CN103544526A - 一种改进粒子群算法及其应用 - Google Patents

一种改进粒子群算法及其应用 Download PDF

Info

Publication number
CN103544526A
CN103544526A CN201310545273.XA CN201310545273A CN103544526A CN 103544526 A CN103544526 A CN 103544526A CN 201310545273 A CN201310545273 A CN 201310545273A CN 103544526 A CN103544526 A CN 103544526A
Authority
CN
China
Prior art keywords
particle
max
optimal
population
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310545273.XA
Other languages
English (en)
Inventor
张利
赵家强
孙丽杰
岳承君
赵中洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201310545273.XA priority Critical patent/CN103544526A/zh
Publication of CN103544526A publication Critical patent/CN103544526A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种改进粒子群算法及其应用,改进粒子群算法步骤如下:(1)初始化算法;(2)随机初始化粒子的位置x和速度v;(3)初始化迭代次数t=1;(4)计算当前种群中每个粒子的适应值
Figure DDA0000408712870000011
如果
Figure DDA0000408712870000012
那么
Figure DDA0000408712870000013
如果那么

Description

一种改进粒子群算法及其应用
技术领域
本发明涉及一种改进粒子群算法及其应用,属于滚动轴承故障诊断和预防技术领域。
背景技术
粒子群算法由于其需要设置的参数少、结构简单、易于实现,一经提出便受到众多研究学者的关注。所以该算法常被用来求解组合优化问题、进行神经网络的训练等。虽然人工神经网络是有用的黑箱测试方法,能够在关于底层模型没有做出任何假设的情况下逼近任意的连续函数,但是,它们遭受了局部最优解的问题,在传统的分析中找到最优解是非常困难的,同时还要求有大量的训练数据和较长的训练时间。所以,我们需要寻找一种能够实现全局最优解的方法。
发明内容
为了解决上述存在的技术问题,本发明提供一种改进粒子群算法,并基于该算法来优化BP神经网络的权重,并将其应用于滚动轴承故障诊断中。
本发明的目的是通过下述技术方案实现的:一种改进粒子群算法,其步骤如下:
(1)初始化算法,包括设定种群大小N、粒子维数D、最大迭代次数Maxiter、误差精度ε,同时限定粒子的最大速度Vmax和位置Xmax
(2)随机初始化粒子的位置x和速度v;
(3)初始化迭代次数t=1;
(4)计算当前种群中每个粒子的适应值
Figure BDA0000408712850000021
如果
Figure BDA0000408712850000022
那么
Figure BDA0000408712850000023
如果那么
Figure BDA0000408712850000025
其中,
Figure BDA0000408712850000026
表示第i个粒子的适应值,
Figure BDA0000408712850000027
表示第i个粒子的最优适应值,
Figure BDA0000408712850000028
表示第t此迭代时粒子的最优适应值,
Figure BDA0000408712850000029
表示第t此迭代时第i个粒子的第k维位置分量,
Figure BDA00004087128500000210
表示第t次迭代时最优粒子的第k维位置分量;
(5)如果适应值小于设定的最小误差ε或者达到最大迭代次数Maxiter,算法终止,否则,转向步骤(6);
(6)按公式(1)和(2)计算并更新粒子的速度和位置;若v(i,d)>Vmax,则v(i,d)=Vmax;若v(i,d)<-Vmax,则v(i,d)=-Vmax;若x(i,d)>Xmax,则x(i,d)=Xmax;若x(i,d)<-Xmax,则x(i,d)=-Xmax;其中,v(i,d)表示第i个粒子在第d维上的速度分量;x(i,d)表示第i个粒子的第d维上的位置分量;Vmax表示最大速度和Xmax表示最大位置;
Vi(t+1)=wVi(t)+c1r1[Pi-Xi(t)]+c2r2[Pg-Xi(t)]   (1)
Xi(t+1)=Xi(t)+Vi(t)   (2)
其中,c1和c2为正的学习因子,分别表示粒子的自我学习能力和社会学习能力,也被称为加速系数,其大小分别定义了个体最优Pi和全局最优Pg方向上粒子速率大小的影响;r1和r2为0到1之间均匀分布的随机数;Pi=(Pi,1,Pi,2,…,Pi,d)表示粒子自身所搜索到的最优解,Pg=(pg,1,Pg,2,…,Pg,d)表示整个种群目前找到的最优解,t表示当前的迭代次数;w代表惯性权重,惯性权重w按公式(3)进行调整:
其中di表示的是第i个粒子到最优粒子之间的欧式距离,di的表达式如式(4)所示:
d i = Σ i = 1 D ( X i , j - P g , j ) 2 - - - ( 4 )
D表示每个粒子的维数。Xi,j表示第i个粒子的第j维上的位置分量,Pg,j表示第t次迭代时最优粒子的第j维位置分量;
wset是一个常数;dmax、dmin分别表示所有粒子与最优粒子的最大距离;
Figure BDA0000408712850000033
时,说明此时粒子不是当前的最优粒子,其值越小,距离越近,说明越靠近当前最优粒子;其值越大,距离越远说明距当前最优粒子越远;
Figure BDA0000408712850000034
是一个随着迭代次数的增加线性递减的函数,t表示当前的迭代次数,tmax表示算法的最大迭代次数;
用当前迭代中每个粒子距最优粒子的距离的平均值,即平均距离对两个学习因子进行调节,调节公式为:
c 1 ( t ) = C d ‾ ( t ) d max c 2 ( t ) = C - C d ‾ ( t ) d max - - - ( 5 )
其中,C是设定的一个常数,
Figure BDA0000408712850000037
表示所有粒子到最优粒子间的平均距离,其表达式为:
d ‾ = Σ i = 1 N Σ j = 1 D ( X i , j - P g , j ) 2 N - - - ( 6 )
其中N表示粒子种群的个数;
dmax的表达式如式(7)所示:
d max = Σ j = 1 D d j , max 2 - - - ( 7 )
dj,max为粒子第j维上的位置分量的限幅值,随着迭代次数的增加,粒子都会向最优粒子靠近,最后趋向于一点,因此
Figure BDA0000408712850000043
与dmax的比值是逐渐较小的;学习因子c1逐渐减小,而c2则逐渐增大;
按上述步骤调节两个学习因子后,粒子最终是趋于最优解:粒子群优化方法中所有粒子位置xi最终都会收敛于(c1Pi+c2Pg)/(c1+c2),即粒子的最终位置将位于局部最优解与全局最优解的连线上;前述的c1是从设定的常数C逐渐减小到0,c2是从0逐渐增加到设定的常数C,即c1→0,c2→C,此时,粒子的位置xi最终收敛于(c1Pi+c2Pg)/(c1+c2),即整个种群目前找到的最优解Pg,如公式(8)所示:
lim k → ∞ x i ( k ) = lim c 1 → 0 , c 2 → C c 1 P i + c 2 P g c 1 + c 2 = P g - - - ( 8 )
(7)令迭代次数t=t+1,转向(4)。
一种基于上述改进粒子群方法,优化BP神经网络,建立改进粒子群的BP神经网络(IPSO-BP)模型过程如下:
依据权利要求1所述,计算得到最优粒子Pg,最后将最优粒子的位置向量映射为BP网络的权值,由此构成IPSO-BP网络模型。
一种将上述的粒子群的BP神经网络(IPSO-BP)模型,用于滚动轴承故障诊断的方法,其步骤如下:
(1)信号采样:对运行状态的滚动轴承振动信号进行监听,并转换成计算机可处理的数字信号;
(2)信号处理:对采样数据执行去噪预处理,得到干净信号;
(3)特征参数的选择:根据处理后的信号,计算6个时域统计特征参数,生成诊断特征:正常特征、内圈特征、外圈特征、滚动体特征;分别提取每种状态下的20组特征,总共80组数据;其中,用每种状态下的12组共48组数据作为训练样本,用每种状态下的8组共32组数据作为测试样本;
所述的6个时域特征参数为使用统计学原理根据采集的振动信号选取的六个时域特征描述如公式(9)-(14)所示:
a范围:指的是振动信号的最大值和最小值之差。
Max(xi)-Min(xi)   (9)
b均值:振动信号的平均值。
x ‾ = 1 N Σ i = 1 N x i - - - ( 10 )
c标准偏差:
s = N Σ i = 1 N x i 2 - ( Σ i = 1 N x i ) 2 N ( N - 1 ) - - - ( 11 )
d倾斜度:
N ( N - 1 ) ( N - 2 ) Σ i = 1 N ( x i - x ‾ s ) 3 - - - ( 12 )
e峰值:
[ N ( N + 1 ) ( N - 1 ) ( N - 2 ) ( N - 3 ) Σ i = 1 N ( x i - x ‾ s ) 4 ] - 3 ( N - 1 ) 2 ( N - 2 ) ( N - 3 ) - - - ( 13 )
f波峰因数:
1 n Σ i = 1 n X pi 1 N Σ i = 1 N x i 2 - - - ( 14 )
(4)根据实验数据设定参数:实验中,设定N=40,D=50,Maxiter=150,ε=0.001,Vmax=0.5,Xmax=10,C=4;依据权利要求1计算得到粒子群中最优粒子的位置向量,将其作为BP神经网络的权值,构成权利要求2所述的IPSO-BP网络模型。采用6个统计特征参数作为BP神经网络的输入,轴承诊断类型为4种,分别为正常,内圈,外圈和滚动体,当输入神经元个数为6,输出神经元个数为4时,隐含层神经元个数为5时,网络能达到最优性能,采用6-5-4的三层IPSO-BP网络结构进行滚动轴承的故障诊断。
本发明的有益效果:本发明首先针对基本粒子群算法易出现“早熟”收敛的现象,提出了改进的粒子群算法,该算法通过每个粒子与最优粒子间的距离以及粒子间的平均距离来自适应的调节惯性权重和两个学习因子。首先计算当前种群中的粒子与最优粒子的欧式距离,根据欧氏距离的大小来自适应的调节各个粒子的惯性权重,以加快粒子的收敛速度,同时,为了避免粒子群的领导者(当前最优粒子)陷入局部最优解,在每次迭代过程中赋予领导者一个适当的惯性权重;改进惯性权重时计算的欧式距离对两个学习因子进行了该进,这样做的好处是使得在迭代初期,种群具有较大的自我学习能力和较小的社会学习能力,保持了种群的多样性,而在迭代后期,具有较小的自我学习能力和较大的社会学习能力,加快了种群的收敛速度;其次,本发明将利用改进粒子群算法优化BP神经网络的权值,即将最优粒子的对应的权值作为BP神经网络的权值。这样做的好处是:改善了应用基于梯度下降法对网络的权值和阈值进行修正所存在的不足,如容易陷入局部极小值,并且迭代次数多,学习速度太慢等。最后,为了说明本发明提出的改进粒子群(IPSO)算法的有效性,分别同基本的BP算法、基本粒子群(PSO)和线性粒子群(LPSO)优化的神经网络进行了对比。实验结果表明,在进行滚动轴承故障诊断时,本文提出的IPSO-BP与传统的BP相比在收敛速度和收敛精度上都有明显提高,而PSO-BP虽然收敛速度快,但易出现“早熟”现象。LPSO-BP和本发明提出的IPSO-BP可以在很大程度上减小PSO-BP陷入局部最小的机会,并且IPSO-BP与LPSO-BP相比在收敛精度上有一定提高且平均收敛速度要比LPSO-BP快。同时,IPSO-BP比上述其它算法平均绝对误差低而且对轴承四种类型的故障诊断正确率有所提高。
附图说明
图1是未经小波去噪的四种状态下的时域信号图。
图2是小波去噪后的四种状态下的时域信号图。
图3训练样本均方误差对比图。
具体实施方式
本发明主要针对粒子群算法的这种缺陷,受精英学习算法的启示对粒子群算法中的惯性权重和学习因子进行了改进,本发明利用改进的粒子群来优化BP神经网络,将最优粒子的位置向量映射为BP神经网络的权值,构成IPSO-BP网络模型,并将其应用于滚动轴承故障诊断中。
1.改进粒子群算法
1.1 改进算法的基本思想
为了克服传统的BP神经网络学习效率低、收敛速度慢,容易陷入局部最优解的缺陷,以及粒子群出现的“早熟”现象,受精英学习策略的粒子群算法的启示,对粒子群算法中的惯性权重和学习因子进行了改进。
改进算法的基本思想是:首先计算当前种群中的粒子与最优粒子的欧式距离,根据欧氏距离的大小来自适应的调节各个粒子的惯性权重,以加快粒子的收敛速度,同时,为了避免粒子群的领导者(当前最优粒子)陷入局部最优解,在每次迭代过程中赋予领导者一个适当的惯性权重;改进惯性权重时计算的欧式距离对两个学习因子进行了改进,使得在迭代初期,种群具有较大的自我学习能力和较小的社会学习能力,保持了种群的多样性,而在迭代后期,具有较小的自我学习能力和较大的社会学习能力,加快了种群的收敛速度。
1.2 惯性权重的改进
惯性权重w用来平衡PSO的全局和局部的搜索能力,在PSO中起着重要的角色。较大的惯性权重能促使粒子进行全局搜索但可能导致粒子飞出全局最优解;而较小的惯性权重有利于粒子进行局部搜索但极易使其陷入局部最优解。一般来说,最坏的粒子(在群体中有最差的适应值)应该有一个大的速度朝着当前最优的粒子(到目前为止发现的)移动,使自己能获得全局搜索。最优的粒子(在群体中有最好的适应值)应该有一个小的速度,以搜寻围绕自身完善的搜索解决方案。
基于粒子群中惯性权重的重要性,受精英学习算法的启示,本文对惯性权重w按公式(3)调整:
1.3 学习因子的改进
除了相应的权值之外,通过适当的调节c1和c2,也可以加快粒子群的收敛速度。在优化的前期,自我学习能力较大而社会学习能力较小,能够加强全局的搜索能力,而在优化后期,赋予粒子较小的自我学习能力和较大的社会学习能力,有助于粒子收敛到全局最优解。高哲等人用当前迭代中每个粒子速度的平均值即平均速度对两个学习因子进行了改进,使得随着平均速度的减小,学习因子c1逐渐减小,c2逐渐增大。这样不但可以使各个粒子收敛于最优解,而且加快了粒子群整体的收敛速度。
借鉴用平均速度对学习因子进行改进,本文用当前迭代中每个粒子距最优粒子的距离的平均值,即平均距离对两个学习因子进行调节,调节公式如公式(5)所示。
1.4 改进粒子群(IPSO)算法
改进粒子群算法步骤如下:
(1)初始化算法,包括设定种群大小N、粒子维数D、最大迭代次数Maxiter、误差精度ε,同时限定粒子的最大速度Vmax和位置Xmax
(2)随机初始化粒子的位置和速度。
(3)初始化迭代次数t=1。
(4)计算当前种群中每个粒子的适应值如果
Figure BDA0000408712850000092
那么
Figure BDA0000408712850000093
如果
Figure BDA0000408712850000094
那么
Figure BDA0000408712850000095
(5)如果适应值小于设定的最小误差ε或者达到最大迭代次数Maxiter,算法终止,否则,转向步骤6。
(6)按本文提出的公式(1)和(2)计算并更新每个粒子的速度和位置。若v(i,d)>Vmax,则v(i,d)=Vmax;若v(i,d)<-Vmax,则v(i,d)=-Vmax;若x(i,d)>Xmax,则x(i,d)=Xmax;若x(i,d)<-Xmax,则x(i,d)=-Xmax
(7)令迭代次数t=t+1,转向(4)。
2.改进粒子群的BP神经网络(IPSO-BP)模型
BP网络是一种非线性的模拟系统,在模式识别和故障诊断中有潜在的应用。传统的BP主要采用误差反向传播算法,应用基于梯度下降法对网络的权值和阈值进行修正,导致其容易陷入局部极小值,并且迭代次数多,学习速度太慢,需要不断地进行测试以确保其达到最优解。
针对传统BP网络的不足以及神经网络的智能性主要体现在神经元之间的连接权值上,本节用提出的新的改进的粒子群(IPSO)算法优化BP神经网络的权值。每个粒子都有一个位置向量和一个速度向量,位置向量代表了神经元之间的连接权重,而速度向量主要是用来更新权值,表明在多大程度上对位置进行了更新。如果一个粒子距离当前最优粒子较远,那么它就会比其它粒子在更大程度上调整自己的位置(权值)。最后将最优粒子的位置向量映射为BP网络的权值,由此构成IPSO-BP网络模型。
3.特征参数的选择
目前,在滚动轴承的故障诊断中,主要有时域特征参数和频域特征参数两种类型。时域特征参数包括有量纲参数和无量纲参数两种,其中有量纲参数包括峰值、绝对平均值、均方根值、倾斜度、峭度、方根幅值等,无量纲参数包括脉冲因子、峰值因子、波形因子、欲度因子、峭度因子等。频域特征参数主要包括均方频率、均方根频率、重心频率、频率方差以及频率标准差等。
使用统计学原理根据采集的振动信号选取的六个时域特征描述如公式(9)-(14)所示。
4.改进粒子群神经网络的滚动轴承故障诊断算法步骤
(1)数据预处理。采集来的数据进行处理。首先对采集的数据进行小波去噪,为了满足较大的信噪比及较小的均方误差,本文经过大量的仿真研究最终选择尺度为3的db5小波进行去噪处理,并选择Stein无偏似然估计阈值(’rigrsure’)。即对故障信号执行尺度为3的db5小波分解,并选择阈值长度为3的Stein无偏似然估计阈值进行降噪处理,将小于阈值的数据置为0,大于阈值的数据保留。去噪前后变化如附图1和附图2所示。
(2)生成特征向量。用公式(9)-(14)对小波去噪后的数据进行特征提取,作为神经网络的输入向量。本文在四种状态下,分别提取每种状态下的20组特征,
总共80组数据。其中,用每种状态下的12组共48组数据作为训练样本,用每种状态下的8组共32组数据作为测试样本。
(3)根据实验数据设定参数。实验中,设定N=40,D=50,Maxiter=150,ε=0.001,Vmax=0.5,Xmax=10,C=4。依据权利要求1计算得到粒子群中最优粒子的位置向量,将其作为BP神经网络的权值,构成权利要求2所述的IPSO-BP网络模型。采用6个统计特征参数作为BP神经网络的输入,轴承诊断类型为4种,分别为正常,内圈,外圈和滚动体,根据大量实验验证,当输入神经元个数为6,输出神经元个数为4时,隐含层神经元个数为5时,网络能达到最优性能,因此采用6-5-4的三层IPSO-BP网络结构进行滚动轴承的故障诊断。
(4)对比实验。为了说明本发明提出的改进粒子群(IPSO)算法的有效性,分别同基本的BP算法、基本粒子群(PSO)和线性粒子群(LPSO)优化的神经网络应用于滚动轴承故障进行了对比。
对训练样本进行测试,测试的均方误差变化曲线如附图3所示:
用四种训练好的模型分别对测试样本进行测试,测试的对比结果如表1所示:
表1 实验对比结果表
Figure BDA0000408712850000111

Claims (3)

1.一种改进粒子群算法,其步骤如下:
(1)初始化算法,包括设定种群大小N、粒子维数D、最大迭代次数Maxiter、误差精度ε,同时限定粒子的最大速度Vmax和位置Xmax
(2)随机初始化粒子的位置x和速度v;
(3)初始化迭代次数t=1;
(4)计算当前种群中每个粒子的适应值
Figure FDA0000408712840000011
如果
Figure FDA0000408712840000012
那么
Figure FDA0000408712840000013
如果
Figure FDA0000408712840000014
那么
Figure FDA0000408712840000015
其中,
Figure FDA0000408712840000016
表示第i个粒子的适应值,
Figure FDA0000408712840000017
表示第i个粒子的最优适应值,
Figure FDA0000408712840000018
表示第t此迭代时粒子的最优适应值,
Figure FDA0000408712840000019
表示第t此迭代时第i个粒子的第k维位置分量,
Figure FDA00004087128400000110
表示第t次迭代时最优粒子的第k维位置分量;
(5)如果适应值小于设定的最小误差ε或者达到最大迭代次数Maxiter,算法终止,否则,转向步骤(6);
(6)按公式(1)和(2)计算并更新粒子的速度和位置;若v(i,d)>Vmax,则v(i,d)=Vmax;若v(i,d)<-Vmax,则v(i,d)=-Vmax;若x(i,d)>Xmax,则x(i,d)=Xmax;若x(i,d)<-Xmax,则x(i,d)=-Xmax;其中,v(i,d)表示第i个粒子在第d维上的速度分量;x(i,d)表示第i个粒子的第d维上的位置分量;Vmax表示最大速度和Xmax表示最大位置;
Vi(t+1)=wVi(t)+c1r1[Pi-Xi(t)]+c2r2[Pg-Xi(t)]   (1)
Xi(t+1)=Xi(t)+Vi(t)   (2)
其中,c1和c2为正的学习因子,分别表示粒子的自我学习能力和社会学习能力,也被称为加速系数,其大小分别定义了个体最优Pi和全局最优Pg方向上粒子速率大小的影响;r1和r2为0到1之间均匀分布的随机数;Pi=(Pi,1,Pi,2,…,Pi,d)表示粒子自身所搜索到的最优解,Pg=(pg,1,Pg,2,…,Pg,d)表示整个种群目前找到的最优解,t表示当前的迭代次数;w代表惯性权重,惯性权重w按公式(3)进行调整:
Figure FDA0000408712840000021
其中di表示的是第i个粒子到最优粒子之间的欧式距离,di的表达式如式(4)所示:
d i = Σ j = 1 D ( X i , j - P g , j ) 2 - - - ( 4 )
D表示每个粒子的维数。Xi,j表示第i个粒子的第j维上的位置分量,Pg,j表示第t次迭代时最优粒子的第j维位置分量;
wset是一个常数;dmax、dmin分别表示所有粒子与最优粒子的最大距离;
Figure FDA0000408712840000023
时,说明此时粒子不是当前的最优粒子,其值越小,距离越近,说明越靠近当前最优粒子;其值越大,距离越远说明距当前最优粒子越远;
Figure FDA0000408712840000024
是一个随着迭代次数的增加线性递减的函数,t表示当前的迭代次数,tmax表示算法的最大迭代次数;
用当前迭代中每个粒子距最优粒子的距离的平均值,即平均距离对两个学习因子进行调节,调节公式为:
c 1 ( t ) = C d ‾ ( t ) d max c 2 ( t ) = C - C d ‾ ( t ) d max - - - ( 5 )
其中,C是设定的一个常数,表示所有粒子到最优粒子间的平均距离,其表达式为:
d ‾ = Σ i = 1 N Σ j = 1 D ( X i , j - P g , j ) 2 N - - - ( 6 )
其中N表示粒子种群的个数;
dmax的表达式如式(7)所示:
d max = Σ j = 1 D d j , max 2 - - - ( 7 )
dj,max为粒子第j维上的位置分量的限幅值,随着迭代次数的增加,粒子都会向最优粒子靠近,最后趋向于一点,因此
Figure FDA0000408712840000034
(t)与dmax的比值是逐渐较小的;学习因子c1逐渐减小,而c2则逐渐增大;
按上述步骤调节两个学习因子后,粒子最终是趋于最优解:粒子群优化方法中所有粒子位置xi最终都会收敛于(c1Pi+c2Pg)/(c1+c2),即粒子的最终位置将位于局部最优解与全局最优解的连线上;前述的c1是从设定的常数C逐渐减小到0,c2是从0逐渐增加到设定的常数C,即c1→0,c2→C,此时,粒子的位置xi最终收敛于(c1Pi+c2Pg)/(c1+c2),即整个种群目前找到的最优解Pg,如公式(8)所示:
lim k → ∞ x i ( k ) = lim c 1 → 0 , c 2 → C c 1 P i + c 2 P g c 1 + c 2 = P g - - - ( 8 )
(7)令迭代次数t=t+1,转向(4)。
2.一种基于权利要求1所述改进粒子群方法,优化BP神经网络,建立改进粒子群的BP神经网络(IPSO-BP)模型过程如下:
依据权利要求1所述,计算得到最优粒子P,最后将最优粒子的位置向量映射Pg为BP网络的权值,由此构成IPSO-BP网络模型。
3.一种将权利要求2所述的粒子群的BP神经网络(IPSO-BP)模型,用于滚动轴承故障诊断的方法,其步骤如下:
(1)信号采样:对运行状态的滚动轴承振动信号进行监听,并转换成计算机可处理的数字信号;
(2)信号处理:对采样数据执行去噪预处理,得到干净信号;
(3)特征参数的选择:根据处理后的信号,计算6个时域统计特征参数,生成诊断特征:正常特征、内圈特征、外圈特征、滚动体特征;分别提取每种状态下的20组特征,总共80组数据;其中,用每种状态下的12组共48组数据作为训练样本,用每种状态下的8组共32组数据作为测试样本;
所述的6个时域特征参数为使用统计学原理根据采集的振动信号选取的六个时域特征描述如公式(9)-(14)所示:
a范围:指的是振动信号的最大值和最小值之差。
Max(xi)-Min(xi)   (9)
b均值:振动信号的平均值。
x ‾ = 1 N Σ i = 1 N x i - - - ( 10 )
c标准偏差:
s = N Σ i = 1 N x i 2 - ( Σ i = 1 N x i ) 2 N ( N - 1 ) - - - ( 11 )
d倾斜度:
N ( N - 1 ) ( N - 2 ) Σ i = 1 N ( x i - x ‾ s ) 3 - - - ( 12 )
e峰值:
[ N ( N + 1 ) ( N - 1 ) ( N - 2 ) ( N - 3 ) Σ i = 1 N ( x i - x ‾ s ) 4 ] - 3 ( N - 1 ) 2 ( N - 2 ) ( N - 3 ) - - - ( 13 )
f波峰因数:
1 n Σ i = 1 n X pi 1 N Σ i = 1 N x i 2 - - - ( 14 )
(4)根据实验数据设定参数:实验中,设定N=40,D=50,Maxiter=150,ε=0.001,Vmax=0.5,Xmax=10,C=4;依据权利要求1计算得到粒子群中最优粒子的位置向量,将其作为BP神经网络的权值,构成权利要求2所述的IPSO-BP网络模型。采用6个统计特征参数作为BP神经网络的输入,轴承诊断类型为4种,分别为正常,内圈,外圈和滚动体,当输入神经元个数为6,输出神经元个数为4时,隐含层神经元个数为5时,网络能达到最优性能,采用6-5-4的三层IPSO-BP网络结构进行滚动轴承的故障诊断。
CN201310545273.XA 2013-11-05 2013-11-05 一种改进粒子群算法及其应用 Pending CN103544526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310545273.XA CN103544526A (zh) 2013-11-05 2013-11-05 一种改进粒子群算法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310545273.XA CN103544526A (zh) 2013-11-05 2013-11-05 一种改进粒子群算法及其应用

Publications (1)

Publication Number Publication Date
CN103544526A true CN103544526A (zh) 2014-01-29

Family

ID=49967960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310545273.XA Pending CN103544526A (zh) 2013-11-05 2013-11-05 一种改进粒子群算法及其应用

Country Status (1)

Country Link
CN (1) CN103544526A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261742A (zh) * 2014-09-22 2015-01-07 浙江水利水电学院 混凝土配合比的非线性优化方法
CN104360035A (zh) * 2014-11-02 2015-02-18 北京工业大学 一种基于自组织粒子群-径向基神经网络的污水总磷tp软测量方法
CN106053988A (zh) * 2016-06-18 2016-10-26 安徽工程大学 基于智能分析的逆变器故障诊断系统及方法
CN106548230A (zh) * 2016-10-14 2017-03-29 云南电网有限责任公司昆明供电局 基于改进粒子群优化神经网络的变压器故障诊断方法
CN106569030A (zh) * 2016-11-11 2017-04-19 广东电网有限责任公司电力科学研究院 一种电能计量异常诊断中的告警阈值寻优方法及装置
CN107145066A (zh) * 2017-04-07 2017-09-08 北京科技大学 一种多参数优化方法
CN108073788A (zh) * 2017-12-25 2018-05-25 岭南师范学院 一种利用盐湖苦卤制备碱式硼酸镁晶须的方法
CN109039173A (zh) * 2018-08-09 2018-12-18 沈阳工业大学 一种基于杂交粒子群优化的pmlsm迭代学习控制方法及系统
CN109145491A (zh) * 2018-09-10 2019-01-04 江苏大学 一种基于改进粒子群算法的多级离心泵叶轮智能优化方法
CN110020713A (zh) * 2019-04-08 2019-07-16 上海科世达-华阳汽车电器有限公司 一种光伏的多峰值最大功率追踪方法及相关装置
CN110175698A (zh) * 2019-04-26 2019-08-27 浙江工业大学 一种基于改进粒子群优化bp神经网络的水泵设备状态预测方法
CN112014108A (zh) * 2020-08-08 2020-12-01 中车长春轨道客车股份有限公司 基于lmd及改进pso优化bp神经网络的轴承故障诊断方法
CN109684760B (zh) * 2018-12-29 2021-04-13 北京化工大学 基于随机搜索算法的弹性矢量波场数值模拟方法及系统
CN113076996A (zh) * 2021-03-31 2021-07-06 南京邮电大学 一种改进粒子群极限学习机的辐射源信号识别方法
CN114202111A (zh) * 2021-11-19 2022-03-18 华南理工大学 基于粒子群优化bp神经网络的电子膨胀阀流量特性预测

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221213A (zh) * 2008-01-25 2008-07-16 湖南大学 基于粒子群算法的模拟电路故障诊断神经网络方法
CN102074955A (zh) * 2011-01-20 2011-05-25 中国电力科学研究院 基于知识发现技术的电力系统稳定评估及控制方法
CN102243133A (zh) * 2011-04-02 2011-11-16 中北大学 基于运动形态和冲击信号分析的高速自动机故障诊断方法
CN102789592A (zh) * 2011-05-18 2012-11-21 仇思超 一种旋转机械故障诊断优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221213A (zh) * 2008-01-25 2008-07-16 湖南大学 基于粒子群算法的模拟电路故障诊断神经网络方法
CN102074955A (zh) * 2011-01-20 2011-05-25 中国电力科学研究院 基于知识发现技术的电力系统稳定评估及控制方法
CN102243133A (zh) * 2011-04-02 2011-11-16 中北大学 基于运动形态和冲击信号分析的高速自动机故障诊断方法
CN102789592A (zh) * 2011-05-18 2012-11-21 仇思超 一种旋转机械故障诊断优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI ZHANG ET.AL: "《Study of a New Improved PSO-BP Neural Network Algorithm 》", 《JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY》, vol. 20, no. 5, 31 October 2013 (2013-10-31) *
李会荣等: "一种非线性递减惯性权重策略的粒子群优化算法", 《商洛学院学报》, vol. 21, no. 4, 31 December 2007 (2007-12-31) *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261742A (zh) * 2014-09-22 2015-01-07 浙江水利水电学院 混凝土配合比的非线性优化方法
CN104360035A (zh) * 2014-11-02 2015-02-18 北京工业大学 一种基于自组织粒子群-径向基神经网络的污水总磷tp软测量方法
CN104360035B (zh) * 2014-11-02 2016-03-30 北京工业大学 一种基于自组织粒子群-径向基神经网络的污水总磷tp软测量方法
CN106053988A (zh) * 2016-06-18 2016-10-26 安徽工程大学 基于智能分析的逆变器故障诊断系统及方法
CN106548230A (zh) * 2016-10-14 2017-03-29 云南电网有限责任公司昆明供电局 基于改进粒子群优化神经网络的变压器故障诊断方法
CN106548230B (zh) * 2016-10-14 2019-08-06 云南电网有限责任公司昆明供电局 基于改进粒子群优化神经网络的变压器故障诊断方法
CN106569030B (zh) * 2016-11-11 2019-04-09 广东电网有限责任公司电力科学研究院 一种电能计量异常诊断中的告警阈值寻优方法及装置
CN106569030A (zh) * 2016-11-11 2017-04-19 广东电网有限责任公司电力科学研究院 一种电能计量异常诊断中的告警阈值寻优方法及装置
CN107145066A (zh) * 2017-04-07 2017-09-08 北京科技大学 一种多参数优化方法
CN108073788A (zh) * 2017-12-25 2018-05-25 岭南师范学院 一种利用盐湖苦卤制备碱式硼酸镁晶须的方法
CN109039173A (zh) * 2018-08-09 2018-12-18 沈阳工业大学 一种基于杂交粒子群优化的pmlsm迭代学习控制方法及系统
CN109145491A (zh) * 2018-09-10 2019-01-04 江苏大学 一种基于改进粒子群算法的多级离心泵叶轮智能优化方法
CN109145491B (zh) * 2018-09-10 2023-07-18 江苏大学 一种基于改进粒子群算法的多级离心泵叶轮智能优化方法
CN109684760B (zh) * 2018-12-29 2021-04-13 北京化工大学 基于随机搜索算法的弹性矢量波场数值模拟方法及系统
CN110020713B (zh) * 2019-04-08 2023-06-02 上海科世达-华阳汽车电器有限公司 一种光伏的多峰值最大功率追踪方法及相关装置
CN110020713A (zh) * 2019-04-08 2019-07-16 上海科世达-华阳汽车电器有限公司 一种光伏的多峰值最大功率追踪方法及相关装置
CN110175698A (zh) * 2019-04-26 2019-08-27 浙江工业大学 一种基于改进粒子群优化bp神经网络的水泵设备状态预测方法
CN110175698B (zh) * 2019-04-26 2021-08-03 浙江工业大学 一种基于改进粒子群优化bp神经网络的水泵设备状态预测方法
CN112014108A (zh) * 2020-08-08 2020-12-01 中车长春轨道客车股份有限公司 基于lmd及改进pso优化bp神经网络的轴承故障诊断方法
CN113076996B (zh) * 2021-03-31 2022-08-23 南京邮电大学 一种改进粒子群极限学习机的辐射源信号识别方法
CN113076996A (zh) * 2021-03-31 2021-07-06 南京邮电大学 一种改进粒子群极限学习机的辐射源信号识别方法
CN114202111A (zh) * 2021-11-19 2022-03-18 华南理工大学 基于粒子群优化bp神经网络的电子膨胀阀流量特性预测

Similar Documents

Publication Publication Date Title
CN103544526A (zh) 一种改进粒子群算法及其应用
CN103728535B (zh) 一种基于小波变换暂态能量谱的特高压直流输电线路故障测距方法
WO2023044979A1 (zh) 类不平衡数据集下的机械故障智能诊断方法
CN110738010A (zh) 集成深度学习模型的风电场短期风速预测方法
CN106875041A (zh) 一种短期风速预测方法
CN102201236B (zh) 一种高斯混合模型和量子神经网络联合的说话人识别方法
CN107316099A (zh) 基于粒子群优化bp神经网络的弹药贮存可靠性预测方法
CN107016241A (zh) 基于加噪样本增强深度自编码学习网络的旋转机械寿命阶段识别方法
Liu et al. A fault diagnosis intelligent algorithm based on improved BP neural network
CN105701506B (zh) 一种基于超限学习机与稀疏表示分类的改进方法
CN104459668A (zh) 基于深度学习网络的雷达目标识别方法
CN105427241B (zh) 一种大视场显示设备的畸变校正方法
CN108038507A (zh) 基于粒子群优化的局部感受野极限学习机图像分类方法
CN114781435B (zh) 一种基于改进哈里斯鹰优化算法优化变分模态分解的电力电子电路故障诊断方法
CN103413174A (zh) 基于深度学习方法的短期风速多步预测方法
CN109033632A (zh) 一种基于深度量子神经网络的趋势预测方法
CN107563251A (zh) 基于极限学习机的风机故障诊断方法
CN105654509A (zh) 基于复合深度神经网络的运动跟踪方法
CN103425867A (zh) 一种短期风电功率组合预测方法
CN112149905A (zh) 一种基于小波变换和小波神经网络的光伏电站短期功率预测方法
CN112345252A (zh) 一种基于eemd和改进gsa-som神经网络的滚动轴承故障诊断方法
CN109344751A (zh) 一种车内噪声信号的重构方法
CN116340859A (zh) 一种噪声背景下基于振动信号的海上风电机组齿轮箱故障诊断方法
CN111144027A (zh) 一种基于bp神经网络全特性曲线函数的逼近方法
CN111368393A (zh) 一种ies背景下含需求响应资源的电力系统稳定性评估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140129