CN103543743A - Method for preventing control plane integral saturation in aircraft ground servo elasticity test - Google Patents
Method for preventing control plane integral saturation in aircraft ground servo elasticity test Download PDFInfo
- Publication number
- CN103543743A CN103543743A CN201310543027.0A CN201310543027A CN103543743A CN 103543743 A CN103543743 A CN 103543743A CN 201310543027 A CN201310543027 A CN 201310543027A CN 103543743 A CN103543743 A CN 103543743A
- Authority
- CN
- China
- Prior art keywords
- computer
- pass filter
- aircraft
- control computer
- main control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Feedback Control In General (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明属于飞机强度试验领域,涉及飞机气动弹性试验范畴,尤其涉及一种飞机地面伺服弹性试验舵面抗积分饱和方法。本发明在飞控传感器与飞控计算机之间串入实时仿真系统,实时仿真系统包括主控计算机与仿真计算机,在主控计算机内完成高通滤波器参数设置与编译后传输至仿真计算机。本发明的高通滤波器参数设计以飞机弹性振动频率范围内的控制律动态特性为约束,在延长舵面积分饱和时间,有效遏制舵面快速积分饱和的同时,最大限度降低对试验结果的影响;滤波器置于外部仿真机中,无需对机载控制系统硬件和软件进行任何调整,且试验中可根据实际情况对滤波器参数进行调整,适应性强,具有较强的实用性。
The invention belongs to the field of aircraft strength tests, relates to the category of aircraft aeroelasticity tests, and in particular to an anti-integral saturation method for rudder surfaces of aircraft ground servo elasticity tests. The present invention connects a real-time simulation system between the flight control sensor and the flight control computer. The real-time simulation system includes a main control computer and a simulation computer. The high-pass filter parameter setting and compilation are completed in the main control computer and then transmitted to the simulation computer. The parameter design of the high-pass filter of the present invention is constrained by the dynamic characteristics of the control law within the elastic vibration frequency range of the aircraft, prolonging the integral saturation time of the rudder surface, effectively curbing the rapid integral saturation of the rudder surface, and minimizing the influence on the test results; The filter is placed in an external simulator without any adjustments to the hardware and software of the airborne control system, and the filter parameters can be adjusted according to the actual situation during the test, which has strong adaptability and strong practicability.
Description
技术领域technical field
本发明属于飞机强度试验领域,涉及飞机气动弹性试验范畴,尤其涉及一种飞机地面伺服弹性试验舵面抗积分饱和方法。The invention belongs to the field of aircraft strength tests, relates to the category of aircraft aeroelasticity tests, and in particular to an anti-integral saturation method for rudder surfaces of aircraft ground servo elasticity tests.
背景技术Background technique
现代数字电传飞行控制系统大都具有姿态保持和自动配平功能,这些控制功能的实现通常都要在反馈回路中配置积分环节。由于反馈回路中存在积分环节,在地面伺服弹性试验中,只要反馈信号存在零漂或静差,随着时间的推移舵偏指令将饱和,特别当反馈回路中的积分常数较大时,舵面将在短时间内快速饱和,导致试验无法进行。Most modern digital fly-by-wire flight control systems have the functions of attitude maintenance and automatic trimming, and the realization of these control functions usually requires an integral link in the feedback loop. Due to the integral link in the feedback loop, in the ground servo elasticity test, as long as there is zero drift or static error in the feedback signal, the rudder deviation command will be saturated as time goes by, especially when the integral constant in the feedback loop is large, the rudder surface Will quickly saturate in a short period of time, making the test impossible.
目前,对地面伺服弹性试验中出现的舵面积分饱和问题,通常采用积分短路方法,即直接将去掉反馈回路中的积分环节,显然这将使飞机弹性振动频率范围内的控制律动态特性发生变化,影响试验结果的可靠性。At present, for the rudder surface integral saturation problem in the ground servo elastic test, the integral short-circuit method is usually used, that is, the integral link in the feedback loop is directly removed. Obviously, this will change the dynamic characteristics of the control law within the elastic vibration frequency range of the aircraft. , affecting the reliability of the test results.
发明内容Contents of the invention
本发明的目的是:保证对飞机弹性振动频率范围内的飞行控制律动态特性影响最小的前提下,解决飞机地面伺服弹性试验中,由于反馈回路存在积分环节而引起的舵面快速积分饱和,无法正常试验的技术问题。The purpose of the invention is: under the premise of ensuring the minimum impact on the dynamic characteristics of the flight control law in the elastic vibration frequency range of the aircraft, solve the problem of rapid integral saturation of the rudder surface due to the presence of an integral link in the feedback loop in the aircraft ground servo elasticity test, which cannot Technical issues with normal testing.
本发明的技术方案:Technical scheme of the present invention:
在飞控传感器与飞控计算机之间串入实时仿真系统,实时仿真系统包括主控计算机与仿真计算机,在主控计算机内完成高通滤波器参数设置与编译后传输至仿真计算机;主控计算机内高通滤波器参数设置是,A real-time simulation system is connected between the flight control sensor and the flight control computer. The real-time simulation system includes the main control computer and the simulation computer. The high pass filter parameter settings are,
1)构造高通滤波器传递函数:1) Construct a high-pass filter transfer function:
式中:s为拉普拉斯算子,ωn为圆频率,ξ=0.5~1.0为阻尼比;In the formula: s is the Laplacian operator, ω n is the circular frequency, ξ=0.5~1.0 is the damping ratio;
2)给定阻尼比ξ,求解以下约束优化问题得到ωn 2) Given the damping ratio ξ, solve the following constrained optimization problem to get ω n
其中i为虚数符号,ΔA为试验允许的最大幅值偏差,为试验允许的最大相位偏差,ω1为飞机的最低阶固有弹性振动圆频率;Where i is the imaginary number symbol, ΔA is the maximum amplitude deviation allowed by the test, is the maximum phase deviation allowed by the test, ω 1 is the lowest order natural elastic vibration circular frequency of the aircraft;
3)将ωn和ξ代入上述步骤1),得到高通滤波器HF(s)的具体表达式;3) Substitute ω n and ξ into the above step 1) to obtain the specific expression of the high-pass filter HF (s);
4)在主控计算机内完成对高通滤波器HF(s)的编译,生成可执行代码并传输至仿真计算机;4) Compile the high-pass filter HF (s) in the main control computer, generate executable code and transmit it to the simulation computer;
5)飞控传感器输出信号经仿真计算机内的高通滤波器HF(s)消除零漂或静差后进入飞控计算机进行舵偏指令求解。5) The output signal of the flight control sensor passes through the high-pass filter H F (s) in the simulation computer to eliminate zero drift or static error, and then enters the flight control computer to solve the rudder deviation command.
本发明所具有的优点和积极效果是:在带有积分器的反馈回路中引入高通滤波器,以飞机弹性振动频率范围内的飞行控制律动态特性改变量为约束,进行滤波器参数设计,在延长舵面积分饱和时间,有效遏制舵面快速积分饱和的同时,最大限度降低滤波器引入对试验结果的影响,相对于现有的积分短路方法可有效提升试验结果的可靠性。此外,由于反馈信号的零漂或静差的消除是通过置于实时仿真系统中的数字滤波器来实现的,因此无需对机载控制系统硬件和软件进行任何改变,且在试验过程中可根据实际情况对滤波器参数进行实时调整,适应性强。The advantages and positive effects that the present invention has are: in the feedback loop that has integrator, introduce high-pass filter, take the flight control law dynamic characteristic change amount in the elastic vibration frequency range of aircraft as constraint, carry out filter parameter design, in Prolonging the integral saturation time of the rudder surface can effectively curb the rapid integral saturation of the rudder surface, and at the same time minimize the influence of the introduction of the filter on the test results. Compared with the existing integral short-circuit method, it can effectively improve the reliability of the test results. In addition, since the zero drift or static error elimination of the feedback signal is realized through the digital filter placed in the real-time simulation system, there is no need to make any changes to the hardware and software of the airborne control system, and it can be used during the test according to The filter parameters are adjusted in real time according to the actual situation, and the adaptability is strong.
附图说明Description of drawings
图1是本发明原理示意图。Fig. 1 is a schematic diagram of the principle of the present invention.
具体实施方式Detailed ways
参照附图,详细说明本发明。The present invention will be described in detail with reference to the accompanying drawings.
1、在飞机的飞控传感器与飞控计算机之间串入实时仿真系统,实时仿真系统包括主控计算机与仿真计算机;1. A real-time simulation system is connected between the flight control sensor and the flight control computer of the aircraft. The real-time simulation system includes the main control computer and the simulation computer;
2、在主控计算机内完成高通滤波器参数设置,具体如下:2. Complete the high-pass filter parameter setting in the main control computer, as follows:
1)根据控制理论中典型二阶系统的幅相频率特性,构造高通滤波器传递函数形式如下:1) According to the amplitude-phase-frequency characteristics of a typical second-order system in control theory, the form of the high-pass filter transfer function is constructed as follows:
式中:s为拉普拉斯算子,ωn为圆频率,ξ=0.5~1.0为阻尼比;In the formula: s is the Laplacian operator, ω n is the circular frequency, ξ=0.5~1.0 is the damping ratio;
2)选定阻尼比ξ(ξ的取值与飞机最低阶弹性振动模态频率存在正比关系),以高通滤波器HF(s)在0.01倍飞机最低阶弹性模态频率处的幅值最小作为目标函数,构造以下约束优化问题2) Select the damping ratio ξ (the value of ξ is proportional to the frequency of the lowest-order elastic vibration mode of the aircraft), and the amplitude of the high-pass filter HF (s) at 0.01 times the lowest-order elastic mode frequency of the aircraft is the smallest As the objective function, construct the following constrained optimization problem
其中i为虚数符号,ΔA为试验允许的最大幅值偏差,为试验允许的最大相位偏差,ω1为飞机的最低阶固有弹性振动圆频率。Where i is the imaginary number symbol, ΔA is the maximum amplitude deviation allowed by the test, is the maximum phase deviation allowed by the test, and ω 1 is the lowest order natural elastic vibration circular frequency of the aircraft.
3)求解上述步骤2)所构造的约束优化问题,得到ωn 3) Solve the constrained optimization problem constructed in the above step 2) to obtain ω n
4)将ωn和ξ代入上述步骤1),得到高通滤波器HF(s)的具体表达式;4) Substitute ω n and ξ into the above step 1) to obtain the specific expression of the high-pass filter HF (s);
3、在主控计算机内对高通滤波器HF(s)进行编译,生成可执行代码并传输至仿真计算机;3. Compile the high-pass filter HF (s) in the main control computer, generate executable code and transmit it to the simulation computer;
4、飞控传感器输出信号经仿真计算机内的高通滤波器HF(s)消除零漂和静差后进入飞控计算机进行舵偏指令求解,从而避免舵面快速积分饱和。4. The output signal of the flight control sensor passes through the high-pass filter HF (s) in the simulation computer to eliminate zero drift and static error, and then enters the flight control computer to solve the rudder deviation command, so as to avoid the rapid integral saturation of the rudder surface.
实施例Example
1、在飞控传感器与飞控计算机之间串入实时仿真系统,实时仿真系统包括主控计算机与仿真计算机1. A real-time simulation system is connected between the flight control sensor and the flight control computer. The real-time simulation system includes the main control computer and the simulation computer
2、在主控计算机内完成高通滤波器参数设置,具体如下2. Complete the high-pass filter parameter setting in the main control computer, as follows
1)构造高通滤波器传递函数形式如下:1) Construct the high-pass filter transfer function as follows:
2)选取ξ=0.707求解以下约束优化问题2) Select ξ=0.707 to solve the following constrained optimization problem
其中ΔA=0.18dB,ω1=11.6rad/sWhere ΔA = 0.18dB, ω 1 =11.6rad/s
得到ωn=0.4293,高通滤波器HF(s)的具体表达式:Obtain ω n =0.4293, the concrete expression of high-pass filter H F (s):
3、在主控计算机内建立的高通滤波器HF(s)模型,编译并下载至仿真计算机;3. The high-pass filter HF (s) model established in the main control computer is compiled and downloaded to the simulation computer;
4、倾斜角反馈信号先通过仿真机进行高通滤波,后再送入飞控计算机进行控制律解算输出舵偏指令;4. The tilt angle feedback signal is high-pass filtered through the simulator first, and then sent to the flight control computer for control law calculation and output rudder deviation command;
5、自动驾驶仪接通时,倾斜角反馈回路存在积分环节地面伺服弹性试验中倾斜角存在2.3度的静差,若对倾斜角信号不进行高通滤波,则舵面将在控制系统接通14秒后达到满偏角20度,但倾斜角信号经过上述高通滤波处理后,系统接通30m分钟之后,舵面仍保持在中立位置。5. When the autopilot is turned on, there is an integral link in the tilt angle feedback loop In the ground servo elasticity test, there is a static difference of 2.3 degrees in the tilt angle. If the high-pass filter is not performed on the tilt angle signal, the rudder surface will reach the full tilt angle of 20 degrees after the control system is turned on for 14 seconds, but the tilt angle signal passes through the above-mentioned high-pass filter. After the filter processing, the rudder surface remains in the neutral position 30m after the system is switched on.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310543027.0A CN103543743B (en) | 2013-11-05 | 2013-11-05 | A kind of airplane ground servo elasticity test rudder face anti-windup saturation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310543027.0A CN103543743B (en) | 2013-11-05 | 2013-11-05 | A kind of airplane ground servo elasticity test rudder face anti-windup saturation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103543743A true CN103543743A (en) | 2014-01-29 |
CN103543743B CN103543743B (en) | 2016-03-09 |
Family
ID=49967304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310543027.0A Active CN103543743B (en) | 2013-11-05 | 2013-11-05 | A kind of airplane ground servo elasticity test rudder face anti-windup saturation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103543743B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106043734A (en) * | 2016-05-31 | 2016-10-26 | 中国航空工业集团公司西安飞机设计研究所 | Structure notch filter designing method |
CN108762231A (en) * | 2018-05-31 | 2018-11-06 | 北京控制工程研究所 | A kind of super steady super quick control validating in orbit method of superfinishing |
CN109669438A (en) * | 2018-12-14 | 2019-04-23 | 北京东土科技股份有限公司 | Aircraft servo flexibility test analysis system and medium |
CN109703780A (en) * | 2018-10-26 | 2019-05-03 | 中国飞行试验研究院 | A kind of fax airplane in transportation category flight test rudder face card resistance implementation method |
CN111003204A (en) * | 2019-12-06 | 2020-04-14 | 江西洪都航空工业集团有限责任公司 | System and method for testing dynamic stiffness of horizontal tail servo actuating mechanism of airplane |
CN114428493A (en) * | 2021-12-31 | 2022-05-03 | 中国航空工业集团公司西安飞机设计研究所 | Anti-saturation method for airplane rudder deflection instruction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465071A (en) * | 2009-01-08 | 2009-06-24 | 上海交通大学 | Multi-platform target tracking and distribution interactive simulation system |
CN101482753A (en) * | 2009-02-11 | 2009-07-15 | 北京华力创通科技股份有限公司 | Real-time simulation apparatus and system of redundancy flight control computer |
CN101950157A (en) * | 2010-07-30 | 2011-01-19 | 北京航空航天大学 | Flight simulation system with high instantaneity |
EP2466568A1 (en) * | 2010-12-20 | 2012-06-20 | Selex Sistemi Integrati S.P.A. | A fast vertical trajectory prediction method for air traffic management, and relevant ATM system |
-
2013
- 2013-11-05 CN CN201310543027.0A patent/CN103543743B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465071A (en) * | 2009-01-08 | 2009-06-24 | 上海交通大学 | Multi-platform target tracking and distribution interactive simulation system |
CN101482753A (en) * | 2009-02-11 | 2009-07-15 | 北京华力创通科技股份有限公司 | Real-time simulation apparatus and system of redundancy flight control computer |
CN101950157A (en) * | 2010-07-30 | 2011-01-19 | 北京航空航天大学 | Flight simulation system with high instantaneity |
EP2466568A1 (en) * | 2010-12-20 | 2012-06-20 | Selex Sistemi Integrati S.P.A. | A fast vertical trajectory prediction method for air traffic management, and relevant ATM system |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106043734A (en) * | 2016-05-31 | 2016-10-26 | 中国航空工业集团公司西安飞机设计研究所 | Structure notch filter designing method |
CN106043734B (en) * | 2016-05-31 | 2018-04-13 | 中国航空工业集团公司西安飞机设计研究所 | A kind of structure falls into width filter design method |
CN108762231A (en) * | 2018-05-31 | 2018-11-06 | 北京控制工程研究所 | A kind of super steady super quick control validating in orbit method of superfinishing |
CN109703780A (en) * | 2018-10-26 | 2019-05-03 | 中国飞行试验研究院 | A kind of fax airplane in transportation category flight test rudder face card resistance implementation method |
CN109703780B (en) * | 2018-10-26 | 2022-04-19 | 中国飞行试验研究院 | Method for realizing control surface jamming in fly test of telex transport type airplane |
CN109669438A (en) * | 2018-12-14 | 2019-04-23 | 北京东土科技股份有限公司 | Aircraft servo flexibility test analysis system and medium |
CN111003204A (en) * | 2019-12-06 | 2020-04-14 | 江西洪都航空工业集团有限责任公司 | System and method for testing dynamic stiffness of horizontal tail servo actuating mechanism of airplane |
CN111003204B (en) * | 2019-12-06 | 2022-12-02 | 江西洪都航空工业集团有限责任公司 | System and method for testing dynamic stiffness of horizontal tail servo actuating mechanism of airplane |
CN114428493A (en) * | 2021-12-31 | 2022-05-03 | 中国航空工业集团公司西安飞机设计研究所 | Anti-saturation method for airplane rudder deflection instruction |
CN114428493B (en) * | 2021-12-31 | 2022-11-22 | 中国航空工业集团公司西安飞机设计研究所 | Anti-saturation method for airplane rudder deflection instruction |
Also Published As
Publication number | Publication date |
---|---|
CN103543743B (en) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103543743B (en) | A kind of airplane ground servo elasticity test rudder face anti-windup saturation process | |
Yang et al. | Dynamic modeling and control of a 6-DOF micro-vibration simulator | |
WO2019165801A1 (en) | Disturbance perception control method | |
CN103742359A (en) | Device, system and method for wind turbine generator control parameter re-adjustment on basis of model identification | |
Ambati et al. | Robust auto-landing of fixed-wing UAVs using neuro-adaptive design | |
CN105651242A (en) | Method for calculating fusion attitude angle based on complementary Kalman filtering algorithm | |
CN104199283A (en) | Test system and control method for electro-hydraulic servo online self-adjusting fuzzy PID control | |
CN103941701B (en) | Flotation industrial process operation control system and method under a kind of two net environment | |
JP5020950B2 (en) | Method and apparatus for reducing the load on an aircraft wing during rotation | |
CN104407515B (en) | LMIs state feedback system control method based on uncertain model | |
CN104316049A (en) | High-precision and low-signal-to-noise-ratio elliptic star spot subdivision location method | |
CN104267596A (en) | Finite-time decoupling control method of cart inverted pendulum system | |
CN102540877A (en) | Control method of vibration control device based on rapid tilting mirror correction | |
CN107356523A (en) | Feedback force modification method is tested in real-time hybrid analog-digital simulation based on the estimation of discrete tangent rigidity | |
CN103940447B (en) | Mooring state initial aligning method based on self-adaptive digital filter | |
Sheng et al. | Predefined-time fractional-order time-varying sliding mode control for arbitrary order systems with uncertain disturbances | |
CN102736517A (en) | Direct adaptive reconstruction control method for three-degree-of-freedom helicopter | |
CN114063458B (en) | A Preset Performance Control Method for Non-triangular Structure Systems Independent of Initial Conditions | |
CN109460600B (en) | A coupling force analysis and solution method for aircraft landing and rolling | |
US6745114B2 (en) | Process and device for determining in real time the behavior of a craft, in particular of an aircraft | |
CN103979117A (en) | Lens type optical landing-assisting system modeling and simulating method | |
CN102829940A (en) | Implementation method for disturbance simulation of satellite flywheel | |
CN108845594A (en) | Vibration harmonics iteration control method based on transmission function | |
CN104535082A (en) | Method for determining inertial navigation element performances based on flight test and theoretical calculation | |
CN110209049B (en) | Narrow-band large-amplitude disturbance suppression method based on inertial loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |