发明内容
本发明的目的是为了克服现有技术的缺点与不足,提供一种基于确定学习理论的心肌缺血辅助检测方法。
基于ECG或者VCG进行心肌缺血检测,本质上可以看作是一个动态模式的辨识与识别问题,而动态模式问题本身就是模式识别领域的一个难题。在对径向基函数(RBF)神经网络的持续激励特性研究的基础上,C.Wang等提出了确定学习理论,其中包括对由非线性动力学系统产生的动态模式的辨识、表达和快速识别方法,即通过确定学习获得的动态模式内在系统动态的局部准确神经网络建模,把随时间变化的动态模式以时不变且空间分布的方式有效地表达,进一步利用动态模式内在的动力学拓扑相似给出动态模式之间相似性定义,并提出了对动态模式进行快速识别的一套新方法。在实际工程应用中的系统具有离散时间特性,所以需要对确定学习理论进行扩展以满足实际工程需求。在中国发明专利申请:一种基于确定学习理论的海量时态数据建模方法(申请号:201210560790.X)中,王聪等提出了一种针对离散非线性系统产生的海量时态数据建模的确定学习算法,将确定学习理论在时态数据建模领域进行了拓展。
本发明将确定学习理论应用于对ECG的ST-T段和VCG的ST-T环的内在系统动态的局部准确建模和全息特征提取,并将所学习到的系统动态知识进行三维可视化显示得到心电动力学向量图(Cardiodynamics vectorgram,简称:CDVG),根据CDVG形态,并结合高危因素与临床信息进行心肌缺血检测分析。本发明方法适用于心肌缺血早期检测和冠脉健康监测,为日常心脏保健提供新的依据。
本发明的目的通过如下技术方案实现:一种基于确定学习理论的心肌缺血辅助检测方法,包含如下步骤:
(1)ST-T环数据获取:对12导联心电图ECG数值数据进行预处理之后,通过变换法则将ECG数据转换为三维的VCG数据,再截取三维数据中的ST-T段,从而获取VCG的ST-T环,并在空间中进行归一化处理;
(2)建模并显示CDVG:采用确定学习算法对ST-T环的内在系统动态进行局部准确RBF神经网络建模,将所建模的系统动态进行三维可视化显示得到心电动力学向量图CDVG;
(3)检测分析:根据CDVG形态,并结合年龄、病史和血压这些高危因素与临床症状等信息进行分析,得到辅助检测结果。
上述方法中,步骤(1)中所述12导联心电图ECG数值数据是指传统12导联Ⅰ、Ⅱ、Ⅲ、aVR、aVL、aVF、V1、V2、V3、V4、V5和V6的数值形式数据。
上述方法中,步骤(1)中所述的预处理是指常规滤波操作,以使随后的操作充分稳定和可靠,使用何种滤波方法并不影响本发明方法的有效性。
上述方法中,步骤(1)中所述的通过变换法则将ECG数据转化为三维的VCG数据是指将12导联心电图(ECG)数据通过既定的公认有效的变换法则转换为三维的心电向量图(VCG)数据,记为:
V(k)=[vx(k),vy(k),vz(k)]T∈R3,
式中,k=1,…,m为采样时刻。其中的变换法则根据研究重点不同存在多种方法,使用何种变换法则并不影响本发明方法的有效性。
上述方法中,步骤(1)中所述的截取三维数据中的ST-T段是为了获得VCG数据中的ST-T环,所截取的ST-T段的三维数据可表述为:
式中,kS和kTE分别代表心电图ST-T段的起始点(ST段的起点)和结束点(T波的终点)。在截取准确的前提下,使用何种截取方法并不影响本发明方法的有效性。
上述方法中,步骤(1)中所述的归一化是指对VCG的ST-T环三维数据进行单位球内的归一化,具体操作是:计算VCG截取出的ST-T环的三维数据VST的范数:
式中,k∈[kS,kTE],找到其中的最大范数||V(k)||max,将整个ST-T环上所有数据点坐标除以该最大范数,获得新的数据点位置,即将ST-T环归一化到一个以原点为球心的单位球内。
上述方法中,步骤(2)中所述的对ST-T环的内在系统动态进行局部准确建模是指对VCG的ST-T环的内在系统动态利用确定学习算法进行局部准确RBF神经网络逼近。由于:
(i)心脏系统可以被建模为复杂的高维连续非线性动力学系统,并可进一步被一个三维非线性动力学系统近似表达,其中:
V(t)=[vx(t),vy(t),vz(t)]T∈R3是系统状态,代表产生的三维VCG信号,
F(V(t))=[f1(V(t)),f2(V(t)),f3(V(t))]T是未知的非线性函数向量;
(ii)当采用计算机进行心电图分析时,该系统可以通过采样变换为近似的离散非线性动力学系统:
V(k+1)=V(k)+TsF(V(k)),
式中,V(k)=[vx(k),vy(k),vz(k)]T∈R3是系统状态,代表产生的三维VCG数据,来源于对心脏系统VCG信号的采样,k=1,…,m为采样时刻,Ts是采样周期,F(V(k))=[f1(V(k)),f2(V(k)),f3(V(k))]T表示内在系统动态,当Ts无限小时,此离散非线性系统无限近似原连续非线性系统;
因此,采用确定学习理论中的动态RBF神经网络辨识器,实现对VCG的ST-T环的内在系统动态的局部准确神经网络逼近,即:
式中,是常值神经网络权值向量,S(V(k))是高斯型径向基函数。
上述方法中,步骤(2)中所述的CDVG是对VCG的ST-T环的内在系统动态 的近似准确RBF神经网络建模结果
的三维可视化显示。
上述方法中,步骤(3)中所述的CDVG形态是指三维空间中显示出的图像形态,对正常心电数据其CDVG形态为规整环形或略散环形,对心肌缺血患者的心电数据其CDVG形态为散乱环形或无环形。
上述方法中,步骤(3)中所述的分析是指将经本发明方法获得的CDVG进行形态判断,再结合患者临床信息进行综合分析诊断。临床信息指患者的年龄、病史、血压、生活习惯等高危因素与就诊时的症状等信息。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明能够克服目前心电图系统对心肌缺血诊断大多只用ST段抬高或压低的幅度和T波的形态变化为判别的参考所引起的灵敏性和准确性不高的问题,通过采用确定学习算法对心电信号ST-T环内在的系统动态在局部区域内的准确建模,产生CDVG,能较为敏感地反映心肌缺血的程度,为心肌缺血/心肌梗塞的准确诊断提供一种新方法。
2、本发明首次提出CDVG的概念,并将其进行三维可视化动态显示,与传统ECG、VCG和平板运动试验相比,对心肌缺血/心肌梗塞具有更为敏感的检测能力,检测结果更为直观,检测准确率高;与冠脉CTA、核素心肌灌注显像和冠脉造影等检查方法相比,更加简单、经济,无创。
3、本发明所提一种基于确定学习理论的心肌缺血辅助检测方法,在ECG尚未发生明显改变的情况下,对心肌缺血相关情况的检测具有明显优势,可作为相关病症诊断的重要参考依据,还可用于心血管疾病治疗效果的评估。
实施例
本发明的具体实施例选取标准心电数据库PTB(Physikalisch-TechnischeBundesanstalt)数据库的正常数据P117和心肌梗塞数据P072,说明本发明方法对心肌缺血相关病症检测的有效性。
采用基于确定学习理论的心肌缺血辅助检测方法的步骤如下:
(1)ST-T环数据获取:
利用心电数据采集设备获取12导联心电图ECG的数值数据:Ⅰ、Ⅱ、Ⅲ、aVR、aVL、aVF、V1、V2、V3、V4、V5和V6。由于干扰的影响和心电信号本身微弱的特性,心电信号往往埋藏在噪声中,很容易造成信息丢失或产生虚假信息,所以要对信号进行预处理来降低噪声、增强信息。本实施例中进行两项基本滤波:基线矫正和去除50HZ工频干扰,属于常规滤波操作。滤波预处理选择常用的信号滤波方法皆可,以使随后的操作充分稳定和可靠。本实施例中以选取的PTB数据库数据P117为例,经过数据预处理之后的ECG信号如图1所示。
通过既定的公认有效的变换法则将ECG数据转换为三维的VCG数据。变换法则根据研究重点不同存在多种方法,使用何种变换法则并不影响本实施例的最终检测结果。除非另外特别指明,否则随后的操作都在经过变换后的VCG三维数据上进行。由于VCG的ST-T环更能反应心肌缺血病症,包含了心肌梗塞早期症状的主要动态,所以需要截取ST-T段,获得ST-T环。在截取准确的前提下,使用何种截取方法并不影响本发明方法的有效性。本实施例中的截取操作是:以ECG转换得到的VCG的X导联为截取标准,选取在整个心电周期中用最高点R波定位,使用最大函数方法搜索到R波后,沿后寻找J波,也就是ST段的起点,再根据面积法推断ST-T段。VCG三维数据的ST-T段的空间表达即为ST-T环,再对ST-T环进行单位球内的归一化,具体归一化操作如步骤说明所述。
(2)建模并显示CDVG:
如步骤说明中所述,当采用计算机进行心电图分析时,产生三维VCG数据的心脏系统可近似为离散非线性动力学系统:
V(k+1)=V(k)+TsF(V(k)),
式中,V(k)=[vx(k),vy(k),vz(k)]T∈R3是系统状态,代表产生的三维VCG数据,来源于对心脏系统VCG信号的采样,k=1,…,m为采样时刻,Ts是采样周期,F(V(k))=[f1(V(k)),f2(V(k)),f3(V(k))]T表示系统动态。VCG的ST-T环的内在系统动态记为:
式中,kS和kTE分别代表心电图ST-T段的起始点(ST段的起点)和结束点(T波的终点)。采用确定学习理论中的动态RBF神经网络辨识器,可以实现对VCG的ST-T环的内在系统动态 的局部准确神经网络逼近,即:
式中,是常值神经网络权值向量,S(V(k))是高斯型径向基函数。
上述常值神经网络权值在本实施例中是指在一段时间内权值收敛至最优值,选取收敛的部分权值取数值平均,获取相应的神经网络常值权值便于存储。将进行三维立体空间显示即得到CDVG。CDVG是对学习到的系统动态知识的再利用,可反映心脏冠脉血液动力学状况,对冠脉狭窄所导致的心肌缺血/心肌梗塞有较为敏感的检测能力。本实施例中的PTB数据库数据P117的可视化建模结果CDVG如图2所示。
(3)检测分析:
根据CDVG在三维空间中显示出的图像形态,结合年龄、病史和血压、这些高危因素与就诊时的临床症状等信息进行综合分析,得到辅助检测结果。
本实施例中以选取的PTB数据库数据P117为例,PTB数据库内头文件记载数据信息为:男性,37岁,无急性梗塞,无前期梗塞;正常。其CDVG如图2所示,三维空间中的图像形态为规整环形。CDVG形态分析结果与头文件内记载的正常结果一致。
本实施例中再以PTB数据库数据P072为例,PTB数据库内头文件记载数据信息为:男性,40岁,数据采集时间为1992年1月17日,下侧壁心肌梗塞,无前期梗塞;血脂蛋白II级,有抽烟史;血压120/70mmHg。采用基于确定学习理论的心肌缺血辅助检测方法的步骤(1)(2),其滤波预处理之后的ECG信号如图3所示,可视化建模结果CDVG如图4所示。利用步骤(3),根据本发明方法观察其CDVG形态为无环散乱。CDVG形态分析结果与头文件内记载的心肌梗塞诊断结果一致。