CN103570582B - Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2 - Google Patents

Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2 Download PDF

Info

Publication number
CN103570582B
CN103570582B CN201310515098.XA CN201310515098A CN103570582B CN 103570582 B CN103570582 B CN 103570582B CN 201310515098 A CN201310515098 A CN 201310515098A CN 103570582 B CN103570582 B CN 103570582B
Authority
CN
China
Prior art keywords
diacetylmonoxime
ionic liquid
extraction
bmim
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310515098.XA
Other languages
Chinese (zh)
Other versions
CN103570582A (en
Inventor
张宸
罗能镇
毕纪葛
相咸高
何潮洪
徐义明
周俊超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
China Construction Industrial and Energy Engineering Group Co Ltd
Original Assignee
Zhejiang University ZJU
China Construction Industrial Equipment Installation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, China Construction Industrial Equipment Installation Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201310515098.XA priority Critical patent/CN103570582B/en
Publication of CN103570582A publication Critical patent/CN103570582A/en
Application granted granted Critical
Publication of CN103570582B publication Critical patent/CN103570582B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a method for extracting diacetylmonoxime in an ammonium sulfate solution by using an ionic liquid [BMIM]NTf2. The method comprises the following steps: (1) mixing the ionic liquid [BMIM]NTf2 and the ammonium sulfate solution with the diacetylmonoxime according to a volume ratio of (1:1)-(1:5), extracting the mixture for 30-40 minutes at the extraction temperature is 30-40 DEG C, and after the extraction is accomplished, standing to layer, wherein the upper layer is a water phase, the lower layer is an ionic liquid phase, and the diacetylmonoxime is enriched into the ionic liquid phase from the water phase; and (2) stilling out the diacetylmonoxime in the ionic liquid phase by using a reduced pressure distillation method, and recycling the obtained ionic liquid [BMIM]NTf2. According to the method, the ionic liquid [BMIM]NTf2 which is hard to volatilize, easy to recycle and stable in quality is taken as an extracting agent, so that the defects of the conventional organic solvent extraction method are effectively made up, and meanwhile the method has the advantages of simple operation, rapid extraction and the like.

Description

Ionic liquid [BMIM] NTf2 is utilized to extract the method for Diacetylmonoxime in ammoniumsulphate soln
Technical field
The present invention relates to liquid-liquid extraction field and solvent recuperation field, particularly relate to one and utilize ionic liquid [BMIM] NTf 2the method of Diacetylmonoxime in extraction ammoniumsulphate soln.
Technical background
2-butanone oxime, has another name called methyl ethyl ketoxime (hereinafter referred to as Diacetylmonoxime), is widely used in multiple industry, have good market outlook.Its main application has: (1) is due to its low toxicity, low stain and be used in the anti skinning agent of coating, ink, paint; (2) for polyurethane closed agent; (3) for boiler deoxidant, there is the advantages such as low toxicity, efficient, speed is fast and there is passivation protection effect; (4) as the raw material of organic synthesis intermediate as silicon rubber solidifying agent.
Current production Diacetylmonoxime has multiple method, mainly can be divided into: ketoamine method, catalytic ammoxidation method, nitro moiety hydrogenation method, electrochemical reducing, oxime exchange process, hydrazine hydrate method etc., wherein ketoamine method is one of domestic main method for the production of Diacetylmonoxime.The aqueous solution of oxammonium sulfate or oxammonium hydrochloride adds in reactor by this method together with butanone, pass into ammonia after hybrid reaction certain hour or add ammonia neutralization, then in same reactor, standing separation obtains the ammonium sulfate solution of cymogene ketoxime and by-product, and cymogene ketoxime is by obtaining qualified product after rectifying separation.And containing Diacetylmonoxime in the ammonium sulfate solution of by-product, content is approximately 1000-10000ppm, not only reduces product yield, and has certain organic emission in ammonium sulfate crystallization process, cause environmental pollution, be also unfavorable for the recycled of post-crystallization processes waste water.So need to select suitable extraction agent and abstraction technique to extract the Diacetylmonoxime in ammoniumsulphate soln.
At present, in industrial practice, the traditional organic extractant of general employing extracts the Diacetylmonoxime in ammoniumsulphate soln as benzene, chloroform, butanone etc.Although have certain effect of extracting, traditional extraction agent is organic solvent substantially, and volatility large (easily causing the loss of extraction agent), strong toxicity, environmental pollution seriously, add operational risk and production cost.Ammoniumsulphate soln simultaneously after extraction has dissolved partial extraction agent, and the methods such as water vapor stripping need be adopted to recycle, and to reduce extraction agent loss, improve the quality of producing ammonium sulfate byproduct, make processing wastewater energy recycled, this also makes production technique more complicated.Therefore, for the extraction of Diacetylmonoxime in ammonium sulfate solution, Developing Green, safety, the efficiently research of Novel Extractant are significant.
It is liquid material under the room temperature that ionic liquid is made up of organic cation and inorganic anion, it is as a kind of novel " green solvent " that can be used for alternative volatile organic solvent, there is the advantage that a series of conventional organic solvents is incomparable, as good thermostability and chemical stability, difficult volatilization, extremely low vapour pressure, stronger dissolving power and wider liquid state range, designability with can be recycled, be widely used in the every field such as catalysis, electrochemistry, organic synthesis and extracting and separating.At present, at ionic liquid [BMIM] NTf 2correlative study and application is had for extracting and separating aspect, but specific to by ionic liquid [BMIM] NTf 2have not been reported for the extraction of Diacetylmonoxime in the ammoniumsulphate soln of by-product in Diacetylmonoxime production process.
Summary of the invention
The object of the invention is to overcome the extraction agent volatile (causing loss of extractant) existing for existing organic solvent extractionprocess, strong toxicity, environmental pollution serious and be partially soluble in aqueous phase and cause the deficiencies such as secondary pollution, provide one to utilize ionic liquid [BMIM] NTf 2the method of Diacetylmonoxime in extraction ammoniumsulphate soln.
Utilize ionic liquid [BMIM] NTf 2the method of the Diacetylmonoxime in extraction ammoniumsulphate soln comprises the steps:
(1) ionic liquid is extracted with mixing by 1:1-1:5 volume ratio containing the ammoniumsulphate soln of Diacetylmonoxime, extraction temperature is 30-40 DEG C, extraction time is 30min-40min, extract rear stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, Diacetylmonoxime be enriched to from aqueous phase ionic liquid mutually in;
(2) by the method for underpressure distillation steam ionic liquid mutually in Diacetylmonoxime, the ionic liquid recycle obtained, ionic liquid is the two trifluoromethanesulfonimide salt of 1-butyl-3-Methylimidazole.
Described is 1000-10000ppm containing the Diacetylmonoxime content in the ammoniumsulphate soln of Diacetylmonoxime, and ammonium sulfate concentrations is 0-40wt%.
Compared with existing conventional organic solvents extracting process, innovative point of the present invention is to utilize that thermostability is higher, viscosity is lower, water-soluble very little ionic liquid [BMIM] NTf 2diacetylmonoxime in extraction ammoniumsulphate soln, have simple to operate, extraction rapidly, high, the ionic liquid of percentage extraction is easy to the advantages such as recycling.
Embodiment
Utilize ionic liquid [BMIM] NTf 2the method of the Diacetylmonoxime in extraction ammoniumsulphate soln comprises the steps:
(1) ionic liquid is extracted with mixing by 1:1-1:5 volume ratio containing the ammoniumsulphate soln of Diacetylmonoxime, extraction temperature is 30-40 DEG C, extraction time is 30min-40min, extract rear stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, Diacetylmonoxime be enriched to from aqueous phase ionic liquid mutually in;
(2) by the method for underpressure distillation steam ionic liquid mutually in Diacetylmonoxime, the ionic liquid recycle obtained, ionic liquid is the two trifluoromethanesulfonimide salt of 1-butyl-3-Methylimidazole.
Described is 1000-10000ppm containing the Diacetylmonoxime content in the ammoniumsulphate soln of Diacetylmonoxime, and ammonium sulfate concentrations is 0-40wt%.
By ionic liquid [BMIM] PF in operating process of the present invention 6extract with the ammonium sulfate solution mixing containing Diacetylmonoxime, extracted rear stratification, after two-phase interface is clear, got upper water facies analysis Diacetylmonoxime concentration wherein.By Diacetylmonoxime concentration in water by Spectrophotometry, principle is that Diacetylmonoxime is hydrolyzed the azanol of generation and formaldehyde and reacts under the condition adding ammonium persulphate and generate formyl hydroxamic acid in acidic medium, formyl hydroxamic acid can generate red complex with ferric ion, can obtain the concentration of Diacetylmonoxime in water in maximum absorption wavelength 500nm place spectrophotometer measurement absorbancy.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.
The present invention's following examples are described further, but are not limited to following examples, and in the scope not departing from the described aim in front and back, change is included in technical scope of the present invention.
Embodiment 1
Get Diacetylmonoxime concentration is 5g/L (5000ppm), ammonium sulfate concentrations is 0wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 30 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 30min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio (ionic liquid phase Diacetylmonoxime concentration/aqueous phase Diacetylmonoxime concentration) is thus 2.61, and percentage extraction is 72.31%.
Embodiment 2
Get Diacetylmonoxime concentration is 5g/L (5000ppm), ammonium sulfate concentrations is 20wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 30 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 30min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 33.72, and percentage extraction is 97.2%.
Embodiment 3
Get Diacetylmonoxime concentration is 5g/L (5000ppm), ammonium sulfate concentrations is 40wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 30 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 30min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 33.72, and percentage extraction is 97.2%.
Embodiment 4
Get Diacetylmonoxime concentration is 1g/L (1000ppm), ammonium sulfate concentrations is 40wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 30 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 30min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 7.03, and percentage extraction is 87.54%.
Embodiment 5
Get Diacetylmonoxime concentration is 10g/L (10000ppm), ammonium sulfate concentrations is 40wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 30 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 40min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 20.12, and percentage extraction is 95.27%.
Embodiment 6
Get 1ml ionic liquid [BMIM] NTf 2with 5ml Diacetylmonoxime concentration be 5g/L (5000ppm), ammonium sulfate concentrations is the aqueous solution of 40wt%, both are joined in graduated centrifuge tube respectively with the ratio of 1:5, put into constant temperature oscillation in water-bath vibration shaking table again, oscillation frequency 200Hz, temperature controls at about 30 DEG C, open vibration, two-phase is fully mixed.Stop oscillation after vibration 40min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 20.58, and percentage extraction is 80.45%.
Embodiment 7
Get Diacetylmonoxime concentration is 5g/L (5000ppm), ammonium sulfate concentrations is 40wt% the aqueous solution and ionic liquid [BMIM] NTf 2both are joined in graduated centrifuge tube with the ratio of 1:1 by each 2ml respectively, then put into constant temperature oscillation in water-bath vibration shaking table, oscillation frequency 200Hz, and temperature controls at about 40 DEG C, opens vibration, two-phase is fully mixed.Stop oscillation after vibration 40min, stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, record two-phase volume.Get 1ml aqueous phase, dilute the concentration with spectrophotometric analysis wherein contained Diacetylmonoxime after 100 times with deionized water.And then according to two-phase mixture product value before and after the mass balance of total system Diacetylmonoxime and extraction, the concentration of Diacetylmonoxime in ionic liquid can be calculated.Can calculate distribution ratio is thus 46.53, and percentage extraction is 97.9%.

Claims (1)

1. one kind utilizes ionic liquid [BMIM] NTf 2the method of the Diacetylmonoxime in extraction ammoniumsulphate soln, is characterized in that comprising the steps:
(1) ionic liquid is extracted with mixing by 1:1-1:5 volume ratio containing the ammoniumsulphate soln of Diacetylmonoxime, extraction temperature is 30-40 DEG C, extraction time is 30min-40min, extract rear stratification, upper strata is aqueous phase, lower floor is ionic liquid phase, Diacetylmonoxime be enriched to from aqueous phase ionic liquid mutually in;
(2) by the method for underpressure distillation steam ionic liquid mutually in Diacetylmonoxime, the ionic liquid recycle obtained, ionic liquid is the two trifluoromethanesulfonimide salt of 1-butyl-3-Methylimidazole;
Described is 1000-10000ppm containing the Diacetylmonoxime content in the ammoniumsulphate soln of Diacetylmonoxime, and ammonium sulfate concentrations is 0-40wt%.
CN201310515098.XA 2013-10-28 2013-10-28 Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2 Active CN103570582B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310515098.XA CN103570582B (en) 2013-10-28 2013-10-28 Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310515098.XA CN103570582B (en) 2013-10-28 2013-10-28 Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2

Publications (2)

Publication Number Publication Date
CN103570582A CN103570582A (en) 2014-02-12
CN103570582B true CN103570582B (en) 2015-01-14

Family

ID=50043377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310515098.XA Active CN103570582B (en) 2013-10-28 2013-10-28 Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2

Country Status (1)

Country Link
CN (1) CN103570582B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732422B (en) * 2016-04-15 2017-12-15 浙江大学 The method that diacetylmonoxime in ammonium sulfate solution is extracted using microchannel
CN111116410A (en) * 2020-01-12 2020-05-08 浙江锦华新材料股份有限公司 Preparation method of butanone oxime

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1670017A (en) * 2004-03-15 2005-09-21 中国石油化工股份有限公司 Method for separating Beckmann rearrangement reaction products from ion liquid
CN1826302A (en) * 2003-07-21 2006-08-30 巴斯福股份公司 Method for extracting impurities using ionic liquids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114740A (en) * 2009-10-30 2011-05-01 China Petrochemical Dev Corp Taipei Taiwan Method of separating amide from amino acid ionic solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826302A (en) * 2003-07-21 2006-08-30 巴斯福股份公司 Method for extracting impurities using ionic liquids
CN1670017A (en) * 2004-03-15 2005-09-21 中国石油化工股份有限公司 Method for separating Beckmann rearrangement reaction products from ion liquid

Also Published As

Publication number Publication date
CN103570582A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103408555B (en) A kind of rhodamine B derivative and preparation thereof and application
CN103073388B (en) Method for separating alcohol from water through ion liquid extraction and rectification
CN106048221B (en) One kind uses ionic liquid [OMIM] BF4The method for extracting LREE in acid solution
CN104610094B (en) A kind of method preparing diacetylmonoxime
CN108504868B (en) Method for recovering metal lithium in waste lithium ion battery
Haixia et al. Ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate as a solvent for extraction of lead in environmental water samples with detection by graphite furnace atomic absorption spectrometry
CN105259011A (en) Graded extraction method for subcomponents of fulvic acid in soil
CN103570582B (en) Method for extracting diacetylmonoxime in ammonium sulfate solution by using ionic liquid [BMIM]NTf2
CN108975556A (en) The method of Recovery Purifying aging phosphoric acid polishing fluid
Demin et al. Lithium isotope effects in extraction of lithium chloride by benzo-15-crown-5 in the 1, 1, 7-trihydrododecafluoroheptanol–water system
CN104817422A (en) Treatment method of crude benzene residual liquid in back-extraction step in production process of caprolactam
CN103588675B (en) Method for extracting butanone oxime from solution by utilizing ionic liquid [BMIM]PF6
CN106124675A (en) A kind of method of lithium battery electrolytes chromatograph test pre-treatment
CN104263970A (en) Lithium ion extracting agent
CN104341290A (en) Ionic liquid extractive distillation method for separating acetic acid and water
CN105445208A (en) Determination method for trace thallium in high-salt waste water
Großeheilmann et al. Organic Solvent Nanofiltration‐Supported Purification of Organocatalysts
CN104710285A (en) Method for recycling ethylene glycol monomethyl ether
CN104845662A (en) A method for extracting phenolic compounds in coal liquefaction oil
CN103776935A (en) Method for determining content of major components in mother liquor produced by progestin
CN102702083B (en) Synthetic method of 4,4'-dihydroxymethyl-2,2'-bipyridyl
CN107585822B (en) Method for extracting magnesium from metallurgical wastewater
CN105967211B (en) Method for preparing potassium sulfate from brine
CN107573252B (en) Method for recycling wastewater generated in process of producing glycine by chloroacetic acid method
Zaijun et al. Use of a Novel Medium, the Ionic Liquid 1-Butyl-3-Trimethylsilylimidazolium Hexafluorophosphate, for LiquidLiquid Extraction of Lead in Water and Its Determination by Graphite Furnace Atomic Absorption Spectrometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 210046 Yaojia Road, Qixia District, Nanjing, Jiangsu Province

Co-patentee after: Zhejiang University

Patentee after: China Construction Installation Group Co., Ltd.

Address before: 210046 Yaojia Road, Qixia District, Nanjing, Jiangsu Province

Co-patentee before: Zhejiang University

Patentee before: China Construction Industrial Equipment Installation Co., Ltd.