CN103559496B - The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images - Google Patents

The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images Download PDF

Info

Publication number
CN103559496B
CN103559496B CN201310574723.8A CN201310574723A CN103559496B CN 103559496 B CN103559496 B CN 103559496B CN 201310574723 A CN201310574723 A CN 201310574723A CN 103559496 B CN103559496 B CN 103559496B
Authority
CN
China
Prior art keywords
layer
foam
scale
image
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310574723.8A
Other languages
Chinese (zh)
Other versions
CN103559496A (en
Inventor
彭涛
赵璐
曹威
彭小奇
宋彦坡
赵林
黄易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201310574723.8A priority Critical patent/CN103559496B/en
Publication of CN103559496A publication Critical patent/CN103559496A/en
Application granted granted Critical
Publication of CN103559496B publication Critical patent/CN103559496B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种泡沫图像多尺度多方向纹理特征的提取方法,首先对泡沫灰度图像进行曲线波变换,然后分别对不同尺度不同方向的曲线波子图进行处理,提取多尺度多方向的纹理表征信息,构成泡沫图像的特征向量。根据所获得的纹理特征,可将不同工况的泡沫图像区分开来。该泡沫图像多尺度多方向纹理特征的提取方法针对泡沫图像识别具有良好的模式可分性,且易于实施。

The invention discloses a method for extracting multi-scale and multi-directional texture features of a foam image. First, the foam grayscale image is subjected to curve wave transformation, and then the curve wave subgraphs of different scales and directions are respectively processed to extract multi-scale and multi-directional textures. Representation information, constituting the feature vector of the bubble image. According to the obtained texture features, the foam images of different working conditions can be distinguished. The foam image multi-scale and multi-directional texture feature extraction method has good pattern separability for foam image recognition and is easy to implement.

Description

泡沫图像多尺度多方向纹理特征的提取方法Extraction method of multi-scale and multi-directional texture features of foam images

技术领域technical field

本发明涉及一种泡沫图像多尺度多方向纹理特征的提取方法,属于图像处理技术和模式识别领域。The invention relates to a method for extracting multi-scale and multi-directional texture features of foam images, which belongs to the fields of image processing technology and pattern recognition.

背景技术Background technique

在图像研究中,纹理是一个重要特征,它与图像分辨率密切相关,只有在一定尺度下才能感知到。根据人类对纹理的视觉感知心理学研究,人类在对纹理的识别任务中,最重要的三个维度是方向性、周期性和随机性,其中方向是尤为重要的因素。因此,描述纹理特征必须具备多尺度、多方向特性。In image research, texture is an important feature, which is closely related to image resolution and can only be perceived at a certain scale. According to the psychological research on human visual perception of texture, the three most important dimensions in human texture recognition tasks are directionality, periodicity and randomness, among which direction is a particularly important factor. Therefore, the description of texture features must have multi-scale and multi-directional characteristics.

浮选泡沫图像包含丰富的细节纹理和奇异曲线,各个方向纹理变化不规则,气泡间边缘曲线不规则,对其进行准确的纹理描述非常困难。目前,应用于浮选图像处理的纹理特征提取方法主要有基于灰度共生矩阵的统计方法和基于小波变换的滤波方法。灰度共生矩阵可以描述0°、45°、90°和135°方向上的纹理图像结构特征,但都是在单一尺度下获得的,缺乏对泡沫纹理尺度间依赖关系的描述,很难准确地刻画泡沫纹理多尺度特性。The flotation foam image contains rich detailed textures and singular curves. The texture changes irregularly in all directions, and the edge curves between bubbles are irregular. It is very difficult to accurately describe the texture. At present, the texture feature extraction methods used in flotation image processing mainly include the statistical method based on gray level co-occurrence matrix and the filtering method based on wavelet transform. The gray level co-occurrence matrix can describe the structural features of the texture image in the directions of 0°, 45°, 90° and 135°, but they are all obtained at a single scale. It lacks the description of the inter-scale dependence of the foam texture, and it is difficult to accurately Characterize the multiscale properties of foam textures.

因此,有必要设计一种泡沫图像多尺度多方向纹理特征的提取方法。Therefore, it is necessary to design a method for extracting multi-scale and multi-directional texture features of foam images.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种泡沫图像多尺度多方向纹理特征的提取方法,该泡沫图像多尺度多方向纹理特征的提取方法针对泡沫图像识别具有良好的模式可分性,且易于实施。The technical problem to be solved by the present invention is to provide a method for extracting multi-scale and multi-directional texture features of foam images. The method for extracting multi-scale and multi-directional texture features of foam images has good pattern separability for foam image recognition and is easy to implement .

发明的技术解决方案如下:The technical solution of the invention is as follows:

一种泡沫图像多尺度多方向纹理特征的提取方法,包括以下步骤:A method for extracting multi-scale and multi-directional texture features of foam images, comprising the following steps:

步骤一:从铜浮选现场所获取的泡沫灰度图像TM×N(x,y),其中M×N为泡沫灰度图像的分辨率,(x,y)表示灰度图像的像素;然后对泡沫灰度图像进行曲线波分解,得到曲线波系数矩阵集合,包括最粗尺度层即coarse层、次粗尺度层即detail层以及最细尺度层即fine层;Step 1: the foam grayscale image T M * N (x, y) obtained from the copper flotation site, where M * N is the resolution of the foam grayscale image, and (x, y) represents the pixel of the grayscale image; Then, the curve wave decomposition is performed on the foam grayscale image to obtain a set of curve wave coefficient matrices, including the coarsest layer, the coarse layer, the second-coarse layer, the detail layer, and the thinnest layer, the fine layer;

步骤二:对步骤一得到的曲线波系数矩阵集合中的最粗尺度层即coarse层系数矩阵和最细尺度层即fine层系数矩阵,分别计算平均范数能量,作为最粗尺度层和最细尺度层的特征量;Step 2: Calculate the average norm energy for the coarsest scale layer, namely the coarse layer coefficient matrix, and the finest scale layer, namely the fine layer coefficient matrix, in the curvilinear wave coefficient matrix set obtained in step 1, as the coarsest scale layer and the finest The feature quantity of the scale layer;

对步骤一得到的曲线波系数矩阵集合中的detail层系数矩阵,所述的detail层即次粗尺度层;利用曲线波逆变换对其进行重构,得到detail层重构子图;对detail层重构子图求取灰度共生矩阵,计算不同方向上灰度共生矩阵的熵、相关性和对比度3个特征量,作为detail层的特征量;For the detail layer coefficient matrix in the curve wave coefficient matrix set obtained in step 1, the detail layer is the sub-coarse scale layer; utilize the curve wave inverse transform to reconstruct it to obtain the detail layer reconstruction subgraph; for the detail layer Reconstruct the subgraph to obtain the gray level co-occurrence matrix, and calculate the three feature quantities of the gray level co-occurrence matrix in different directions, entropy, correlation and contrast, as the feature quantity of the detail layer;

步骤三:将步骤二得到的各个尺度层的特征量组成特征向量,作为泡沫图像的纹理特征。Step 3: Combining the feature quantities of each scale layer obtained in Step 2 into a feature vector, which is used as the texture feature of the foam image.

从铜浮选现场获取的原始泡沫视频读取RGB泡沫图像;对RGB泡沫图像灰度化:原始RGB泡沫图像KM×N×3灰度化后变为泡沫灰度图像TM×N(x,y)。Read the RGB foam image from the original foam video obtained from the copper flotation site; grayscale the RGB foam image: the original RGB foam image K M×N×3 grayscale becomes the foam grayscale image T M×N (x ,y).

所述步骤一中:In said step one:

泡沫灰度图像使用USFFT快速离散曲线波变换,其中,曲线波变换方式设置为复值曲线波变换,尺度层数为J=[log2 N]-3;离散曲线波变换的步骤为:The foam grayscale image uses USFFT fast discrete curvelet transform, wherein the curvelet transform mode is set to complex valued curvelet transform, and the number of scale layers is J=[log 2 N]-3; the steps of discrete curvelet transform are:

1)对泡沫灰度图像TM×N(x,y)进行二维快速傅里叶变换至频域,得到公式为:1) Carry out two-dimensional fast Fourier transform to the frequency domain of the foam grayscale image T M×N (x, y), and obtain The formula is:

TT ^^ (( mm ,, nno )) == ΣΣ xx == 00 Mm -- 11 ΣΣ ythe y == 00 NN -- 11 TT Mm ×× NN (( xx ,, ythe y )) ee ii 22 ππ (( mm xx // Mm ++ nno ythe y // NN ))

其中m、n为频域变量,是图像在频域空间里的横纵坐标,且-M/2≤m≤M/2,-N/2≤n≤N/2;Among them, m and n are frequency domain variables, which are the horizontal and vertical coordinates of the image in the frequency domain space, and -M/2≤m≤M/2, -N/2≤n≤N/2;

2)对在每一对尺度、方向(j,l)组合处(即“楔形”窗)进行重采样,【这里指在j=1,2,…,J-1,J,的每个层次即尺度上】得到其中j是尺度变量,l是方向变量,重采样矩阵为楔形阵θl为楔形窗的方位角,l=0,1,……,4·2[j/2]-1,[j/2]是大于或等于j/2的最小整数。2 pairs Resampling is performed at each pair of scale and direction (j,l) combinations (ie "wedge" window), [here refers to each level of j=1,2,...,J-1,J, that is, the scale 】get where j is the scale variable, l is the direction variable, and the resampling matrix is a wedge matrix θl is the azimuth angle of the wedge window, l=0,1,...,4·2[ j/2 ]-1, [j/2] is the smallest integer greater than or equal to j/2.

3)将与抛物窗函数相乘,从而在不同的楔形窗的方向角θl处局部化得到:其中抛物窗函数可以通过如下步骤得到:3) Will with parabolic window function multiplied by , thus localizing at different orientation angles θ l of the wedge window get: where the parabolic window function It can be obtained by the following steps:

A)计算满足容许条件A) Calculation meets the allowable conditions

ΣΣ ll == -- ∞∞ ∞∞ VV 22 (( tt -- ll )) == 11

ΣΣ ll == -- ∞∞ ∞∞ WW 22 (( 22 jj rr )) == 11

的径向窗函数W(r)和角度窗函数V(t)分别为:The radial window function W(r) and the angular window function V(t) of are respectively:

WW (( rr )) == coscos [[ ππ 22 vv (( 55 -- 66 rr )) ]] 22 // 33 ≤≤ rr ≤≤ 55 // 66 11 55 // 66 ≤≤ rr ≤≤ 44 // 33 coscos [[ ππ 22 vv (( 33 rr -- 44 )) ]] 44 // 33 ≤≤ rr ≤≤ 55 // 33 00 ee ll sthe s ee

VV (( tt )) == 11 || tt || ≤≤ 11 // 33 cc oo sthe s [[ ππ 22 vv (( 33 || tt || -- 11 )) ]] 11 // 33 ≤≤ || tt || ≤≤ 22 // 33 00 ee ll sthe s ee

其中,v是满足以下条件的光滑函数:where v is a smooth function satisfying the following conditions:

vv (( zz )) == 00 zz ≤≤ 00 11 zz ≥&Greater Equal; 11 ,, vv (( zz )) ++ vv (( 11 -- zz )) == 11

z、r、ω定义在二维空间R2上,z为空间变量,ω、r为频域内的极坐标,z, r, ω are defined on the two -dimensional space R2, z is the space variable, ω, r are the polar coordinates in the frequency domain,

t=ω/2π。t=ω/2π.

B)计算频域窗函数为B) Calculate the frequency domain window function as

Uu ~~ jj (( rr ,, θθ ll )) == 22 -- 33 jj // 44 WW (( 22 -- jj rr )) VV (( 22 [[ jj // 22 ]] θθ ll 22 ππ )) ,, jj ≥&Greater Equal; jj 00

其中j0表示最粗尺度层;j0=1【j0=1是表示最粗尺度层的序号,可以用从j0=1至6表示从最粗到最细尺度层,也可以反过来。本文中用j0=1表示最粗尺度层。】Among them, j 0 represents the coarsest scale layer; j 0 = 1 [j 0 = 1 is the serial number representing the coarsest scale layer, and j 0 = 1 to 6 can be used to represent the scale layer from the coarsest to the finest, or vice versa . In this paper, j 0 =1 is used to represent the coarsest scale layer. 】

4)对每一个重新划分频域空间的作二维快速傅里叶逆变换,得到曲线波分解系数 4) For each re-divided frequency domain space Do two-dimensional fast Fourier inverse transform to get the curve wave decomposition coefficient

CC kk ,, ll jj == ΣΣ mm ,, nno ∈∈ PP jj TT ^^ (( mm ,, nno -- mtanθmtanθ ll )) ′′ Uu ~~ jj (( mm ,, nno )) ee ii 22 ππ (( xx kk mm // LL 11 ,, jj ++ ythe y kk nno // LL 22 ,, jj ))

其中,表示尺度j上第l个方向、位置k=(xk,yk)处的曲线波分解系数,(m,n)∈Pj,Pj={(m,n):m0≤m≤m0+L1,j,n0≤n≤n0+L2,j},L1,j表示窗函数的支撑区间的长,L2,j表示其支撑区间的宽;(m0,n0)为其支撑区间最左下点的坐标;【支撑区间的长、宽并不是精确地等于2j或2j/2,L1,j=δ12j,其中,δ1=1+Ο(2-j);O表示2j的高阶无穷小,L2,j=δ22j/2,其中,δ2=π/3,为简单起见,所有文献都将支撑区间的长、宽近似取为2j或2j/2in, Indicates the curve wave decomposition coefficient at the lth direction on scale j at position k=(x k ,y k ), (m,n)∈P j ,P j ={(m,n):m 0 ≤m≤ m 0 +L 1,j ,n 0 ≤n≤n 0 +L 2,j }, L 1,j represents the window function (m 0 , n 0 ) is the coordinate of the lower left point of the support interval; [the length and width of the support interval are not exactly equal to 2 j or 2 j/2 , L 1,j1 2 j , where, δ 1 =1+Ο(2 -j ); O represents the higher-order infinitesimal of 2j, L 2,j2 2 j/2 , where, δ 2 = π/3, for the sake of simplicity, all literatures take the length and width of the support interval as approximately 2 j or 2 j/2 ]

得到泡沫灰度图像TM×N(x,y)的曲线波系数矩阵集合如下:The curvilinear wave coefficient matrix set of the foam grayscale image T M × N (x, y) is obtained as follows:

CC kk ,, 00 11 ,, CC kk ,, ll 22 ,, CC kk ,, ll 33 ,, ...... ,, CC kk ,, ll jj ,, ...... ,, CC kk ,, ll JJ -- 11 ,, CC kk ,, 00 JJ ,, jj == 11 ,, 22 ,, ...... ,, JJ ;; ll == 00 ,, 11 ,, ...... 44 ·· 22 [[ jj // 22 ]] -- 11

其中,当j=j0=1时,为最粗尺度层即coarse层系数矩阵,当j=J时,为最细尺度层即fine层系数矩阵,coarse层和fine层没有方向;当j=2,...,J-1时,为次粗尺度层即detail层系数矩阵,detail层方向为l=0,1,...4·2[j/2]-1。Wherein, when j=j 0 =1, is the coefficient matrix of the coarsest layer, that is, the coarse layer, when j=J, It is the coefficient matrix of the thinnest scale layer, that is, the fine layer, and the coarse layer and the fine layer have no direction; when j=2,...,J-1, is the second-coarse scale layer, that is, the coefficient matrix of the detail layer, and the direction of the detail layer is l=0,1,...4·2 [j/2] -1.

所述的步骤二中:In said step two:

1)对coarse层系数矩阵计算其平均范数能量,计算公式为:1) For the coarse layer coefficient matrix Calculate its average norm energy, the calculation formula is:

EE. cc == 11 Mm cc ·· NN cc ΣΣ xx kk == 11 Mm cc ΣΣ ythe y kk == 11 NN cc || cc xx kk ythe y kk ||

其中,为coarse层系数矩阵的元素,Mc、Nc矩阵的行列数;in, is the coefficient matrix of the coarse layer The elements of M c , N c are the number of rows and columns of the matrix;

2)对fine层系数矩阵计算其平均范数能量,计算公式为:2) For the fine layer coefficient matrix Calculate its average norm energy, the calculation formula is:

EE. ff == 11 Mm ff ·· NN ff ΣΣ xx kk == 11 Mm ff ΣΣ ythe y kk == 11 NN ff || ff xx kk ythe y kk ||

其中,为fine层系数矩阵的元素,Mf、Nf矩阵的行列数,所描述的图像大小与原灰度图像TM×N(x,y)的大小相等,即Mf=M,Nf=N;in, is the fine layer coefficient matrix The elements of M f , N f are the number of rows and columns of the matrix, The size of the described image is equal to the size of the original grayscale image T M×N (x, y), that is, M f =M, N f =N;

3)对detail层系数矩阵使用curvelet逆变换进行重构,得到detail层重构子图【重构子图步骤为现有技术,对detail层进行重构步骤如下:将曲线波变换后系数矩阵中coarse层和fine层系数置零,保留detail层系数;对系数矩阵进行curvelet逆变换,步骤为:对每一对尺度、角度组合处(j,l),对应用二维快速傅里叶变换,得到傅里叶采样其中m,n∈Pj;对每一对(j,l),作看成在剪切网格(m,n-m tanθl)上的采样,并对其在标准奈奎斯特网格上重采样;对不同尺度和角度上的结果求和,得到进行快速傅里叶逆变换,得到T(x,y)】,对其进行灰度映射:3) For the detail layer coefficient matrix Use the curvelet inverse transformation to reconstruct, and get the reconstructed subgraph of the detail layer [The step of reconstructing the subgraph is the existing technology, and the steps of reconstructing the detail layer are as follows: set the coefficients of the coarse layer and fine layer in the coefficient matrix after the curvelet transformation to zero, and retain the coefficients of the detail layer; perform curvelet inverse transformation on the coefficient matrix, The steps are: for each pair of scale and angle combinations (j,l), for Apply the 2D Fast Fourier Transform to get the Fourier samples where m, n∈P j ; for each pair (j,l), make Will regarded as Sampling on a sheared grid (m,nm tanθ l ) and resampling it on a standard Nyquist grid; summing the results at different scales and angles gives right Perform inverse fast Fourier transform to get T(x,y)], and perform grayscale mapping on it:

GG == 255255 ·&Center Dot; TT ‾‾ Mm dd ×× NN dd -- minmin TT ‾‾ Mm dd ×× NN dd mm aa xx TT ‾‾ Mm dd ×× NN dd -- minmin TT ‾‾ Mm dd ×× NN dd

其中分别为所有元素中的最大值和最小值;in respectively the maximum and minimum values among all elements;

对灰度映射后得到的矩阵G进行灰度级量化,得到Gq,量化级数q=16;Perform grayscale quantization on the matrix G obtained after grayscale mapping to obtain G q , and the number of quantization levels q=16;

求取灰度共生矩阵,记为其描述了Gq中灰度值分别为s和u的像素对(s,u)以角度相隔距离h【角度表示从灰度值为s的像素点指向灰度值为u的像素点的连线与水平正方向之间的夹角,相隔距离表示两个像素点连线的长度】出现的次数,其中取为0°、45°、90°、135°中任一值,距离h取为1;Find the gray level co-occurrence matrix, denoted as It describes the pixel pair (s, u) with the gray value s and u in G q and the angle The distance h [the angle represents the angle between the line from the pixel with the gray value s to the pixel with the gray value u and the horizontal positive direction, and the distance represents the length of the line connecting two pixels] appears times, of which Take any value of 0°, 45°, 90°, 135°, and take the distance h as 1;

对不同角度的灰度共生矩阵计算3个特征值,作为detail层的特征量:to different angles The gray level co-occurrence matrix of Calculate 3 eigenvalues as the feature quantity of the detail layer:

熵: entropy:

相关性: Correlation:

对比度: Contrast:

其中表示中的元素,μs和σs、μu和σu分别表示灰度共生矩阵中元素所在的行和列方向上所有元素的均值和方差,其中元素所在的行号数值为s,列号数值为u。in express The elements in , μ s and σ s , μ u and σ u respectively represent the gray level co-occurrence matrix The mean and variance of all elements in the direction of the row and column where the element is located, where the value of the row number of the element is s, and the value of the column number is u.

所述的步骤三中,将步骤二得到的各个尺度层特征量组成最终的特征向量作为泡沫图像的纹理特征,分别取0°、45°、90°和135°,其中F1=Ec,为泡沫图像曲线波分解得到的coarse层子图的特征量;F2=Ef,为fine层子图的特征量;为detail层子图不同角度的特征量。In Step 3, the feature quantities of each scale layer obtained in Step 2 are combined to form the final feature vector As the texture features of the foam image, Take 0°, 45°, 90° and 135° respectively, where F 1 =E c is the feature quantity of the coarse layer sub-graph obtained from the foam image curve wave decomposition; F 2 =E f is the feature of the fine layer sub-graph quantity; Different angles for detail layer submaps feature quantity.

本发明的技术构思:Technical concept of the present invention:

小波变换提供了一种在不同尺度上研究分析纹理细节的工具,可以将原始图像分解成不同频率不同分辨率的子带图像,高频子带反映图像的纹理、边缘等细节信息,低频子带反映图像的轮廓信息。但小波变换并不能很好地刻画泡沫图像表面纹理所表现出来的线奇异和曲线奇异,也不能提供很好的方向选择性。曲线波变换就是为了克服传统二维离散小波变换的缺点而提出来的。不同于小波变换的各向同性小波基,曲线波变换是各向异性的,对方向高度敏感,对于曲线奇异表示非常有效。曲线波理论经过两代的发展,第一代曲线波变换以脊波(Ridgelet)理论为基础,由一种特殊的滤波过程和多尺度Ridgelet变换组合而成,参数多,冗余大,并且存在分块效应。第二代curvelet变换及其快速离散算法则完全脱离了Ridgelet变换,直接在频域定义,更容易理解和实现,算法冗余少而速度更快。Wavelet transform provides a tool for studying and analyzing texture details at different scales. It can decompose the original image into sub-band images of different frequencies and resolutions. The high-frequency sub-band reflects the texture, edge and other details of the image. Reflect the contour information of the image. But the wavelet transform can't describe the line singularity and curve singularity shown by the surface texture of the foam image well, nor can it provide a good direction selectivity. The curvelet transform is proposed to overcome the shortcomings of the traditional two-dimensional discrete wavelet transform. Unlike the isotropic wavelet base of the wavelet transform, the curvelet transform is anisotropic, highly sensitive to direction, and very effective for singular representations of curves. After two generations of development of the curve wave theory, the first generation of curve wave transform is based on the Ridgelet theory, which is composed of a special filtering process and multi-scale Ridgelet transform, with many parameters, large redundancy, and existence of Blocking effect. The second-generation curvelet transform and its fast discrete algorithm are completely separated from the Ridgelet transform, and are defined directly in the frequency domain, which is easier to understand and implement, and the algorithm is less redundant and faster.

因此,本发明采用基于第二代曲线波理论的快速离散曲线波变换算法,将图像Curvelet分解得到的不同尺度和不同方向上的子图与灰度共生矩阵相结合,获取多尺度多方向上的纹理特征,共同组成图像的特征向量,对泡沫图像进行纹理描述,为基于泡沫浮选图像特征的选矿过程工况识别、分析与控制提供依据。Therefore, the present invention adopts the fast discrete curvelet transform algorithm based on the second-generation curvelet theory, and combines the subimages of different scales and directions obtained by the Curvelet decomposition of the image with the gray level co-occurrence matrix to obtain multi-scale and multi-directional Texture features, which together form the feature vector of the image, describe the texture of the foam image and provide a basis for the identification, analysis and control of the mineral processing process based on the image features of the froth flotation.

有益效果:Beneficial effect:

本发明的泡沫图像多尺度多方向纹理特征的提取方法,其本质是基于第二代曲线波变换的泡沫图像多尺度多方向纹理特征提取方法,通过多尺度多方向的数据处理,得到的特征向量能很好的反映图像各层次和各方向的纹理特征,克服目前泡沫图像纹理特征提取方法中灰度共生矩阵和小波变换各自的局限,即灰度共生矩阵只能反映泡沫图像单一尺度上的纹理结构信息,缺乏对泡沫纹理尺度间依赖关系的描述;多尺度小波分析不能刻画泡沫图像表面纹理所表现出来的线奇异和曲线奇异,也不能提供很好的方向选择性。实验证明,本发明所提取的纹理特征量具有良好的模式可分性,可以很好地将正常、水化、粘性三种泡沫区分开来。且这种方法可以直接在计算机上实现,成本低,效率高,易于实施。The method for extracting multi-scale and multi-directional texture features of foam images of the present invention is essentially a method for extracting multi-scale and multi-directional texture features of foam images based on second-generation curve wave transform, and the feature vector obtained is obtained through multi-scale and multi-directional data processing It can well reflect the texture features of each level and direction of the image, and overcome the respective limitations of the gray level co-occurrence matrix and wavelet transform in the current foam image texture feature extraction method, that is, the gray level co-occurrence matrix can only reflect the texture of the foam image on a single scale Structural information lacks the description of the inter-scale dependence of foam texture; multi-scale wavelet analysis cannot describe the line singularity and curve singularity shown in the surface texture of foam image, nor can it provide good direction selectivity. Experiments have proved that the texture feature quantity extracted by the present invention has good mode separability, and can well distinguish three types of foams: normal, hydrated and viscous. Moreover, this method can be directly implemented on a computer, has low cost, high efficiency and is easy to implement.

附图说明Description of drawings

图1为三种不同工况的泡沫图像(图a,b,c分别为正常泡沫、水化泡沫和粘性泡沫的图像);Figure 1 is the foam images of three different working conditions (picture a, b, c are the images of normal foam, hydration foam and viscous foam respectively);

图2为泡沫图像曲线波分解后各尺度子图;(图a-f分别为最粗尺度、次粗尺度、最细尺度、二尺度、三尺度、四尺度和五尺度的重构子图)Fig. 2 is the sub-graphs of each scale after the curve wave decomposition of the foam image; (Fig.

图3为泡沫图像纹理特征提取框图;Fig. 3 is a block diagram of foam image texture feature extraction;

图4为特征散布图。Figure 4 is a feature scatter diagram.

具体实施方式detailed description

以下将结合附图和具体实施例对本发明做进一步详细说明:The present invention will be described in further detail below in conjunction with accompanying drawing and specific embodiment:

实施例1:Example 1:

某铜浮选现场有三种不同工况的泡沫,分别为正常泡沫、水化泡沫和粘性泡沫,这三种不同工况的泡沫图像如图1所示。There are three different working conditions of foam in a copper flotation site, which are normal foam, hydration foam and viscous foam. The foam images of these three different working conditions are shown in Figure 1.

第一步,根据铜浮选现场所获得的泡沫视频,获取泡沫图像,并将RGB图像进行灰度化。然后对所得的泡沫灰度图像进行曲线波分解,从而得到不同尺度上的曲线波系数矩阵集合;The first step is to obtain the foam image according to the foam video obtained at the copper flotation site, and grayscale the RGB image. Then, the curve wave decomposition is performed on the obtained foam gray image, so as to obtain the set of curve wave coefficient matrices on different scales;

步骤1:原始泡沫视频读取RGB泡沫图像;Step 1: Read the RGB foam image from the original foam video;

步骤2:RGB泡沫图像灰度化。原始RGB泡沫图像K512×512×3灰度化后变为泡沫灰度图像T512×512Step 2: Grayscale the RGB foam image. The original RGB foam image K 512×512×3 becomes gray-scaled into a foam grayscale image T 512×512 ;

步骤3:对步骤2得到的泡沫灰度图像做快速离散曲线波变换,曲线波的变换方式设置为复值曲线波,尺度层数为J=[log2 N]-3。此时,J=6。Step 3: Perform fast discrete curve wave transformation on the foam grayscale image obtained in step 2. The transformation mode of the curve wave is set to complex-valued curve wave, and the number of scale layers is J=[log 2 N]-3. At this time, J=6.

于是,得到灰度图像TM×N(x,y)的曲线波系数矩阵(集合)如下:Then, the curvilinear wave coefficient matrix (set) of the grayscale image T M×N (x, y) is obtained as follows:

CC kk ,, 00 11 ,, CC kk ,, ll 22 ,, CC kk ,, ll 33 ,, CC kk ,, ll 44 ,, CC kk ,, ll 55 ,, CC kk ,, 00 66 ,, ll == 00 ,, 11 ,, ...... 44 ·&Center Dot; 22 [[ jj // 22 ]] -- 11 ;; kk ∈∈ RR 22

其中,当j=1时,为最粗尺度层即coarse层系数矩阵,当j=J=6时,为最细尺度层即fine层系数矩阵,coarse层和fine层没有方向;当j=2,...,5时,为次粗尺度层即detail层系数矩阵,detail层方向为l=0,1,...4·2[j/2]-1。Among them, when j=1, is the coarsest scale layer, that is, the coefficient matrix of the coarse layer, when j=J=6, It is the coefficient matrix of the finest layer, that is, the fine layer, and the coarse layer and the fine layer have no direction; when j=2,...,5, is the second-coarse scale layer, that is, the coefficient matrix of the detail layer, and the direction of the detail layer is l=0,1,...4·2 [j/2] -1.

泡沫图像的各尺度曲线波分解系数中,coarse层系数是低频系数,主要包含泡沫图像的概貌;fine层系数是高频系数,体现图像的细节特征,coarse层和fine层系数不包含方向信息;detail层系数主要包含图像的中高频系数,体现细节和边缘信息,具备多方向特征。因此,对coarse层和fine层系数矩阵计算平均能量范数,对detail重构子图计算不同方向上的灰度共生矩阵,以充分提取detail层的纹理信息。Among the curve wave decomposition coefficients of each scale of the foam image, the coefficients of the coarse layer are low-frequency coefficients, which mainly contain the general appearance of the foam image; the coefficients of the fine layer are high-frequency coefficients, which reflect the detailed characteristics of the image, and the coefficients of the coarse layer and the fine layer do not contain direction information; The detail layer coefficients mainly include mid-to-high frequency coefficients of the image, which reflect details and edge information, and have multi-directional features. Therefore, the average energy norm is calculated for the coefficient matrices of the coarse layer and the fine layer, and the gray level co-occurrence matrix in different directions is calculated for the detail reconstruction sub-image to fully extract the texture information of the detail layer.

第二步,对coarse层和fine层的曲线波子图分别进行特征量提取。In the second step, feature extraction is performed on the curve wave subgraphs of the coarse layer and the fine layer respectively.

1)对coarse层系数矩阵计算其平均范数能量,计算公式为:1) For the coarse layer coefficient matrix Calculate its average norm energy, the calculation formula is:

EE. cc == 11 Mm cc ·&Center Dot; NN cc ΣΣ xx kk == 11 Mm cc ΣΣ ythe y kk == 11 NN cc || cc xx kk ythe y kk ||

其中,为coarse层系数矩阵的元素,Mc、Nc为矩阵的行列数,此时Mc=32,Nc=32。in, is the coefficient matrix of the coarse layer elements, Mc and Nc are The number of rows and columns of the matrix, at this time M c =32, N c =32.

2)对fine层系数矩阵计算其平均范数能量,计算公式为:2) For the fine layer coefficient matrix Calculate its average norm energy, the calculation formula is:

EE. ff == 11 Mm ff ·&Center Dot; NN ff ΣΣ xx kk == 11 Mm ff ΣΣ ythe y kk == 11 NN ff || ff xx kk ythe y kk ||

其中,为fine层系数矩阵的元素,Mf、Nf矩阵的行列数,所描述的图像大小与原灰度图像TM×N(x,y)的大小相等,即Mf=M,Nf=N。此时,J=6,Mf=M=512,Nf=N=512。in, is the fine layer coefficient matrix The elements of M f , N f are the number of rows and columns of the matrix, The size of the described image is equal to the size of the original grayscale image T M×N (x, y), that is, M f =M, N f =N. At this time, J=6, M f =M=512, N f =N=512.

第三步,对detail层系数矩阵使用curvelet逆变换进行重构,得到detail层重构子图对其进行灰度映射:The third step, the coefficient matrix of the detail layer Use the curvelet inverse transformation to reconstruct, and get the reconstructed subgraph of the detail layer Grayscale map it:

GG == 255255 ·· TT ‾‾ Mm dd ×× NN dd -- minmin TT ‾‾ Mm dd ×× NN dd mm aa xx TT ‾‾ Mm dd ×× NN dd -- minmin TT ‾‾ Mm dd ×× NN dd

其中分别为所有元素中的最大值和最小值。in respectively The maximum and minimum value among all elements.

1)对灰度映射后得到的矩阵G进行灰度级量化,得到Gq,量化级数q=16。1) Gray scale quantization is performed on the matrix G obtained after gray scale mapping to obtain G q , and the number of quantization levels q=16.

2)求取灰度共生矩阵,记为其描述了Gq中灰度值分别为s和u的像素对(s,u)以角度相隔距离h出现的次数,其中可以取为0°、45°、90°、135°,距离h一般取为1。2) Obtain the gray level co-occurrence matrix, denoted as It describes the pixel pair (s, u) with the gray value s and u in G q and the angle The number of occurrences separated by a distance h, where It can be taken as 0°, 45°, 90°, and 135°, and the distance h is generally taken as 1.

3)对不同方向(角度)的灰度共生矩阵计算3个特征值,作为detail层的特征量:3) For different directions (angle ) gray level co-occurrence matrix Calculate 3 eigenvalues as the feature quantity of the detail layer:

熵: entropy:

相关性: Correlation:

对比度: Contrast:

其中表示中的元素,μs,μu,σs,σu分别是灰度共生矩阵中元素所在的行和列方向上所有元素的均值和方差,元素所在的行号数值为s,列号数值为u。in express The elements in , μ s , μ u , σ s , σ u are the gray level co-occurrence matrix The mean and variance of all elements in the direction of the row and column where the element is located, the value of the row number where the element is located is s, and the value of the column number is u.

第四步:将步骤二和步骤三得到的各个尺度层的特征量组成最终的特征向量(分别取0°、45°、90°和135°),作为泡沫图像的纹理特征,其中F1=Ec,为泡沫图像曲线波分解得到的coarse层子图的特征量;F2=Ef,为fine层子图的特征量;为detail层子图不同方向(角度)的特征量。Step 4: Combine the feature quantities of each scale layer obtained in Step 2 and Step 3 to form the final feature vector ( Take 0°, 45°, 90° and 135° respectively) as the texture feature of the foam image, where F 1 =E c is the feature quantity of the coarse layer subgraph obtained by the curve wave decomposition of the foam image; F 2 =E f , is the feature quantity of the fine layer subgraph; Different directions (angles) for detail layer submaps ) feature quantity.

将最终得到的泡沫图像纹理特征向量用散布图表示出来,如附图4所示,给出了在时的泡沫图像纹理特征散布图,其中coarse层能量和fine层能量分别通过圆点的面积和颜色表示出来。考察所提取特征量将不同工况的泡沫区分开来的程度,由图4可见,本发明所提取的纹理特征量具有良好的模式可分性,可以很好地将正常、水化、粘性三种泡沫区分开来。The foam image texture eigenvector finally obtained is represented by a scatter diagram, as shown in accompanying drawing 4, which is given in The texture feature scatter diagram of the foam image at that time, where the energy of the coarse layer and the energy of the fine layer are represented by the area and color of the dots, respectively. Investigating the degree to which the extracted feature quantities can distinguish the foams of different working conditions, it can be seen from Figure 4 that the texture feature quantities extracted by the present invention have good mode separability, and can well separate normal, hydration, and viscous three different types of foam.

Claims (3)

1.一种泡沫图像多尺度多方向纹理特征的提取方法,其特征在于,包括以下步骤:1. an extraction method of multi-scale and multi-directional texture features of foam images, characterized in that, comprising the following steps: 步骤一:从铜浮选现场所获取的泡沫灰度图像TM×N(x,y),其中M×N为泡沫灰度图像的分辨率,(x,y)表示泡沫灰度图像的像素;然后对泡沫灰度图像进行曲线波分解,得到曲线波系数矩阵集合,包括最粗尺度层即coarse层、次粗尺度层即detail层以及最细尺度层即fine层;Step 1: Foam grayscale image T M×N (x,y) obtained from the copper flotation site, where M×N is the resolution of the foam grayscale image, and (x,y) represents the pixel of the foam grayscale image ; Then, the curve wave decomposition is performed on the foam grayscale image to obtain a set of curve wave coefficient matrices, including the coarsest scale layer, namely the coarse layer, the second coarse scale layer, namely the detail layer, and the thinnest scale layer, namely the fine layer; 步骤二:对步骤一得到的曲线波系数矩阵集合中的最粗尺度层即coarse层系数矩阵和最细尺度层即fine层系数矩阵,分别计算平均范数能量,作为最粗尺度层和最细尺度层的特征量;Step 2: Calculate the average norm energy respectively for the coarsest scale layer, namely the coarse layer coefficient matrix, and the finest scale layer, namely the fine layer coefficient matrix, in the curvilinear wave coefficient matrix set obtained in step 1, as the coarsest scale layer and the finest The feature quantity of the scale layer; 对步骤一得到的曲线波系数矩阵集合中的detail层系数矩阵,所述的detail层即次粗尺度层;利用曲线波逆变换对其进行重构,得到detail层重构子图;对detail层重构子图求取灰度共生矩阵,计算不同方向上灰度共生矩阵的熵、相关性和对比度3个特征量,作为detail层的特征量;For the detail layer coefficient matrix in the curve wave coefficient matrix set obtained in step 1, the detail layer is the sub-coarse scale layer; it is reconstructed by using the curve wave inverse transform to obtain the detail layer reconstruction subgraph; for the detail layer Reconstruct the subgraph to obtain the gray level co-occurrence matrix, and calculate the three feature quantities of the gray level co-occurrence matrix in different directions, entropy, correlation and contrast, as the feature quantity of the detail layer; 步骤三:将步骤二得到的各个尺度层的特征量组成特征向量,作为泡沫图像的纹理特征;所述步骤一中:Step 3: The feature quantities of each scale layer obtained in step 2 are used to form a feature vector as the texture feature of the foam image; in the step 1: 泡沫灰度图像使用USFFT快速离散曲线波变换,其中,曲线波变换方式设置为复值曲线波变换,尺度层数为J=[log2N]-3;离散曲线波变换的步骤为:The foam grayscale image uses USFFT fast discrete curvelet transform, wherein the curvelet transform mode is set to complex valued curvelet transform, and the number of scale layers is J=[log 2 N]-3; the steps of discrete curvelet transform are: 1)对泡沫灰度图像TM×N(x,y)进行二维快速傅里叶变换至频域,得到公式为:1) Carry out two-dimensional fast Fourier transform to the frequency domain of the foam grayscale image T M×N (x, y), and obtain The formula is: TT ^^ (( mm ,, nno )) == ΣΣ xx == 00 Mm -- 11 ΣΣ ythe y == 00 NN -- 11 TT Mm ×× NN (( xx ,, ythe y )) ee ii 22 ππ (( mm xx // Mm ++ nno ythe y // NN )) 其中m、n为频域变量,是图像在频域空间里的横纵坐标,且-M/2≤m≤M/2,-N/2≤n≤N/2;Among them, m and n are frequency domain variables, which are the horizontal and vertical coordinates of the image in the frequency domain space, and -M/2≤m≤M/2, -N/2≤n≤N/2; 2)对在每一对尺度、方向(j,l)组合处进行重采样,得到其中j是尺度变量,l是方向变量,重采样矩阵为楔形阵θl为楔形窗的方位角,l=0,1,……,4·2[j/2]-1,[j/2]是大于或等于j/2的最小整数;2 pairs Resampling is performed at each pair of scale and direction (j,l) combinations to obtain where j is the scale variable, l is the direction variable, and the resampling matrix is a wedge matrix θ l is the azimuth angle of the wedge window, l=0,1,...,4.2 [j/2] -1, [j/2] is the smallest integer greater than or equal to j/2; 3)将与抛物窗函数相乘,从而在不同的楔形窗的方位角θl处局部化得到:其中抛物窗函数通过如下步骤得到:3) Will with parabolic window function multiplied by , thus localizing at different azimuths θl of the wedge window get: where the parabolic window function Obtained by the following steps: a)计算满足容许条件a) Calculation meets the allowable conditions ΣΣ ll == -- ∞∞ ∞∞ VV 22 (( tt -- ll )) == 11 ΣΣ ll == -- ∞∞ ∞∞ WW 22 (( 22 jj rr )) == 11 的径向窗函数W(r)和角度窗函数V(t)分别为:The radial window function W(r) and the angular window function V(t) of are respectively: WW (( rr )) == coscos [[ ππ 22 vv (( 55 -- 66 rr )) ]] 22 // 33 ≤≤ rr ≤≤ 55 // 66 11 55 // 66 ≤≤ rr ≤≤ 44 // 33 coscos [[ ππ 22 vv (( 33 rr -- 44 )) ]] 44 // 33 ≤≤ rr ≤≤ 55 // 33 00 ee ll sthe s ee VV (( tt )) == 11 || tt || ≤≤ 11 // 33 cc oo sthe s [[ ππ 22 vv (( 33 || tt || -- 11 )) ]] 11 // 33 ≤≤ || tt || ≤≤ 22 // 33 00 ee ll sthe s ee 其中,v是满足以下条件的光滑函数:where v is a smooth function satisfying the following conditions: vv (( zz )) == 00 zz ≤≤ 00 11 zz ≥&Greater Equal; 11 ,, vv (( zz )) ++ vv (( 11 -- zz )) == 11 z、r、ω定义在二维空间R2上,z为空间变量,ω、r为频域内的极坐标,t=ω/2π;z, r, ω are defined on the two-dimensional space R 2 , z is a space variable, ω, r are polar coordinates in the frequency domain, t=ω/2π; b)计算频域窗函数为b) Calculate the frequency domain window function as Uu ~~ jj (( rr ,, θθ ll )) == 22 -- 33 jj // 44 WW (( 22 -- jj rr )) VV (( 22 [[ jj // 22 ]] θθ ll 22 ππ )) ,, jj ≥&Greater Equal; jj 00 其中j0表示最粗尺度层;j0=1;Where j 0 represents the coarsest scale layer; j 0 =1; 4)对每一个重新划分频域空间的作二维快速傅里叶逆变换,得到曲线波分解系数 4) For each re-divided frequency domain space Do two-dimensional fast Fourier inverse transform to get the curve wave decomposition coefficient CC kk ,, ll jj == ΣΣ mm ,, nno ∈∈ PP jj TT ^^ (( mm ,, nno -- mm tanθtanθ ll )) ′′ Uu ~~ jj (( mm ,, nno )) ee ii 22 ππ (( xx kk mm // LL 11 ,, jj ++ ythe y kk nno // LL 22 ,, jj )) 其中,表示尺度j上第l个方向、位置k=(xk,yk)处的曲线波分解系数,(m,n)∈Pj,Pj={(m,n):m0≤m≤m0+L1,j,n0≤n≤n0+L2,j},L1,j表示抛物窗函数的支撑区间的长,L2,j表示其支撑区间的宽;(m0,n0)为其支撑区间最左下点的坐标;in, Indicates the curve wave decomposition coefficient at the lth direction and position k=(xk,yk) on the scale j, (m,n)∈P j ,P j ={(m,n):m 0 ≤m≤m 0 +L 1,j ,n 0 ≤n≤n 0 +L 2,j }, L 1,j represents the parabolic window function The length of the support interval, L 2, j represents the width of the support interval; (m 0 , n 0 ) is the coordinate of the bottom left point of the support interval; 得到泡沫灰度图像TM×N(x,y)的曲线波系数矩阵集合如下:The curvilinear wave coefficient matrix set of the foam grayscale image T M × N (x, y) is obtained as follows: CC kk ,, 00 11 ,, CC kk ,, ll 22 ,, CC kk ,, ll 33 ,, ...... ,, CC kk ,, ll jj ,, ...... ,, CC kk ,, ll JJ -- 11 ,, CC kk ,, 00 JJ ,, jj == 11 ,, 22 ,, ...... ,, JJ ;; ll == 00 ,, 11 ,, ...... 44 ·&Center Dot; 22 [[ jj // 22 ]] -- 11 其中,当j=j0=1时,为最粗尺度层即coarse层系数矩阵,当j=J时,为最细尺度层即fine层系数矩阵,coarse层和fine层没有方向;当j=2,...,J-1时,为次粗尺度层即detail层系数矩阵,detail层方向为l=0,1,...4·2[j/2]-1。Wherein, when j=j 0 =1, is the coefficient matrix of the coarsest layer, that is, the coarse layer, when j=J, It is the coefficient matrix of the thinnest scale layer, that is, the fine layer, and the coarse layer and the fine layer have no direction; when j=2,...,J-1, is the second-coarse scale layer, that is, the coefficient matrix of the detail layer, and the direction of the detail layer is l=0,1,...4·2 [j/2] -1. 2.根据权利要求1所述的泡沫图像多尺度多方向纹理特征的提取方法,其特征在于,2. the method for extracting the multi-scale and multi-directional texture feature of foam image according to claim 1, is characterized in that, 所述的步骤二中:In said step two: 1)对coarse层系数矩阵计算其平均范数能量,计算公式为:1) For the coarse layer coefficient matrix Calculate its average norm energy, the calculation formula is: EE. cc == 11 Mm cc ·&Center Dot; NN cc ΣΣ xx kk == 11 Mm cc ΣΣ ythe y kk == 11 NN cc || cc xx kk ythe y kk || 其中,为coarse层系数矩阵的元素,Mc、Nc矩阵的行列数;in, is the coefficient matrix of the coarse layer The elements of M c , N c are the number of rows and columns of the matrix; 2)对fine层系数矩阵计算其平均范数能量,计算公式为:2) For the fine layer coefficient matrix Calculate its average norm energy, the calculation formula is: EE. ff == 11 Mm ff ·&Center Dot; NN ff ΣΣ xx kk == 11 Mm ff ΣΣ ythe y kk == 11 NN ff || ff xx kk ythe y kk || 其中,为fine层系数矩阵的元素,Mf、Nf矩阵的行列数,所描述的图像大小与泡沫灰度图像TM×N(x,y)的大小相等,即Mf=M,Nf=N;in, is the fine layer coefficient matrix The elements of M f , N f are the number of rows and columns of the matrix, The size of the described image is equal to the size of the foam grayscale image T M×N (x, y), that is, M f =M, N f =N; 3)对detail层系数矩阵使用curvelet逆变换进行重构,得到detail层重构子图对其进行灰度映射:3) For the detail layer coefficient matrix Use the curvelet inverse transformation to reconstruct, and get the reconstructed subgraph of the detail layer Grayscale map it: GG == 255255 ·&Center Dot; TT ‾‾ Mm dd ×× NN dd -- mm ii nno TT ‾‾ Mm dd ×× NN dd mm aa xx TT ‾‾ Mm dd ×× NN dd -- minmin TT ‾‾ Mm dd ×× NN dd 其中分别为所有元素中的最大值和最小值;in respectively the maximum and minimum values among all elements; 对灰度映射后得到的矩阵G进行灰度级量化,得到Gq,量化级数q=16;Perform grayscale quantization on the matrix G obtained after grayscale mapping to obtain G q , and the number of quantization levels q=16; 求取灰度共生矩阵,记为其描述了Gq中灰度值分别为s和u的像素对(s,u)以角度相隔距离h出现的次数,其中取为0°、45°、90°、135°中任一值,距离h取为1;Find the gray level co-occurrence matrix, denoted as It describes the pixel pair (s, u) with the gray value s and u in G q and the angle The number of occurrences separated by a distance h, where Take any value of 0°, 45°, 90°, 135°, and take the distance h as 1; 对不同方向即不同角度的灰度共生矩阵计算3个特征值,作为detail层的特征量:different angles The gray level co-occurrence matrix of Calculate 3 eigenvalues as the feature quantity of the detail layer: 熵: entropy: 相关性: Correlation: 对比度: Contrast: 其中表示中的元素,μs和σs、μu和σu分别表示灰度共生矩阵中元素所在的行和列方向上所有元素的均值和方差,其中元素所在的行号数值为s,列号数值为u。in express The elements in , μ s and σ s , μ u and σ u respectively represent the gray level co-occurrence matrix The mean and variance of all elements in the direction of the row and column where the element is located, where the value of the row number of the element is s, and the value of the column number is u. 3.根据权利要求2所述的泡沫图像多尺度多方向纹理特征的提取方法,其特征在于,所述的步骤三中,将步骤二得到的各个尺度层特征量组成最终的特征向量作为泡沫图像的纹理特征,分别取0°、45°、90°和135°,其中F1=Ec,为泡沫图像曲线波分解得到的coarse层子图的特征量;F2=Ef,为fine层子图的特征量;为detail层子图不同角度的特征量。3. the method for extracting the multi-scale and multi-directional texture features of the foam image according to claim 2, characterized in that, in the step 3, the feature quantities of each scale layer obtained in the step 2 are formed into the final feature vector As the texture features of the foam image, Take 0°, 45°, 90° and 135° respectively, where F 1 =E c is the feature quantity of the coarse layer sub-image obtained from the foam image curve wave decomposition; F 2 =E f is the feature of the fine layer sub-image quantity; Different angles for detail layer submaps feature quantity.
CN201310574723.8A 2013-11-15 2013-11-15 The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images Active CN103559496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310574723.8A CN103559496B (en) 2013-11-15 2013-11-15 The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310574723.8A CN103559496B (en) 2013-11-15 2013-11-15 The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images

Publications (2)

Publication Number Publication Date
CN103559496A CN103559496A (en) 2014-02-05
CN103559496B true CN103559496B (en) 2016-08-17

Family

ID=50013737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310574723.8A Active CN103559496B (en) 2013-11-15 2013-11-15 The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images

Country Status (1)

Country Link
CN (1) CN103559496B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971379B (en) * 2014-05-30 2017-07-28 中南大学 Foam stereoscopic features extracting method based on the equivalent binocular stereo vision model of single camera
CN105405149B (en) * 2015-11-20 2018-07-31 中南大学 A kind of compounded texture feature extracting method of floatation foam image
CN106257498B (en) * 2016-07-27 2019-12-17 中南大学 State division method of zinc flotation based on heterogeneous texture features
CN107705283B (en) * 2017-06-14 2020-11-17 华北理工大学 Particle and bubble collision detection method based on Otsu image segmentation
CN107392232B (en) * 2017-06-23 2020-09-29 中南大学 A method and system for classification of flotation conditions
CN109300129A (en) * 2018-10-08 2019-02-01 苏州宏凡信息科技有限公司 A kind of image quality indicator deviation angle detection method based on gray level co-occurrence matrixes
CN110766699B (en) * 2019-07-22 2022-03-15 中南大学 Texture feature measurement method based on Euclidean distance judgment
CN110781737B (en) * 2019-09-19 2022-04-12 杭州电子科技大学 Design Method of Transfer Function Based on Comb Transform in Underwater Acoustic Data Volume Rendering
CN111323815B (en) * 2020-02-17 2021-04-02 成都理工大学 Method for predicting carbonate rock fracture reservoir based on azimuth gray level co-occurrence matrix
CN113807360A (en) * 2020-06-12 2021-12-17 华为技术有限公司 Image processing method, device and storage medium
CN112075922B (en) * 2020-10-14 2024-09-10 中国人民解放军空军军医大学 Method for measuring fundus image index of type 2 diabetes and analyzing correlation with diabetic nephropathy
CN113705462B (en) * 2021-08-30 2023-07-14 平安科技(深圳)有限公司 Face recognition method, device, electronic equipment and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231191A (en) * 2011-07-17 2011-11-02 西安电子科技大学 Multimodal image feature extraction and matching method based on ASIFT (affine scale invariant feature transform)
CN102902950A (en) * 2012-06-26 2013-01-30 西安电子科技大学 Human movement identification method based on second-generation Curvelet transformation
CN103345636A (en) * 2013-06-24 2013-10-09 中南大学 Method for identifying foam working condition on copper flotation site based on wavelet multi-scale binaryzation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231191A (en) * 2011-07-17 2011-11-02 西安电子科技大学 Multimodal image feature extraction and matching method based on ASIFT (affine scale invariant feature transform)
CN102902950A (en) * 2012-06-26 2013-01-30 西安电子科技大学 Human movement identification method based on second-generation Curvelet transformation
CN103345636A (en) * 2013-06-24 2013-10-09 中南大学 Method for identifying foam working condition on copper flotation site based on wavelet multi-scale binaryzation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
application of numerical image analysis to process diagnosis and physical parameter measurement in mineral process;Gianni Bartolacci et al;《Minerals Engineering》;20061231;第734-747页 *
基于Curvelet变换的图像特征提取与处理;罗丽;《中国优秀硕士学位论文全文数据库信息科技辑2011年》;20111215(第S1期);第15-17、27-34页 *
基于Curvelet变换的浮选泡沫图像序列时空联合去噪;刘金平 等;《控制与决策》;20130930;第28卷(第9期);第1322-1328页 *
基于图像序列的铝土矿精选泡沫纹理分析;孙园园;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑2012年》;20120115(第01期);第25-39、50-54页 *

Also Published As

Publication number Publication date
CN103559496A (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN103559496B (en) The extracting method of the multiple dimensioned multi-direction textural characteristics of froth images
CN101303764B (en) Multi-sensor image adaptive fusion method based on non-subsampled contourlet
CN103810755B (en) Compressed sensing spectrum picture method for reconstructing based on documents structured Cluster rarefaction representation
CN103093434B (en) Non-local wiener filtering image denoising method based on singular value decomposition
CN102968781A (en) Image fusion method based on NSCT (Non Subsampled Contourlet Transform) and sparse representation
CN103258324B (en) Based on the method for detecting change of remote sensing image that controlled kernel regression and super-pixel are split
CN102722866B (en) Compressive sensing method based on principal component analysis
CN103854262A (en) Medical image noise reduction method based on structure clustering and sparse dictionary learning
CN105141970A (en) Texture image compression method based on geometric information of three-dimensional model
CN103793711A (en) Multidimensional vein extracting method based on brain nuclear magnetic resonance image
CN103077506A (en) Local and non-local combined self-adaption image denoising method
CN102426701A (en) Underwater sonar image denoising method based on dual-tree complex wavelet transform and PCA
CN104252703B (en) Wavelet preprocessing and sparse representation-based satellite remote sensing image super-resolution reconstruction method
Zuo et al. Fabric defect detection based on texture enhancement
CN103345636B (en) Based on the copper flotation site bubble condition recognition methods of multi-scale wavelet binaryzation
CN103345739B (en) A kind of high-resolution remote sensing image building area index calculation method based on texture
CN103632156A (en) Multi-scale neighboring dependence matrix-based method for extracting froth image texture characteristics
CN107589449B (en) Three-dimensional data fault enhancement method based on curve Gabor filtering
CN103024377B (en) The SAR image compression method of based target extracted region and direction wave
CN103186885A (en) Image denoising method and image denoising device
CN102298768B (en) High-resolution image reconstruction method based on sparse samples
CN103778615A (en) Multi-focus image fusion method based on region similarity
CN102289800A (en) Contourlet domain image denoising method based on Treelet
Matsuyama et al. Comparison of a discrete wavelet transform method and a modified undecimated discrete wavelet transform method for denoising of mammograms
Yun et al. Ultrasound image segmentation by spectral clustering algorithm based on the curvelet and GLCM features

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant