉球大学 Maximum power tracking controller for wind turbine generator
CN101639038A (en) * 2009-08-14 2010-02-03 江南大学 FPGA-based maximum power tracking controller of wind power system
CN102072083A (en) * 2010-12-27 2011-05-25 西安理工大学 Maximum wind energy tracking method for double-fed wind power generation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
风电系统滑模极值搜索MPPT控制方法研究;潘庭龙等;《太阳能学报》;20121228;第33卷(第12期);2193-2197 *

Also Published As

Publication number Publication date
CN103603767A (en) 2014-02-26

Similar Documents

Publication Publication Date Title
CN103603767B (en) A kind of extremum search controling parameters self-adapting regulation method based on sliding formwork
CN107679769B (en) Establishing method of frequency response model and calculation method of frequency characteristic index of power system with wind power
Wang et al. Adaptive fixed-time sensorless maximum power point tracking control scheme for DFIG wind energy conversion system
CN101776043B (en) Error compensation model-based wind turbine generator maximum wind energy capture control method
CN101860044B (en) Method for cooperatively controlling reactive voltage of wind farm
CN104612904B (en) A kind of double feed wind power generator group maximal wind-energy capture method
CN103595046B (en) Load frequency control method for wind-diesel hybrid power system based on diesel engine side
WO2016107314A1 (en) Method, device and system for compensating output power of wind turbine generator set
CN103410662A (en) Neural network compensation control method for capturing maximum wind energy in wind power system
Bystryk et al. Small wind turbine power control in intermittent wind gusts
CN107947195B (en) A frequency modulation method and device for a large wind turbine
Zhang et al. An improved maximum power point tracking method based on decreasing torque gain for large scale wind turbines at low wind sites
CN107800154A (en) A kind of DFIG participates in more wind speed section integrated control methods of primary frequency regulation of power network
Thongam et al. An optimum speed MPPT controller for variable speed PMSG wind energy conversion systems
CN104538989A (en) Control method for closed-loop active power of wind power plant
Ciccarelli et al. Sliding mode control based robust observer of aerodynamic torque for variable-speed wind turbines
CN109139363B (en) Maximum power point tracking control method for improving performance of multi-model wind turbine
CN112682258B (en) Backstepping-based maximum power point tracking control method for large wind turbines
CN114566981A (en) Wind power plant primary frequency modulation control method based on data prediction
CN103603771B (en) A kind of wind power generating set optimal wind energy catching method
CN103595045A (en) Load frequency coordination control method of fan-participated frequency modulation wind-diesel hybrid power system
CN117060484A (en) Improved self-adaptive control method based on wind-storage combined frequency modulation system
Zhen et al. Study on control strategy of maximum power capture for DFIG in wind turbine system
Kasbi et al. Doubly fed induction generator based variable speed wind conversion system control enhancement by applying fractional order controller
Qi Research on variable pitch wind turbine control system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant