CN103589010A - Microporous wave-absorbing material with low surface density and high tensile strength and preparation method - Google Patents

Microporous wave-absorbing material with low surface density and high tensile strength and preparation method Download PDF

Info

Publication number
CN103589010A
CN103589010A CN201310521185.6A CN201310521185A CN103589010A CN 103589010 A CN103589010 A CN 103589010A CN 201310521185 A CN201310521185 A CN 201310521185A CN 103589010 A CN103589010 A CN 103589010A
Authority
CN
China
Prior art keywords
wave
microporous
absorbing material
tensile strength
surface density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310521185.6A
Other languages
Chinese (zh)
Other versions
CN103589010B (en
Inventor
孙洪国
周金向
杨小牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201310521185.6A priority Critical patent/CN103589010B/en
Publication of CN103589010A publication Critical patent/CN103589010A/en
Application granted granted Critical
Publication of CN103589010B publication Critical patent/CN103589010B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种低面密度高拉伸强度的微孔吸波材料及其制备方法,属于吸波材料技术领域。解决了现有微波材料密度较大、力学性能低和耐温性能不好的问题。本发明的制备方法是将橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂搅拌均匀后,经密炼、开炼,在150-160℃硫化并同时发泡25-35min,得到微孔吸波材料。本发明制备的微孔吸波材料的总厚度在1.4-2.0mm之间,面密度小于1.7kg/m2,材料在特定波段具有较好的吸波性能,同时具有较好的耐温性和力学性,耐温可达到150℃,拉伸强度平均值大于8.5MPa,断裂伸长率最小值为360%。

Figure 201310521185

The invention discloses a microporous wave-absorbing material with low surface density and high tensile strength and a preparation method thereof, belonging to the technical field of wave-absorbing materials. The invention solves the problems of high density, low mechanical properties and poor temperature resistance of existing microwave materials. The preparation method of the present invention is that rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent are stirred evenly, and then through banburying and open milling, Vulcanize at 150-160°C and simultaneously foam for 25-35 minutes to obtain a microporous wave-absorbing material. The total thickness of the microporous wave-absorbing material prepared by the present invention is between 1.4-2.0mm, and the surface density is less than 1.7kg/m 2 . Mechanical properties, the temperature resistance can reach 150°C, the average tensile strength is greater than 8.5MPa, and the minimum elongation at break is 360%.

Figure 201310521185

Description

低面密度高拉伸强度的微孔吸波材料及其制备方法Microporous wave-absorbing material with low surface density and high tensile strength and preparation method thereof

技术领域technical field

本发明涉及一种低面密度高拉伸强度的微孔吸波材料及其制备方法,属于吸波材料技术领域。The invention relates to a microporous wave-absorbing material with low surface density and high tensile strength and a preparation method thereof, belonging to the technical field of wave-absorbing materials.

背景技术Background technique

现有技术中,贴片型吸波材料一般是采用胶粘剂与吸收剂(一般为磁性材料)混合辊压而成。通过选择不同的基材,优化配方设计,使吸波材料的性能满足不同需求。这类贴片型材料吸波具有均匀性好、工艺可控性强、材料性能(特别是电性能)稳定、施工工艺简单等优点。In the prior art, the patch-type wave-absorbing material is generally formed by mixing and rolling an adhesive and an absorbing agent (usually a magnetic material). By selecting different substrates and optimizing the formula design, the performance of the absorbing material can meet different needs. This kind of patch-type material absorbs waves with good uniformity, strong process controllability, stable material properties (especially electrical properties), and simple construction technology.

但是,现有的贴片型吸波材料普遍存在面密度过高的缺点,厚度不到1mm的吸波片其面密度大多已经超过3.0kg/m2,强度一般在4MPa左右,耐温性能一般低于100℃,无法满足飞行器等装备的力学性能等要求。However, the existing patch-type absorbing materials generally have the disadvantage of high surface density. The surface density of the wave-absorbing sheet with a thickness of less than 1mm has mostly exceeded 3.0kg/m 2 , the strength is generally around 4MPa, and the temperature resistance is average. Below 100°C, the mechanical performance and other requirements of aircraft and other equipment cannot be met.

发明内容Contents of the invention

本发明的目的是为了解决现有吸波材料面密度较大、力学性能低和耐温性能不好的问题,而提供一种低面密度高拉伸强度的吸波材料及其制备方法。The purpose of the present invention is to provide a low surface density high tensile strength wave absorbing material and a preparation method thereof in order to solve the problems of high surface density, low mechanical properties and poor temperature resistance of existing wave absorbing materials.

本发明的低面密度高拉伸强度的微孔吸波材料,包括橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂;所述橡胶、发泡剂和塑化剂的质量比为100:(5-18):(15-25);所述发泡剂为偶氮二甲酰胺(AC)、改性偶氮二甲酰胺(ACPW)或N,N'-二甲基五次甲基四胺;所述吸收剂为微米级导电炭黑,吸收剂的质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的30-40%。The microporous wave-absorbing material with low surface density and high tensile strength of the present invention includes rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent; The mass ratio of described rubber, foaming agent and plasticizer is 100:(5-18):(15-25); Described foaming agent is azodicarbonamide (AC), modified azodicarbonamide Amide (ACPW) or N, N'-dimethylpentamethylenetetramine; The absorbent is micron-sized conductive carbon black, and the quality of the absorbent is rubber, zinc oxide, stearic acid, anti-aging agent, flow aid 30-40% of the total mass of additives, sulfur, accelerators, foaming agents and plasticizers.

优选的,所述吸收剂的质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的5-18%。Preferably, the mass of the absorbent is 5-18% of the total mass of rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent and plasticizer.

优选的,所述橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺和促进剂的质量比为100:5:2:2:1.5:2:1。Preferably, the mass ratio of the rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur and accelerator is 100:5:2:2:1.5:2:1.

优选的,所述橡胶为丁腈橡胶或氢化丁腈橡胶。Preferably, the rubber is nitrile rubber or hydrogenated nitrile rubber.

优选的,所述防老剂为N,N-二丁基二硫代氨基甲酸镍(NBC)、2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD)、N-异丙基-N'-苯基对苯二胺(4010NA)中的一种或多种。Preferably, the anti-aging agent is N,N-nickel dibutyldithiocarbamate (NBC), 2,2,4-trimethyl-1,2-dihydroquinoline polymer (RD), N - one or more of isopropyl-N'-phenyl-p-phenylenediamine (4010NA).

优选的,所述流动助剂为颗粒状脂肪酸、颗粒状脂肪酸衍生物或颗粒状硬脂酸异戊四醇。Preferably, the flow aid is granular fatty acid, granular fatty acid derivative or granular pentaerythritol stearate.

优选的,所述促进剂为N-环己基-2-苯骈噻唑次磺酰胺(CZ)或2-硫醇基苯并噻唑(MBT)。Preferably, the accelerator is N-cyclohexyl-2-benzothiazole sulfenamide (CZ) or 2-mercaptobenzothiazole (MBT).

优选的,所述塑化剂为邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二乙酯中的一种或多种。Preferably, the plasticizer is one or more of dibutyl phthalate, dioctyl phthalate, and diethyl phthalate.

上述低面密度高拉伸强度的微孔吸波材料的制备方法,包括以下步骤:The preparation method of the above-mentioned microporous wave-absorbing material with low surface density and high tensile strength comprises the following steps:

(1)将橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂搅拌均匀后,密炼混合均匀,得到混合物;(1) After rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent are stirred evenly, banburying is mixed evenly to obtain a mixture;

(2)将步骤(1)得到的混合物开炼至得到均一稳定的原料;(2) refining the mixture obtained in step (1) to obtain uniform and stable raw materials;

(3)将步骤(2)得到的均一稳定的原料在150-160℃硫化并同时发泡25-35min,即得到低面密度高拉伸强度的微孔吸波材料。(3) The uniform and stable raw material obtained in step (2) is vulcanized at 150-160° C. and simultaneously foamed for 25-35 minutes to obtain a microporous wave-absorbing material with low surface density and high tensile strength.

优选的,步骤(1)中,所述密炼是在密炼机中85℃以内密炼10-15min,步骤(2)中,所述开炼是在开炼机中开炼20次以上。Preferably, in step (1), the banburying is banburying in an internal mixer within 85° C. for 10-15 minutes; in step (2), the banburying is in an open mixer for more than 20 times.

本发明的有益效果:Beneficial effects of the present invention:

(1)本发明采用微米级导电炭黑作为吸收剂,使材料具有优异的吸波性能的同时具有较低的面密度,并且对材料提供一定的补强作用,进一步增加材料的力学性能;并采用与硫化在同一温度区间的发泡剂,使材料在制备过程中硫化的同时发泡,保证了材料的泡孔分布均匀,并具有闭孔结构,实现了材料的低密度和高强度;(1) The present invention uses micron-sized conductive carbon black as the absorber, so that the material has excellent wave-absorbing properties while having a lower surface density, and provides a certain reinforcing effect on the material, further increasing the mechanical properties of the material; and The foaming agent in the same temperature range as the vulcanization is used to make the material foam during the vulcanization during the preparation process, which ensures that the cells of the material are evenly distributed, and has a closed-cell structure, which realizes the low density and high strength of the material;

(2)本发明制备的微孔吸波材料总厚度在1.4-2.0mm之间,面密度小于1.7kg/m2,材料在特定波段具有较好的吸波性能,同时具有较好的耐温性和力学性,耐温可达到150℃,拉伸强度平均值大于8.5MPa,断裂伸长率最小值为360%;(2) The total thickness of the microporous wave-absorbing material prepared by the present invention is between 1.4-2.0mm, and the surface density is less than 1.7kg/m 2 . The material has good wave-absorbing performance in a specific wave band, and has good temperature resistance Excellent mechanical properties, temperature resistance can reach 150°C, the average tensile strength is greater than 8.5MPa, and the minimum elongation at break is 360%;

(3)本发明的制备方法在材料硫化的同时发泡,不仅保证了微波材料的结构,而且简单、易行、成本低,利于大规模生产。(3) The preparation method of the present invention foams while vulcanizing the material, which not only ensures the structure of the microwave material, but also is simple, easy to implement, and low in cost, which is beneficial to large-scale production.

附图说明Description of drawings

图1为本发明实施例1-3制备的微孔吸波材料材料的平板反射率测试曲线图;Fig. 1 is the test graph of the plate reflectivity of the microporous wave-absorbing material material prepared by Example 1-3 of the present invention;

图2中,(a)为本发明实施例1制备的微孔吸波材料横截面的光学显微镜成像图;(b)为本发明实施例2制备的微孔吸波材料横截面的光学显微镜成像图。In Fig. 2, (a) is an optical microscope image of the cross section of the microporous absorbing material prepared in Example 1 of the present invention; (b) is an optical microscope image of the cross section of the microporous absorbing material prepared in Example 2 of the present invention picture.

具体实施方式Detailed ways

为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点而不是对本发明专利要求的限制。In order to further understand the present invention, the preferred embodiments of the present invention will be described below in conjunction with specific embodiments, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention rather than limiting the patent requirements of the present invention.

低面密度高拉伸强度的微孔吸波材料包括100重量份的橡胶、5重量份的氧化锌、2重量份的硬脂酸、2重量份的防老剂、1.5重量份的流动助剂、2重量份的硫磺、1重量份的促进剂、5-18重量份的发泡剂、15-25重量份的塑化剂和吸收剂;其中,橡胶为丁腈橡胶220或氢化丁腈橡胶;防老剂为N,N-二丁基二硫代氨基甲酸镍、2,2,4-三甲基-1,2-二氢化喹啉聚合体、N-异丙基-N'-苯基对苯二胺中一种或多种;流动助剂为颗粒状脂肪酸、颗粒状脂肪酸衍生物或颗粒状硬脂酸异戊四醇,优选颗粒状脂肪酸衍生物ZC-56或颗粒状硬脂酸异戊四醇D-821;促进剂为N-环己基-2-苯骈噻唑次磺酰胺或2-硫醇基苯并噻唑;塑化剂为邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二乙酯中的一种或多种;发泡剂为偶氮二甲酰胺、改性偶氮二甲酰胺或N,N'-二甲基五次甲基四胺;吸收剂为微米级导电炭黑,其质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的30-40%,优选5-18%(按照领域公知,默认发泡剂在形成最终产品后无残留计算)。The microporous wave-absorbing material with low surface density and high tensile strength includes 100 parts by weight of rubber, 5 parts by weight of zinc oxide, 2 parts by weight of stearic acid, 2 parts by weight of anti-aging agent, 1.5 parts by weight of flow aid, 2 parts by weight of sulfur, 1 part by weight of accelerator, 5-18 parts by weight of foaming agent, 15-25 parts by weight of plasticizer and absorbent; wherein the rubber is nitrile rubber 220 or hydrogenated nitrile rubber; The anti-aging agent is N, N-dibutyl dithiocarbamate nickel, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, N-isopropyl-N'-phenyl p- One or more of phenylenediamines; the flow aid is granulated fatty acid, granulated fatty acid derivative or granulated isopentyl stearate, preferably granulated fatty acid derivative ZC-56 or granulated iso-stearate Pentaerythritol D-821; the accelerator is N-cyclohexyl-2-benzothiazole sulfenamide or 2-thiol benzothiazole; the plasticizer is dibutyl phthalate, diphthalate One or more of octyl esters and diethyl phthalate; the blowing agent is azodicarbonamide, modified azodicarbonamide or N,N'-dimethylpentamethylenetetramine The absorbent is micron-scale conductive carbon black, and its quality is 30-40% of the total mass of rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent and plasticizer, Preferably 5-18% (according to the well-known in the field, default blowing agent has no residual calculation after forming the final product).

低面密度高拉伸强度的微孔吸波材料的制备方法,包括如下步骤:The preparation method of the microporous wave-absorbing material with low surface density and high tensile strength comprises the following steps:

(1)将橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂物理搅拌均匀后,加入密炼机中密炼混合均匀,得到混合物;(1) Physically stir rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent, and then add them to the internal mixer and mix them uniformly. get the mixture;

所述橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的质量比为100:5:2:2:1.5:2:1:(5-18):(15-25),所述发泡剂为偶氮二甲酰胺、改性偶氮二甲酰胺或N,N'-二甲基五次甲基四胺,所述吸收剂为微米级导电炭黑,其质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的30-40%,优选5-18%(按照领域公知,默认发泡剂在形成最终产品后无残留计算);The mass ratio of described rubber, zinc oxide, stearic acid, antioxidant, flow aid, sulfur, promotor, blowing agent and plasticizer is 100:5:2:2:1.5:2:1:(5 -18): (15-25), the blowing agent is azodicarbonamide, modified azodicarbonamide or N,N'-dimethylpentamethylenetetramine, and the absorbent is Micron-sized conductive carbon black, its quality is 30-40% of the total mass of rubber, zinc oxide, stearic acid, antioxidant, flow aid, sulfur, accelerator, blowing agent and plasticizer, preferably 5-18% % (according to the well-known in the field, the default blowing agent has no residual calculation after forming the final product);

(2)将步骤(1)得到的混合物加入开炼机中,以包辊的工艺开炼,得到均一稳定的原料;(2) adding the mixture obtained in step (1) into the open mill, and rolling with the technology of wrapping rolls to obtain uniform and stable raw materials;

(3)将步骤(2)得到的均一稳定的原料加入模具中,将模具置于平板硫化机中,在150-160℃硫化并同时发泡25-35min,裁去多余边料,得到低面密度高拉伸强度的微孔吸波材料。(3) Add the uniform and stable raw material obtained in step (2) into the mold, place the mold in a flat vulcanizer, vulcanize at 150-160°C and foam for 25-35 minutes at the same time, cut off the excess trim to obtain the low surface Microporous absorber with high density and high tensile strength.

本发明中,橡胶为丁腈橡胶220或氢化丁腈橡胶,防老剂为N,N-二丁基二硫代氨基甲酸镍、2,2,4-三甲基-1,2-二氢化喹啉聚合体、N-异丙基-N'-苯基对苯二胺中一种或多种,流动助剂为颗粒状脂肪酸、颗粒状脂肪酸衍生物ZC-56或颗粒状硬脂酸异戊四醇D-821,优选颗粒状脂肪酸衍生物ZC-56或颗粒状硬脂酸异戊四醇D-821,促进剂为N-环己基-2-苯骈噻唑次磺酰胺或2-硫醇基苯并噻唑,塑化剂为邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二乙酯中的一种或多种。In the present invention, rubber is nitrile butadiene rubber 220 or hydrogenated nitrile butadiene rubber, and antioxidant is N, N-nickel dibutyl dithiocarbamate, 2,2,4-trimethyl-1,2-dihydroquinoline One or more of morphine polymers, N-isopropyl-N'-phenyl-p-phenylenediamine, and the flow aid is granular fatty acid, granular fatty acid derivative ZC-56 or granular isopentyl stearate Tetrol D-821, preferably granular fatty acid derivative ZC-56 or granular stearic acid pentaerythritol D-821, the accelerator is N-cyclohexyl-2-benzothiazole sulfenamide or 2-mercaptan benzothiazole, and the plasticizer is one or more of dibutyl phthalate, dioctyl phthalate, and diethyl phthalate.

本发明步骤(1)中,橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂的添加顺序有一定的要求,按照领域人员公知,为防止温度过高产生提前的硫化,硫磺和促进剂要在最后加入。In the step (1) of the present invention, the order of adding rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent has certain requirements, according to field personnel It is known that sulfur and accelerators should be added at the end in order to prevent premature vulcanization due to excessive temperature.

本发明步骤(1)中,为防止助剂在高温下有效成分被破坏,密炼过程温度最好控制在85℃以内。In the step (1) of the present invention, in order to prevent the active ingredients of the auxiliary agent from being destroyed at high temperature, the temperature in the banburying process is preferably controlled within 85°C.

本发明步骤(2)中,橡胶开炼工艺由于配胶量的原因,按照现有的炼胶三包两辊工艺并不能使其充分开炼均匀,因此,优选使用开炼20次以上的方法。In the step (2) of the present invention, the rubber milling process cannot be fully milled evenly according to the existing three-pack two-roll process for rubber mixing due to the amount of rubber compounding. Therefore, the method of more than 20 times of milling is preferably used. .

本发明所使用的密炼机和开炼机的种类依据制备吸波材料的量进行选择。The types of internal mixer and open mixer used in the present invention are selected according to the amount of prepared wave-absorbing material.

本发明所使用平板硫化机模具尺寸200×200mm2或300×3002mm,更优选300×3002mm,模腔高度尺寸可调整,根据需求在1.0-2.0mm之间变化。The die size of the flat vulcanizing machine used in the present invention is 200×200 mm 2 or 300×300 2 mm, more preferably 300×300 2 mm, and the height of the cavity can be adjusted between 1.0-2.0 mm according to requirements.

下面结合实施例和附图对本发明做进一步详细的描述。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings.

实施例1Example 1

将100g丁腈橡胶220、5g氧化锌、2g硬脂酸、2gN,N-二丁基二硫代氨基甲酸镍、1.5g颗粒状脂肪酸、2g硫磺、1gN-环己基-2-苯骈噻唑次磺酰胺、5g偶氮二甲酰胺、15g邻苯二甲酸二丁酯和40.5g微米级导电炭黑加入密炼机中85℃以内密炼混合均匀,得到混合物;将密炼得到的混合物移至开炼机开炼得到均一稳定的原料,再将62.0g原料切成合适尺寸放入200×2002mm的模具中,模腔高度尺寸1.2mm,150℃下在平板硫化机内硫化发泡25min,得到微孔吸波材料,材料的力学性能如表1所示。100g nitrile rubber 220, 5g zinc oxide, 2g stearic acid, 2gN,N-nickel dibutyldithiocarbamate, 1.5g granular fatty acid, 2g sulfur, 1gN-cyclohexyl-2-benzothiazolium Sulfonamide, 5g of azodicarbonamide, 15g of dibutyl phthalate and 40.5g of micron-sized conductive carbon black are added to the internal mixer and mixed evenly within 85°C to obtain a mixture; the mixture obtained by banburying is moved to Open the mill to obtain uniform and stable raw materials, then cut 62.0g of raw materials into a suitable size and put them into a 200×200 2 mm mold with a cavity height of 1.2mm, vulcanize and foam in a flat vulcanizer at 150°C for 25 minutes , to obtain the microporous absorbing material, the mechanical properties of the material are shown in Table 1.

实施例2Example 2

将100g丁腈橡胶220、5g氧化锌、2g硬脂酸、2g2,2,4-三甲基-1,2-二氢化喹啉聚合体、1.5g颗粒状脂肪酸衍生物ZC-56、2g硫磺、1g2-硫醇基苯并噻唑、10g改性偶氮二甲酰胺、20g邻苯二甲酸二辛酯和50.225g微米级导电炭黑加入密炼机中密炼混合均匀,得到混合物;将密炼得到的混合物移至开炼机开炼得到均一稳定的原料,再将65.0g原料切成合适尺寸放入200×2002mm的模具中,模腔高度尺寸1.5mm,155℃下在平板硫化机内硫化发泡30min,得到微孔吸波材料,材料的力学性能如表1所示。100g nitrile rubber 220, 5g zinc oxide, 2g stearic acid, 2g2,2,4-trimethyl-1,2-dihydroquinoline polymer, 1.5g granular fatty acid derivative ZC-56, 2g sulfur , 1g2-mercaptobenzothiazole, 10g modified azodicarbonamide, 20g dioctyl phthalate and 50.225g micron-sized conductive carbon black are added in the internal mixer and mixed evenly to obtain the mixture; The mixture obtained by refining is moved to an open mill and kneaded to obtain a uniform and stable raw material, then cut 65.0g of raw material into a suitable size and put it into a 200×200 2 mm mold with a cavity height of 1.5mm, vulcanized on a flat plate at 155°C Vulcanize and foam in the machine for 30 minutes to obtain a microporous wave-absorbing material. The mechanical properties of the material are shown in Table 1.

实施例3Example 3

将100g氢化丁腈橡胶、5g氧化锌、2g硬脂酸、1gN-异丙基-N'-苯基对苯二胺、1gN,N-二丁基二硫代氨基甲酸镍、1.5g颗粒状硬脂酸异戊四醇D-821、2g硫磺、1g2-硫醇基苯并噻唑、15gN,N'-二甲基五次甲基四胺、20g邻苯二甲酸二辛酯、3g邻苯二甲酸二乙酯和50.3275g微米级导电炭黑加入密炼机中密炼混合均匀,得到混合物;将密炼得到的混合物移至开炼机开炼得到均一稳定的原料,再将71.0原料切成合适尺寸放入200×2002mm的模具中,模腔高度尺寸1.7mm,155℃下在平板硫化机内硫化发泡35min,得到微孔吸波材料。100g of hydrogenated nitrile rubber, 5g of zinc oxide, 2g of stearic acid, 1g of N-isopropyl-N'-phenyl-p-phenylenediamine, 1g of N,N-nickel dibutyldithiocarbamate, 1.5g of granular Pentaerythritol stearate D-821, 2g sulfur, 1g 2-mercaptobenzothiazole, 15g N, N'-dimethylpentamethylenetetramine, 20g dioctyl phthalate, 3g phthalate Diethyl diformate and 50.3275g micron-sized conductive carbon black are added in the banbury mixer and mixed evenly to obtain the mixture; the mixture obtained from the banbury mixing is moved to the open mixer to obtain uniform and stable raw materials, and then 71.0 raw materials are cut Put it into a mold of 200×200 2 mm in a suitable size, the height of the mold cavity is 1.7mm, and vulcanize and foam in a flat vulcanizing machine at 155°C for 35min to obtain a microporous wave-absorbing material.

实施例1-2的微孔吸波材料制作成哑铃样品,宽度6mm,有效距离25mm。力学性能测试设备为深圳三思纵横科技股份有限公司的SUNS电子万能试验机,测试使用GB/T528-1998硫化橡胶拉伸方法。测试结果见表1。The microporous wave-absorbing material in Example 1-2 was made into a dumbbell sample with a width of 6 mm and an effective distance of 25 mm. The mechanical performance testing equipment is the SUNS electronic universal testing machine of Shenzhen Sansi Zongheng Technology Co., Ltd., and the test uses the GB/T528-1998 vulcanized rubber tensile method. The test results are shown in Table 1.

表1实施例1和实施例2的微孔吸波材料的力学性能The mechanical property of the microporous wave-absorbing material of table 1 embodiment 1 and embodiment 2

Figure BDA0000404062150000061
Figure BDA0000404062150000061

将实施例1-3得到的微孔吸波材料裁切成180×180mm2的标准样片,材料的RCS测试设备为安捷伦矢量网络分析仪PNA-X系列的N-5244A,测试方法为弓形法,针对8-12GHz频段进行测试。测试结果如图1所示。将材料进行纵向切片裁切,得到水平断面,利用电子显微镜进行断面结构拍摄,得到其发泡大小和发泡分布情况。测试结果如图2。The microporous wave-absorbing material obtained in Examples 1-3 was cut into standard samples of 180×180mm 2 , the RCS testing equipment for the material was N-5244A of the Agilent vector network analyzer PNA-X series, and the testing method was the bow method. Tested for the 8-12GHz frequency band. The test results are shown in Figure 1. Slice and cut the material longitudinally to obtain a horizontal section, and use an electron microscope to photograph the section structure to obtain the foam size and foam distribution. The test results are shown in Figure 2.

图1中曲线(a)为实施例1的微孔吸波材料的平板反射率,从曲线(a)可以看出,材料在8-12GHz频段范围内吸收均低于-6dB,峰值可达到-30dB以下;图1中曲线(b)为实施例2的微孔吸波材料的平板反射率,从曲线(b)可以看出,材料在8-12GHz频段范围内吸收均低于-7dB,峰值可达到-25dB以下;图1中曲线(c)为实施例3的微孔吸波材料的平板反射率,从曲线(c)可以看出,材料在8-12GHz频段范围内吸收均低于-7.5dB,峰值可达到-25dB以下。Curve (a) in Fig. 1 is the plate reflectivity of the microporous wave-absorbing material of embodiment 1, as can be seen from curve (a), the absorption of the material in the 8-12GHz frequency range is lower than -6dB, and the peak value can reach - Below 30dB; Curve (b) in Fig. 1 is the plate reflectivity of the microporous wave-absorbing material of embodiment 2, as can be seen from curve (b), the absorption of material is all lower than -7dB in the 8-12GHz frequency range, and the peak value Can reach below-25dB; Curve (c) in Fig. 1 is the plate reflectivity of the microporous wave-absorbing material of embodiment 3, can find out from curve (c), material absorbs all lower than - 7.5dB, the peak can reach below -25dB.

图2(a)为实施例1的微孔吸波材料的横截面光学显微镜成像图,从图中可以看出材料发泡分布较均匀,闭孔的直径在100微米左右;图2(b)为实施例2的微孔吸波材料的横截面光学显微镜成像图,从图中可以看出,微波材料的发泡闭孔孔径100微米居多,最大值达到200微米以上。Figure 2(a) is a cross-sectional optical microscope image of the microporous wave-absorbing material of Example 1. It can be seen from the figure that the foaming distribution of the material is relatively uniform, and the diameter of the closed cells is about 100 microns; Figure 2(b) It is a cross-sectional optical microscope image of the microporous microwave-absorbing material in Example 2. It can be seen from the figure that the foamed closed-cell aperture of the microwave material is mostly 100 microns, and the maximum value reaches more than 200 microns.

显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。Apparently, the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the technical field, without departing from the principle of the present invention, some improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention .

Claims (10)

1.低面密度高拉伸强度的微孔吸波材料,其特征在于,包括橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂;1. Microporous wave-absorbing material with low surface density and high tensile strength, characterized in that it includes rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and Absorbent; 所述橡胶、发泡剂和塑化剂的质量比为100:(5-18):(15-25);The mass ratio of described rubber, whipping agent and plasticizer is 100:(5-18):(15-25); 所述发泡剂为偶氮二甲酰胺、改性偶氮二甲酰胺或N,N'-二甲基五次甲基四胺;The foaming agent is azodicarbonamide, modified azodicarbonamide or N,N'-dimethylpentamethylenetetramine; 所述吸收剂为微米级导电炭黑,吸收剂的质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的30-40%。Described absorbing agent is micron order conductive carbon black, and the quality of absorbing agent is 30-30-30% of the total mass of rubber, zinc oxide, stearic acid, antioxidant, flow aid, sulfur, promotor, whipping agent and plasticizer. 40%. 2.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述吸收剂的质量为橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂和塑化剂的总质量的5-18%。2. The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1, wherein the quality of the absorbent is rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, 5-18% of the total mass of sulfur, accelerators, foaming agents and plasticizers. 3.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺和促进剂的质量比为100:5:2:2:1.5:2:1。3. the microporous wave-absorbing material of low surface density and high tensile strength according to claim 1, is characterized in that, the rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur and accelerator The mass ratio is 100:5:2:2:1.5:2:1. 4.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述橡胶为丁腈橡胶或氢化丁腈橡胶。4 . The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1 , wherein the rubber is nitrile butadiene rubber or hydrogenated nitrile butadiene rubber. 5.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述防老剂为N,N-二丁基二硫代氨基甲酸镍、2,2,4-三甲基-1,2-二氢化喹啉聚合体、N-异丙基-N'-苯基对苯二胺中一种或多种。5. The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1, wherein the antioxidant is N, N-nickel dibutyldithiocarbamate, 2,2, One or more of 4-trimethyl-1,2-dihydroquinoline polymer, N-isopropyl-N'-phenyl-p-phenylenediamine. 6.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述流动助剂为颗粒状脂肪酸、颗粒状脂肪酸衍生物或颗粒状硬脂酸异戊四醇。6. The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1, wherein the flow aid is granular fatty acid, granular fatty acid derivative or granular isopentyl stearate Tetrol. 7.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述促进剂为N-环己基-2-苯骈噻唑次磺酰胺或2-硫醇基苯并噻唑。7. The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1, wherein the accelerator is N-cyclohexyl-2-benzothiazole sulfenamide or 2-mercaptan benzothiazole. 8.根据权利要求1所述的低面密度高拉伸强度的微孔吸波材料,其特征在于,所述塑化剂为邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二乙酯中的一种或多种。8. The microporous wave-absorbing material with low surface density and high tensile strength according to claim 1, wherein the plasticizer is dibutyl phthalate, dioctyl phthalate, o- One or more of diethyl phthalate. 9.权利要求1-8任何一项所述的低面密度高拉伸强度的微孔吸波材料的制备方法,其特征在于,包括以下步骤:9. The preparation method of the microporous wave-absorbing material with low surface density and high tensile strength according to any one of claims 1-8, characterized in that, comprising the following steps: (1)将橡胶、氧化锌、硬脂酸、防老剂、流动助剂、硫磺、促进剂、发泡剂、塑化剂和吸收剂搅拌均匀后,密炼混合均匀,得到混合物;(1) After rubber, zinc oxide, stearic acid, anti-aging agent, flow aid, sulfur, accelerator, foaming agent, plasticizer and absorbent are stirred evenly, banburying is mixed evenly to obtain a mixture; (2)将步骤(1)得到的混合物开炼至得到均一稳定的原料;(2) refining the mixture obtained in step (1) to obtain uniform and stable raw materials; (3)将步骤(2)得到的均一稳定的原料在150-160℃硫化并同时发泡25-35min,即得到低面密度高拉伸强度的微孔吸波材料。(3) The uniform and stable raw material obtained in step (2) is vulcanized at 150-160° C. and simultaneously foamed for 25-35 minutes to obtain a microporous wave-absorbing material with low surface density and high tensile strength. 10.根据权利要求9所述的低面密度高拉伸强度的微孔吸波材料的制备方法,其特征在于,步骤(1)中,所述密炼是在密炼机中85℃以内密炼10-15min,步骤(2)中,所述开炼是在开炼机中开炼20次以上。10. The preparation method of the microporous wave-absorbing material with low surface density and high tensile strength according to claim 9, characterized in that, in step (1), the banburying is done in a banbury mixer within 85°C. Refining 10-15min, in step (2), described refining is to refine more than 20 times in the mill.
CN201310521185.6A 2013-10-29 2013-10-29 Microporous wave-absorbing material with low surface density and high tensile strength and preparation method Active CN103589010B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310521185.6A CN103589010B (en) 2013-10-29 2013-10-29 Microporous wave-absorbing material with low surface density and high tensile strength and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310521185.6A CN103589010B (en) 2013-10-29 2013-10-29 Microporous wave-absorbing material with low surface density and high tensile strength and preparation method

Publications (2)

Publication Number Publication Date
CN103589010A true CN103589010A (en) 2014-02-19
CN103589010B CN103589010B (en) 2015-07-22

Family

ID=50079347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310521185.6A Active CN103589010B (en) 2013-10-29 2013-10-29 Microporous wave-absorbing material with low surface density and high tensile strength and preparation method

Country Status (1)

Country Link
CN (1) CN103589010B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400018A (en) * 2015-12-21 2016-03-16 中国科学院长春应用化学研究所 Microporous wave-absorbing material with array-structure surface, and preparation method thereof
CN115490934A (en) * 2022-09-21 2022-12-20 中国热带农业科学院农产品加工研究所 A double-loss rubber absorber and a rubber absorber with ultra-broadband absorption characteristics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959438A (en) * 2017-03-29 2017-07-18 中国电子科技集团公司第三十八研究所 A kind of TR assembly encapsulation structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310598A (en) * 1988-12-19 1994-05-10 Matsushita Electric Industrial Co., Ltd. Radio wave absorbing material
CN102108174A (en) * 2010-12-30 2011-06-29 上海交通大学 Preparation method of microwave absorbing rubber composite material
CN103289213A (en) * 2013-05-22 2013-09-11 易宝(福建)高分子材料股份公司 EPDM/PP/TPE (Ethylene Propylene Diene Monomer/Polypropylene/Thermoplastic Elastomer) ternary blended closed-pore foaming material and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310598A (en) * 1988-12-19 1994-05-10 Matsushita Electric Industrial Co., Ltd. Radio wave absorbing material
CN102108174A (en) * 2010-12-30 2011-06-29 上海交通大学 Preparation method of microwave absorbing rubber composite material
CN103289213A (en) * 2013-05-22 2013-09-11 易宝(福建)高分子材料股份公司 EPDM/PP/TPE (Ethylene Propylene Diene Monomer/Polypropylene/Thermoplastic Elastomer) ternary blended closed-pore foaming material and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SOON KIL KWON ET AL.: "《Microwave Absorbing Properties 》of Carbon Black/Silicone Rubber Blend》", 《POLYMER ENGINEERING AND SCIENCE》 *
VARAPORN TANRATTANAKUL ET AL.: "《Microwave Absorbing Rubber Composites Containing Carbon Black and Aluminum Powder》", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
王萌: "《天然橡胶基复合吸波材料的结构设计及吸波性能研究》", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400018A (en) * 2015-12-21 2016-03-16 中国科学院长春应用化学研究所 Microporous wave-absorbing material with array-structure surface, and preparation method thereof
CN115490934A (en) * 2022-09-21 2022-12-20 中国热带农业科学院农产品加工研究所 A double-loss rubber absorber and a rubber absorber with ultra-broadband absorption characteristics
CN115490934B (en) * 2022-09-21 2024-01-23 中国热带农业科学院农产品加工研究所 Double-loss rubber wave-absorbing material and rubber wave-absorbing body with ultra-wideband absorption characteristic

Also Published As

Publication number Publication date
CN103589010B (en) 2015-07-22

Similar Documents

Publication Publication Date Title
CN102827475B (en) Preparation method of foaming silicon rubber material with low thermal conductivity factor
CN105400018B (en) Microporous wave-absorbing material with array structure surface and preparation method thereof
CN105348581A (en) Natural rubber-based flexible wave absorbing composite material and preparation method thereof
CN111117010B (en) Foamed rubber composition, vulcanized rubber, and preparation method and application thereof
CN103589010B (en) Microporous wave-absorbing material with low surface density and high tensile strength and preparation method
CN106084338A (en) A kind of soft high specific gravity rubber plastic foam material for sound insulation and noise reducing
CN111116967A (en) Foamed rubber composition, vulcanized rubber, and preparation method and application thereof
CN104017369A (en) Preparation method of silicon rubber foam material with high tensile strength
CN114644795B (en) Wave-absorbing material, preparation method and application thereof
CN108610562A (en) A kind of low pressure becomes high temperature resistant EP rubbers material and preparation method thereof
CN101259741B (en) Method for producing antistatic high foaming material
CN114015166A (en) EPDM rubber foaming material and application
CN104311983B (en) A kind of expansion plate with high adhesion force and controllable expansion ratio and preparation method thereof
WO2024221801A1 (en) Foamed rubber shoe material and preparation method therefor
CN103642080B (en) Natural rubber sponge with high compressive load retention rate and preparation method thereof
CN101056530B (en) Preparing method of high temperature resistant electromagnetic wave absorbent material film
CN107189405B (en) A kind of high wear-resistant rubber-plastic blended foam material and preparation method thereof
CN102675705B (en) Wide-temperature-range high-damping rubber composition and preparation method thereof
CN113174116B (en) Flexible foam rubber-plastic heat-insulating material
CN111286090A (en) A kind of preparation method of sulfur dispersion for latex sponge
CN116444924A (en) Long-service-life bio-based damping vibration attenuation rubber composite material and preparation method thereof
CN111205520A (en) Micro-foaming ball for pet and manufacturing method thereof
CN113969014A (en) Ethylene-vinyl acetate foaming wave-absorbing material
CN115490934B (en) Double-loss rubber wave-absorbing material and rubber wave-absorbing body with ultra-wideband absorption characteristic
WO2019095626A1 (en) Wave-absorbing patch and preparation method therefor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant