Technical background
Lithium ion battery has that cell voltage is high, energy density is high, memory-less effect, have extended cycle life, the advantage such as self discharge is low, the performance of performance to lithium ion battery of positive electrode plays a part decision.
The advantages such as it is low that manganese-based anode material has price, green non-pollution are the research emphasis of lithium ion battery.In manganese-based anode material, that studies more has spinelle LiMn
2o
4, stratiform LiMnO
2with layed solid-solution positive electrode.Wherein, stratiform LiMnO
2the less stable of structure when discharge and recharge, studies seldom at present.Spinelle LiMn
2o
4can play a role at 4V and 3V two voltage ranges.For 4V district, with lithium ion in the embedding of the tetrahedron 8a position of spinel structure with deviate from relevant; For 3V district, with lithium ion in the embedding of the octahedra 16c position of spinel structure with deviate from relevant.Lithium ion the tetrahedral site of spinel structure embedding and deviate from the significant change that can not cause sample structure.But, when the discharge and recharge degree of depth is excessive, owing to there is the John-Teller distortion effect of lithium ion, embed in octahedron and deviate from lithium ion sample structure can be caused by cube becoming four directions, discharge capacity rapid decay.Therefore, spinelle LiMn is suppressed
2o
4john-Teller distortion be the key improving its charge-discharge performance.In addition, LiMn
2o
4middle manganese can be dissolved in electrolyte, and during discharge and recharge, the decomposition of electrolyte also may affect the cycle performance of electrode material at higher voltages.
At Li
4mn
5o
12charge and discharge process in, the deintercalation of lithium ion reaction mainly occurs in 3V district, and its theoretical discharge capacity can reach 163mAh/g.With spinelle LiMn
2o
4the 148mAh/g of theoretical capacity compares and significantly improves, and has the possibility becoming the outstanding positive electrode in 3V district.In this material charge and discharge process, structure cell expansion rate is less, has the advantages such as cycle performance is outstanding.But, Li
4mn
5o
12thermal stability bad.Li under high temperature
1+ymn
2-yo
4(y<0.33) easily LiMn is decomposed into
2o
4and Li
2mnO
3[ManthiramA., etal., Ceram.Trans, 1998,92:291-302.], makes Li
4mn
5o
12prepared by very difficult conventional method.Have studied multiple synthetic method, attempted to obtain more desirable preparation method.Comprise solid sintering technology, sol-gal process, hydro thermal method and microwave sintering method etc.
Solid sintering technology is the compound of compound by lithium and manganese, sintering preparation under aerobic or oxygen free condition.Takada etc. [TakadaT., J.SolidStateChem., 1997,130:74-80.] are by lithium salts (LiNO
3, Li
2cO
3, Li (CH
3) and manganese compound (MnCO COO)
3, Mn (NO
3)
2, Mn
2o
3and MnO
2) mixing, obtain Li 500 DEG C of-800 DEG C of temperature ranges
4mn
5o
12.[KangS.H., etal., the Electrochem.Solid-StateLett. such as Kang, 2000,3 (12): 536-639.] and [FumioS., the etal. such as Fumio, J.PowerSources, 1997,68 (2): 609-612.] first dry LiOHH
2o and Mn (Ac)
24H
2the mixed solution of O, then in 500 DEG C of obtained Li [Li of sintering
ymn
2-y] O
4.Li [the Li that they prepare
ymn
2-y] O
4the discharge capacity of sample in 3V district is 115-126mAh/g.In oxygen atmosphere, Takada etc. [TakadaT., etal., J.PowerSources, 1997,68:613-617.] find, 500 DEG C of sintering CH
3cOOLi and Mn (NO
3)
2the product that obtains of fused mass be 135mAh/g in the discharge capacity of the 1st circulation.When Shin etc. [ShinY., etal., Electrochim.Acta, 2003,48 (24): 3583 – 3592.] think that sintering temperature is lower than 500 DEG C, Mn
3+amount increase discharge capacity is increased.[KajiyamaA., etal., J.JapanSoc.Powder & PowderMetallurgy, 2000,47 (11): 1139-1143 such as Kajiyama; NakamuraT.etal., SolidStateIonics, 1999,25:167-168.] by LiOHH
2o and γ-Mn
2o
3mixing, they find, the Li prepared in oxygen atmosphere
4mn
5o
12chemical property better than what prepare at air atmosphere.Xu Meihuas etc. [XuM.H., etal., J.Phys.Chem, 2010,114 (39): 16143 – 16147.] and Tian etc. [TianY., etal., Chem.Commun., 2007:2072 – 2074.] are by MnSO
4add LiNO
3and NaNO
3fuse salt in, can nanometer Li be obtained 470 DEG C of-480 DEG C of temperature ranges
4mn
5o
12.Nano wire Li prepared by Tian etc. [TianY., etal., Chem.Commun., 2007:2072 – 2074.]
4mn
5o
12154.3mAh/g and 140mAh/g is respectively in (under 0.2C multiplying power electric current) the 1st circulation and the 30th discharge capacity circulated.Thackeray etc. [ThackerayM.M, etal., J.SolidStateChem., 1996,125:274-277.; MichaelM., etal., AmericanCeram.Soc.Bull, 1999,82 (12): 3347-3354.] by LiOHH
2o and γ-MnO
2mixing, 600 DEG C of sintering can obtain Li
4mn
5o
12.Yang etc. [YangX., etal., J.SolidStateChem., 2000,10:1903-1909.] are by γ-MnO
2or β-MnO
2or the LiNO of barium manganese ore or acid birnessite and melting
3mixing, can obtain Li at 400 DEG C
1.33mn
1.67o
4.Liu Cong [Liu Cong. the synthesis and property [D] of lithium ion battery mangaic acid lithium cathode material. Guangdong: South China Normal University, 2009.] first by LiOHH
2o and electrolysis MnO
2mix in absolute ethyl alcohol, in 450 DEG C of sintering in air atmosphere, then ball milling obtains sample in ethanol.The most high discharge capacity of the sample that they prepare is 161.1mAh/g, and the discharge capacity of the 30th circulation is higher than 120mAh/g.
Kim etc. [KimJ., etal., J.Electrochem.Soc, 1998,145 (4): 53-55.] are at LiOH and Mn (CH
3cOO)
2mixed solution in add Li
2o
2, first obtained Li
xmn
yo
znH
2o, then obtain Li through filtration, washing, drying and solid-phase sintering
4mn
5o
12.They find, the initial discharge capacity of the sample of 500 DEG C of preparations is 153mAh/g, and the capacity attenuation rate of 40 circulations is 2%.Manthiram etc. [ManthiramA., etal., J.Chem.Mater, 1998,10 (10): 2895-2909.] research shows, in LiOH solution, and Li
2o
2initial oxidation [Mn (H
2o)
6]
2+, then through 400 DEG C of sintering, the Li of preparation
4mn
5o
12the 1st circulation discharge capacity be 160mAh/g.
In order to improve solid sintering technology process conditions, double sintering method is used to preparation process.Li righteous armies etc. [Li righteous army etc., non-ferrous metal, 2007,59 (3): 25-29.] are by LiOH, Mn (C
2o
4)
2and H
2c
2o
4mixture be placed in air atmosphere, prepare micron Li at 350 DEG C and 500 DEG C of sintering respectively
4mn
5o
12.The sample of preparation is 151mAh/g in the discharge capacity of the 1st circulation.[GaoJ., etal., Appl.Phys.Lett., 1995,66 (19): 2487-2489. such as Gao; GaoJ., etal., J.Electrochem.Soc., 1996,143 (6): 1783-1788.] adopt two step heatings to prepare spinelle Li
1+xmn
2-xo
4x(0<x≤0.2).Robertson etc. [RobertsonA.D., etal., J.PowerSources, 2001,97-97:332-335.] are at Mn (CH
3cOO)
24H
2li is mixed in O solution
2cO
3, dry acquisition precursor.Li has been prepared respectively at 250 DEG C and 300-395 DEG C of sintering
4mn
5o
12.Sample the 1st circulates and the discharge capacity of the 50th circulation is respectively 175mAh/g and 120mAh/g.Wang etc. [WangG.X., etal., J.PowerSources, 1998,74 (2): 198-201.] have synthesized Li at 380 DEG C
4mn
5o
12.Xia [XiaY.Y., etal., J.PowerSources, 1996,63 (1): 97-102.] etc., by injection method, obtain sample at 260 DEG C of direct sinterings.Under C/3 electric current, the discharge capacity first of this sample is 80mAh/g.
More than research shows, solid sintering technology prepares Li
4mn
5o
12need at pure O
2or carry out in air atmosphere.The shortcoming of this method comprise the composition of synthetic product and particle size distribution difference large, the capacity attenuation rate of sample charge and discharge cycles is high, and heavy-current discharge performance is not good, and high temperature cyclic performance is more undesirable.
In order to improve the uniformity of sample, reduce the granularity of sample particle, sol-gal process is used to prepare Li
4mn
5o
12[HaoY.J., etal., J.SolidStateElectrochem., 2009,13:905 – 912; Meng Lili etc., inorganic chemicals industry, 2009,46 (5): 37-39; ChuH.Y., etal., J.Appl.Electrochem, 2009,39:2007-2013.].Open [a meeting feelings etc., battery, 2004,34 (3): 176-177.] such as meeting feelings by LiOH2H
2o, Mn (CH
3cOO)
24H
2the mixture of O and citric acid is respectively at 300 DEG C and 500 DEG C of obtained micron spinelle Li of sintering
4mn
5o
12.
In order to improve the uniformity of sample, reduce the granularity of sample particle, reduce sintering temperature, hydro thermal method is also used to preparation process.Zhang [ZhangY.C., etal., Mater.Res.Bull., 2002,37 (8): 1411-1417.; Zhang Yongcai. hydro-thermal and solvent-thermal process metastable phase functional material are studied [D]. Beijing: Beijing University of Technology, 2003.; ZhangY.C., etal., J.SolidStateIonics, 2003,158 (1): 113-117.] etc. first by H
2o
2, LiOH and Mn (NO
3)
2the obtained fibrous presoma Li of mixed solution reaction
xmn
yo
znH
2o, then react obtained nanometer Li with LiOH solution low-temperature hydrothermal
4mn
5o
12.Generation superfine [generation is superfine. a kind of synthesis Li
4mn
5o
12method [P] .CN201010033605.2 of sub-micrometer rod, applying date 2010.01.04.] by MnSO
4h
2o, KMnO
4first obtain sub-micron MnOOH with the mixture of softex kw 140 DEG C-180 DEG C temperature range hydro-thermal reactions, then be mixed into LiOHH
2o, finally in 500 DEG C of-900 DEG C of obtained Li
4mn
5o
12.Sun Shuying etc. [Sun Shuying etc., inorganic material Leader, 2010,25 (6): 626-630.] by hydro-thermal reaction, by MnSO
4h
2o and (NH
4)
2s
2o
8obtained nanometer β-MnO
2, be mixed into LiNO
3after again by the obtained Li of low-temperature solid-phase method reaction
4mn
5o
12.
Because microwave sintering method has sintering velocity soon, the advantages such as sintering process is easy, the method that microwave sintering method or solid-phase sintering-microwave sintering combine is used to synthesize LiMn
2o
4.Ahniyaz etc. [AhniyazA., etal., J.Eng.Mater.Technol., 2004,264-268:133-136.] are by γ-MnOOH, LiOH and H
2o
2mixture synthesized LiMn by microwave sintering method
2o
4.Tong Qingsong seminar is with LiOH and Mn (CH
3cOO)
2for raw material [Lin Suying etc., Fujian chemical industry, 2004,2:1-4.; Tong Qingsong etc., electrochemistry, 2005,11 (4): 435-439.] or with LiOH and MnC
2o
4for raw material [Tong Qingsong etc., Fujian Normal University's journal, 2006,22 (1): 60-63.], with disodium EDTA (EDTA) and citric acid for complexing agent, adopt microwave-solid phase double sintering method, prepared spinelle Li at 380 DEG C
3.22na
0.569mn
5.78o
12sample or Li
4mn
5o
12positive electrode.Research shows, at 4.5-2.5V voltage range, and the Li of preparation
3.22na
0.569mn
5.78o
12sample is 132mAh/g in the discharge capacity of the 1st circulation, and the capacity attenuation rate of 100 circulations is 6.8%.Through 4 months deposit, this sample initial discharge capacity was 122mAh/g, and the capacity attenuation rate of 100 circulations is 17.4%.
Guo Junming etc. [Guo Junming etc., functional material, 2006,37:485-488.] for raw material, make fuel with urea with lithium nitrate and manganese nitrate (or with lithium acetate and manganese acetate), adopt liquid-phase combustion legal system to obtain Li
4mn
5o
12.They find, the Li of acetate system synthesis
4mn
5o
12the height that synthesizes compared with nitrate system of thing phase purity.Kim etc. [KimH.U., etal., Phys.Scr, 2010,139:1-6.] find, with by liquid phase synthesis approach in 400 DEG C sintering samples with micro-Mn
2o
3.Under 1C multiplying power electric current, the discharge capacity that sample the 1st circulates is 44.2mAh/g.Zhao etc. [ZhaoY., etal., Electrochem.Solid-StateLett., 2010,14:1509 – 1513.] adopt water-in-oil microemulsion method to synthesize nano spinel Li
4mn
5o
12.
Due to spinelle Li prepared by said method
4mn
5o
12in charge and discharge process, structural stability is not high, there is the problems such as discharge performance under low temperature discharge, high temperature circulation and big current is poor.Adopt Surface coating, added high polymer, Doped anions or cationic method carried out modification.
In order to improve Li
4mn
5o
12cycle performance, Liu Cong [Liu Cong, the synthesis and property of lithium ion battery mangaic acid lithium cathode material, South China Normal University's academic dissertation, 2009.] polyvinylpyrrolidonesolution solution is mixed with 450 DEG C of predecessors prepared, respectively through oxygen atmosphere process at hydro-thermal K cryogenic treatment, vacuum treatment, drying and 100 DEG C, obtained Li
4mn
5o
12.Research shows, under 0.5C multiplying power electric current, sample is respectively 137mAh/g and 126mAh/g in the discharge capacity of the 1st circulation and the 50th circulation.
In order to improve spinelle Li further
4mn
5o
12performance, adopted cation and anion doped method to improve the performance of sample.Zhang etc. [ZhangD.B., etal., J.PowerSources, 1998,76:81-90.] are with CrO
2.65, Li (OH) H
2o and MnO
2for raw material, respectively at 300 DEG C and 450 DEG C of sintering in oxygen atmosphere, prepare Li
4cr
ymn
5-yo
12(y=0,0.3,0.9,1.5,2.1).Research shows, at 0.25mA/cm
2under electric current, Li
4cr
1.5mn
3.5o
12sample is respectively 170mAh/g and 152Ah/g in the discharge capacity of the 1st circulation and the 100th circulation.Robertson etc. [RobertsonA.D., etal., J.PowerSources, 2001,97-97:332-335.] are at Mn (CH
3cOO)
24H
2o and Co (CH
3cOO)
24H
2first Li is added in O mixed solution
2cO
3, prepare precursor, respectively at 250 DEG C and 430-440 DEG C of sintering after drying, obtained Li
4-xmn
5-2xco
3xo
12sample.This sample is respectively 175mAh/g and 120mAh/g in the discharge capacity of the 1st circulation and the 50th circulation.With Li
4mn
5o
12compare, in charge and discharge cycles process, Li
4-xmn
5-2xco
3xo
12structure more stable.Wherein, Li
3.75mn
4.5co
0.075o
12the 1st circulation discharge capacity be 150mAh/g, 50 circulation capacity attenuation rates close to 0%.Choi etc. [ChoiW., etal., SolidStateIonics, 2007,178:1541-1545.] are by LiOH, LiF and Mn (OH)
2mixing, prepares Li respectively at 500 DEG C and 600 DEG C of double sinterings in air atmosphere
4mn
5o
12 ηf
η(0≤η≤0.2).Wherein, under 0.2C multiplying power electric current, the Li of 500 DEG C of preparations
4mn
5o
11.85f
0.1the 1st circulation discharge capacity be 158mAh/g.After at 25 DEG C and 60 DEG C, discharge and recharge 50 circulates, the capacity attenuation rate of this sample is respectively 2.9% and 3.9%, illustrates that the initial discharge capacity of mixing fluorine sample under high temperature and low temperature and cycle performance are improved.
Above-mentioned preparation method can improve the chemical property of sample.But, the spinelle Li owing to preparing at present
4mn
5o
12structure still unstable, transfer poor electrical performance at low temperature and heavy-current discharge condition, at high temperature cycle performance is obviously decayed.For this reason, the present invention promotes Li by mixing vanadium method
4mn
5o
12the stability of structure.Known following parameter, H
f298V-O=644kJmol
1, H
f298Mn-O=402kJmol
1, r
v-Othe oxidation state of=35.5pm(V is+5, and its ligancy is 4), r
v-Othe oxidation state of=54pm(V is+5, and its ligancy is 6), r
mn-Othe oxidation state of=39pm(Mn is+4, and its ligancy is 4), r
mn-Othe oxidation state of=53pm(Mn is+4, and its ligancy is 6) [JohnA.Dean, HandbookofChemistry(15
thedition)], from above parameter, V-O key is more much bigger than the intensity of Mn-O key, the similar size of ionic radius of vanadium ion and manganese ion, and therefore, replacing part manganese ion with vanadium ion can not have an impact to sample structure.Because the vanadium of doping and the oxygen of spinel structure can form strong effect, stabilize spinel structure, be conducive to improving the cycle performance mixing vanadium sample.
Summary of the invention
For avoiding the deficiencies in the prior art, the present invention's employing is mixed vanadium method and is improved spinelle Li
4mn
5o
12the stability of structure, thus, improve its cycle performance.The technical scheme adopted for realizing object of the present invention is:
Step 1: be compound, the compound of manganese, the compound of vanadium that x:y:z takes lithium respectively according to the mol ratio of lithium ion, manganese ion, vanadium ion.The span of described x, y and z meets following relational expression simultaneously: 1.20≤y+z≤1.30,0.95≤x≤1.06,1.05≤y≤1.25,0.05≤z≤0.25.
Step 2: the compound of the compound of lithium step 1 taken, the compound of manganese and vanadium, adds 1 times of wet grinding media to 20 times of volumes of mixed total solid capacity, mixes 3 hours ~ 15 hours with wet milling device wet-milling, obtained predecessor 1.By predecessor 2 dry to predecessor 1 constant pressure and dry, vacuumize or the preparation of spray-dired method.Predecessor 2 is placed in air, oxygen-enriched air or pure oxygen atmosphere, adopts double sintering legal system for spinel lithium-rich lithium manganate cathode material.
Described double sintering method is carried out as follows: the predecessor 2 of drying is placed in air, oxygen-enriched air or pure oxygen atmosphere, 3 hours ~ 15 hours are sintered in arbitrary temperature of 150 DEG C ~ 300 DEG C of temperature ranges, then be heated to arbitrary temperature of 400 DEG C ~ 600 DEG C of temperature ranges by last sintering temperature according to the firing rate of 1 DEG C/min ~ 30 DEG C/min, temperature is kept to sinter 3 hours ~ 24 hours, preparation spinel lithium-rich lithium manganate cathode material.
The compound of described lithium is lithium carbonate, lithium hydroxide, lithium acetate, lithium nitrate, lithium chloride or lithium citrate.
The compound of described vanadium is V
2o
5, V
2o
4, V
2o
3, VO, ammonium metavanadate, ammonium vanadate or vanadic acid.
The compound of described manganese is manganese oxide, manganese carbonate, basic carbonate manganese, manganous hydroxide, manganese acetate, manganese nitrate, manganese chloride or manganese citrate.
Described constant pressure and dry is arbitrary temperature predecessor 1 being placed in 130 DEG C ~ 280 DEG C of temperature ranges, and the drying carried out at 1 atmosphere pressure, prepares predecessor 2.Described vacuumize is arbitrary temperature predecessor 1 being placed in 80 DEG C ~ 280 DEG C of temperature ranges, carries out drying, prepare predecessor 2 under arbitrary pressure of 10Pa ~ 10132Pa pressure range.Described spray drying process is arbitrary temperature predecessor 1 being placed in 150 DEG C ~ 280 DEG C of temperature ranges, carries out drying, prepare predecessor 2 with spray dryer.
Described wet grinding media is deionized water, distilled water, ethanol, acetone, methyl alcohol or formaldehyde.
Described oxygen-enriched air is that oxygen volume content is greater than 21% and is less than the oxygen-enriched air between 100%.
Described wet milling device comprises general milling machine, super ball mill or wet milk.
Compared with other inventive method, cost of material of the present invention is lower, and raw material sources are extensive, and preparation process is simple, and that mixes vanadium improves spinelle Li
4mn
5o
12the stability of structure, improves the cycle performance mixing vanadium sample, for industrialization is laid a good foundation.