CN103523891A - Method for realizing catalytic wet oxidation of wastewater containing organic substances - Google Patents

Method for realizing catalytic wet oxidation of wastewater containing organic substances Download PDF

Info

Publication number
CN103523891A
CN103523891A CN201210225882.2A CN201210225882A CN103523891A CN 103523891 A CN103523891 A CN 103523891A CN 201210225882 A CN201210225882 A CN 201210225882A CN 103523891 A CN103523891 A CN 103523891A
Authority
CN
China
Prior art keywords
waste water
catalyst
wastewater
parts
wet oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210225882.2A
Other languages
Chinese (zh)
Other versions
CN103523891B (en
Inventor
陈航宁
郭宗英
郑育元
汪国军
顾松园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201210225882.2A priority Critical patent/CN103523891B/en
Publication of CN103523891A publication Critical patent/CN103523891A/en
Application granted granted Critical
Publication of CN103523891B publication Critical patent/CN103523891B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The invention relates to a method for realizing catalytic wet oxidation of wastewater containing organic substances, which mainly solves the problem that high-concentration organic wastewater is difficult to treat in the prior art. The technical scheme of the method comprises the following step: by taking noble metal loaded nano titanium dioxide as a catalyst, enabling organic wastewater to be in contact with the catalyst in a high-pressure reaction kettle for 30-120 minutes under the conditions that the reaction temperature is 120-260 DEG C and the oxygen gas pressure is 1-10 MPa, wherein the used catalyst comprises the following components in parts by weight: A) 97-99.8 parts of titanium dioxide nanotube, and B) 0.2-3 parts of at least one of Ru, Pd, Pt, Au or Rh loaded on the nanotube. Thus, the problem is well solved; and the method can be used for industrial production of organic wastewater treatment.

Description

Method containing organism Catalytic Wet Air Oxidation for Wastewater
Technical field
The present invention relates to a kind of method containing organism Catalytic Wet Air Oxidation for Wastewater.
Background technology
The characteristic that water is nontoxic owing to having, cheap etc., in chemical process, be often used as the uses such as reaction solvent, medium or cooling fluid, therefore, in application process, water quality has inevitably been subject to destruction, and flourish along with chemical industry, water pollution is ascendant trend year by year, and wherein toxic organic compound is particularly serious to the pollution of water body.This pollutant have quantity discharged large, pollute the features such as wide and difficult for biological degradation, serious threat, to human lives, is also restricting the development of chemical industry simultaneously.
Wet oxidation is that grown up by American scientist Zimmermann the 1950's a kind of processes oxidation technology poisonous, harmful, high concentrated organic wastewater effectively.This method is under high temperature (125~320 ℃), high pressure (0.5~20MPa) condition, take air or pure oxygen as oxygenant, in liquid phase, organic pollutant is oxidized to CO 2chemical process with the inorganicss such as water or small organic molecule.For improving wet oxidation efficiency, reducing reaction conditions, rise the seventies in last century, adds efficient, the stable catalyzer designing for waste water composition, thereby developed Catalytic Wet Oxidation technology on traditional wet oxidation basis.According to the classification of catalyzer, Catalytic Wet Oxidation is divided into homogeneous phase and heterogeneous catalyst wet oxidation two classes.Although homogeneous catalyst has the advantages such as activity is high, speed of response is fast,, because catalyzer is dissolved in waste water, waste water has been caused to secondary pollution, need to carry out the sedimentation of metal ion and reclaim, thereby make technical process become complicated, improve the cost of wastewater treatment.Be different from homogeneous catalyst, the advantage such as heterogeneous catalyst has easily separated, reusable, has simplified the operating process of wet oxidation.Studying efficient, stable catalyzer has become the focus of heterogeneous catalyst wet oxidation.At present the heterogeneous catalyst of research can be divided into three kinds of copper system, composite oxides and noble metal carrier catalysts.Although copper system and composite oxide catalysts have good catalytic activity, in reaction process, active ingredient is stripping inevitably, causes catalyst activity to reduce, can not life-time service; Although noble metal catalyst cost is higher, it still can stable existence under harsh reaction conditions, and oxidation activity is very high.
It is carrier that patent CN1317070C discloses a kind of RE CeO 2, and one or more in precious metal Ru, Pt, Pd, Rh or Au are the preparation method of the wet oxidizing catalyst of catalyst activity component.The standby CeO 2 supporting wet oxidizing catalyst of this legal system has shown good activity in processing high density, organic wastewater with difficult degradation thereby.Yet ceria supports can not stable existence under harsh reaction conditions, the stripping of carrier will impel coming off of noble metal active component, causes the activity decreased of noble metal catalyst.
Summary of the invention
When technical problem to be solved by this invention is existing Catalytic Wet Oxidation skill cardia high density containing organic wastewater, there is the problem that catalyst activity is low, a kind of new method containing organism Catalytic Wet Air Oxidation for Wastewater is provided.When the method has advantages of the high density of processing containing organic wastewater, catalyst activity is high.
For solving the problems of the technologies described above, the technical solution used in the present invention is as follows: a kind of method containing organism Catalytic Wet Air Oxidation for Wastewater, take containing organic waste water is raw material, in temperature of reaction, it is 120~260 ℃, oxygen pressure is under 1~10MPa condition, make waste water contact 30~120min with catalyzer, the organic cod content after reaction in waste water can reduce more than 99%, and wherein catalyzer used comprises following component in parts by weight: the A) titania nanotube of 97~99.8 parts; With the B carrying thereon) 0.2~3 part select at least one in Ru, Pd, Pt, Au or Rh.
In technique scheme, in parts by weight, select at least one the consumption preferable range in Ru, Pd, Pt, Au or Rh be 0.2~1 part.
The preparation method of the wet oxidizing catalyst that the present invention adopts is as follows:
(1) take the NaOH solution of anatase-type nanometer titanium dioxide powder and 1~10mol/L is raw material, at 100~180 ℃ of temperature, adopts hydrothermal method to prepare titania nanotube precursor; Described carrier precursor washing is to neutral, dry, obtain titania nanotube;
(2) titanium dioxide nano-tube support be impregnated in precious metal salt solution, noble metal support amount is 0.2~3%, and dipping time is 12~24h, dry afterwards;
(3) dried mixture roasting 2~5h in air atmosphere, in the muffle furnace of 300~600 ℃, obtains wet oxidizing catalyst presoma; By described presoma, at 300~600 ℃, reductase 12~5h in hydrogen atmosphere, obtains titania nanotube supporting wet oxidizing catalyst.
Precious metal of the present invention is at least one in Ru, Pd, Pt, Au or Rh.
In metal oxide catalyst carrier, the metal oxide of Al, Hf, Ti and Zr can be in supercritical water stable existence, therefore can choose titanium dioxide as the carrier of wet oxidizing catalyst.It is support of the catalyst that the present invention chooses titania nanotube, not only utilized its higher hydrothermal stability, meanwhile, the characteristic of the high-ratio surface that it has, can make the noble metal nano particles high dispersing of preparation at carrier titanium dioxide surface, improve the oxidation activity of catalyzer.Experimental data confirms that this catalyzer has advantages of high reactivity, high stability in processing high density, organic wastewater with difficult degradation thereby.Take 1L autoclave as reactor, choose the industrial acrylic nitrile waste water that acrylic acid wastewater that COD is 28600mg/L and COD are 29600mg/L, catalyzer of the present invention is carried out to wet oxidation investigation.In temperature of reaction, it is 120~260 ℃, total pressure is 1~10MPa, after reaction 30~120min, the COD clearance of acrylic acid wastewater and industrial acrylic nitrile waste water reaches respectively 99.2% and 99.4%, organic waste water after processing can be realized direct discharge, proves a kind of effective method of organism Catalytic Wet Air Oxidation for Wastewater that contains that the present invention is to provide.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, proof is carrier and all not strippings of active ingredient in wet oxidation process, embody the good stability of catalyzer, obtained good technique effect.
Below by embodiment, the present invention is further elaborated.
 
Embodiment
[embodiment 1]
Take anatase-type nanometer titanium dioxide powder and NaOH solution is raw material, adopts hydrothermal method, in 1L autoclave, the NaOH of 20g nano titanium dioxide powder and 500mL (10mol/L) solution is mixed, and stirs 48h at 100 ℃.Mixed solution is after centrifugation, and solid sediment with the HCl solution washing of 1mol/L once, then is washed with distilled water to neutrality, and the support precursor obtaining is dry 24h in 100 ℃ of baking ovens, makes titania nanotube; By 5g titania nanotube incipient impregnation in containing 0.3750g RuCl 3﹒ nH 212h in the aqueous solution of O, then in 100 ℃ of baking ovens dry 12h, the catalyst precursor obtaining reduces 3h under 350 ℃ of hydrogen atmospheres, makes Ru/TiO 2catalyzer WAO-01.In 1L autoclave, with 4g Ru/TiO 2for catalyzer, process the acrylic acid wastewater that 600mL COD is 28600mg/L, at 200 ℃, under oxygen pressure 5MPa, reaction 60min, COD clearance is 98.2%; Process the industrial acrylic nitrile waste water that 600mL COD is 29600mg/L, at 240 ℃, under the condition of oxygen pressure 8MPa, reaction 80min, COD clearance is 97.6%.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, prove carrier and all not strippings of active ingredient in wet oxidation process.
 
[embodiment 2]
In 1L autoclave, the NaOH of 20g nano titanium dioxide powder and 500mL (1mol/L) solution is mixed, stir 48h at 180 ℃.Mixed solution is after centrifugation, and solid sediment with the HCl solution washing of 1mol/L once, then is washed with distilled water to neutrality, and the support precursor obtaining is dry 24h in 100 ℃ of baking ovens, makes titania nanotube; By 5g titania nanotube incipient impregnation in containing 0.1150g PdCl 2the aqueous solution in 12h, dry 12h in 100 ℃ of baking ovens, the catalyst precursor obtaining reduces 3h under 550 ℃ of hydrogen atmospheres, makes Pd/TiO 2catalyzer WAO-02.In 1L autoclave, with 4g Pd/TiO 2for catalyzer, process the acrylic acid wastewater that 600mL COD is 28600mg/L, at 250 ℃, under oxygen pressure 8MPa, reaction 120min, COD clearance is 96.6%; Process the industrial acrylic nitrile waste water that 600mL COD is 29600mg/L, at 260 ℃, under the condition of oxygen pressure 10MPa, reaction 120min, COD clearance is 97.3%.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, prove carrier and all not strippings of active ingredient in wet oxidation process.
 
[embodiment 3]
In 1L autoclave, the NaOH solution of 20g nano titanium dioxide powder and 500mL 6mol/L is mixed, stir 48h at 130 ℃.Mixed solution is after centrifugation, and solid sediment with the HCl solution washing of 1mol/L once, then is washed with distilled water to neutrality, and the support precursor obtaining is dry 24h in 100 ℃ of baking ovens, makes titania nanotube; By 5g titania nanotube incipient impregnation in containing 0.1250g H 2ptCl 6the aqueous solution in 12h, then in 100 ℃ of baking ovens after dry 12h, the catalyst precursor obtaining reduces 3h under 600 ℃ of hydrogen atmospheres, makes Pt/TiO 2catalyzer WAO-03.In 1L autoclave, with 4g Pt-Pd/TiO 2for catalyzer, process the acrylic acid wastewater that 600mL COD is 28600mg/L, at 160 ℃, under oxygen pressure 4MPa, reaction 30min, COD clearance is 98.8%; Process the industrial acrylic nitrile waste water that 600mL COD is 29600mg/L, at 220 ℃, under the condition of oxygen pressure 6MPa, reaction 60min, COD clearance is 97.8%.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, prove carrier and all not strippings of active ingredient in wet oxidation process.
 
[embodiment 4]
Titania nanotube in 5g embodiment 3 be impregnated in to the RuCl containing 0.1250g 3﹒ nH 2o and 0.025g H 2ptCl 6the aqueous solution in, at room temperature after incipient impregnation 12h, dry 12h in 100 ℃ of baking ovens, the catalyst precursor obtaining reduces 3h under 350 ℃ of hydrogen atmospheres, makes Ru-Pt/TiO 2catalyzer WAO-04.In 1L autoclave, with 4g Ru-Pt/TiO 2for catalyzer, process the acrylic acid wastewater that 600mL COD is 28600mg/L, at 200 ℃, under oxygen pressure 5MPa, reaction 60min, COD clearance is 98.7%; Process the industrial acrylic nitrile waste water that 600mL COD is 29600mg/L, at 240 ℃, under the condition of oxygen pressure 8MPa, reaction 80min, COD clearance is 98.1%.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, prove carrier and all not strippings of active ingredient in wet oxidation process.
 
[embodiment 5-8]
Embodiment 5,6,7,8 catalyzer preparation conditions and wet oxidation reaction condition are identical with embodiment 4, and the precious metal salt solution of just selecting is different, and specifically the results are shown in Table 1 for formula and wet oxidation.Utilize ICP to detect reacted waste water, in acrylic acid wastewater and industrial acrylic nitrile waste water, the fignal center of Ti and M (M is precious metal) all do not detected, prove carrier and all not strippings of active ingredient in wet oxidation process.
 
[comparative example 1]
According to CN1317070C patent description, prepared RuO 2/ CeO 2catalyzer.Concrete preparation method is as follows: with Ce (NO 3) 3﹒ 6H 2o and NH 3﹒ H 2o is raw material, adopts coprecipitation method, by Ce (NO 3) 3solution drops to NH 3﹒ H 2in O, 100 ℃ of dry 24h under air atmosphere, then under 350 ℃ of air atmospheres, roasting 7h, makes CeO 2carrier; By 5g CeO 2carrier impregnation is in containing 0.3073g RuCl 3﹒ nH 2in the aqueous solution of O, room temperature dipping 10h, dry under 110 ℃ of air atmospheres, roasting 7h under 300 ℃ of air atmospheres, makes RuO 2/ CeO 2catalyzer WAO-09.
 
[comparative example 2]
CeO with preparation in comparative example 1 2for carrier, by 4g CeO 2impregnated in 0.2523g H 2ptCl 6﹒ 6H 2in the aqueous solution of O, under room temperature, flood after 12h, dry under 110 ℃ of air atmospheres, then under 300 ℃ of hydrogen atmospheres, reduce 3h, make Pt/CeO 2catalyzer WAO-10.
 
Feature of the present invention is to utilize TiO 2the hydrothermal stability of nanotube and high-ratio surface characteristic, invented a kind of with noble metal support TiO 2nano tube catalyst is processed the method for high density, high toxicity, organic wastewater with difficult degradation thereby for wet oxidation.
Table 1 different catalysts Pyrogentisinic Acid's waste water and vinyl cyanide trade effluent wet oxidation result
Figure 274113DEST_PATH_IMAGE002

Claims (2)

1. the method containing organism Catalytic Wet Air Oxidation for Wastewater, take containing organic waste water is raw material, in temperature of reaction, it is 120~260 ℃, oxygen pressure is under 1~10MPa condition, make waste water contact 30~120min with catalyzer, organic cod content after reaction in waste water can reduce more than 99%, and wherein catalyzer used comprises following component in parts by weight: the A) titania nanotube of 97~99.8 parts; With the B carrying thereon) 0.2~3 part select at least one in Ru, Pd, Pt, Au or Rh.
2. according to claim 1 containing the method for organism Catalytic Wet Air Oxidation for Wastewater, it is characterized in that in parts by weight, select at least one the consumption in Ru, Pd, Pt, Au or Rh be 0.2~1 part.
CN201210225882.2A 2012-07-03 2012-07-03 Containing the method for organism Catalytic Wet Air Oxidation for Wastewater Active CN103523891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210225882.2A CN103523891B (en) 2012-07-03 2012-07-03 Containing the method for organism Catalytic Wet Air Oxidation for Wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210225882.2A CN103523891B (en) 2012-07-03 2012-07-03 Containing the method for organism Catalytic Wet Air Oxidation for Wastewater

Publications (2)

Publication Number Publication Date
CN103523891A true CN103523891A (en) 2014-01-22
CN103523891B CN103523891B (en) 2015-09-09

Family

ID=49926312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210225882.2A Active CN103523891B (en) 2012-07-03 2012-07-03 Containing the method for organism Catalytic Wet Air Oxidation for Wastewater

Country Status (1)

Country Link
CN (1) CN103523891B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105347573A (en) * 2015-12-10 2016-02-24 浙江奇彩环境科技有限公司 Treatment method for pyridine wastewater
CN105597740A (en) * 2014-11-20 2016-05-25 中国石油化工股份有限公司 Heterogeneous catalysis wet oxidation catalyst and preparation method thereof
CN106045000A (en) * 2016-07-11 2016-10-26 上海应用技术学院 Wet-oxidation treatment method of wastewater generated in wood cooking processing process
CN106582705A (en) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 Heterogeneous wet oxidation catalyst
CN107335454A (en) * 2017-08-28 2017-11-10 安徽大学 A kind of loading type Pd3The preparation and its application of Cl cluster catalyst
CN107552046A (en) * 2016-07-01 2018-01-09 中国科学院大连化学物理研究所 Treatment of acrylic acid waste water by catalytic wet oxidation catalyst and its preparation method and application
CN109465008A (en) * 2018-11-19 2019-03-15 厦门大学 A kind of catalytic wet oxidation catalyst and its preparation method and application
CN111018089A (en) * 2019-11-08 2020-04-17 康纳新型材料(杭州)有限公司 Catalytic wet oxidation treatment method for propylene oxide wastewater
CN111333169A (en) * 2020-03-05 2020-06-26 上海耀嵘环保科技有限公司 Catalytic wet oxidation treatment method for organic wastewater
CN113880217A (en) * 2021-09-30 2022-01-04 中化环境科技工程有限公司 Method for treating nitrogenous heterocyclic pesticide wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314154A (en) * 1996-05-30 1997-12-09 Keiji Nitta Waste water treatment method
JPH10174983A (en) * 1996-10-15 1998-06-30 Meidensha Corp Accelerated oxidation treatment apparatus using ozone and photocatalyst
CN102040275A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Catalysis wet-type oxidation treatment method for cyanogen-containing wastewater
CN102040274A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Catalysis wet-type oxidation treatment method for sulfur-containing wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314154A (en) * 1996-05-30 1997-12-09 Keiji Nitta Waste water treatment method
JPH10174983A (en) * 1996-10-15 1998-06-30 Meidensha Corp Accelerated oxidation treatment apparatus using ozone and photocatalyst
CN102040275A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Catalysis wet-type oxidation treatment method for cyanogen-containing wastewater
CN102040274A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Catalysis wet-type oxidation treatment method for sulfur-containing wastewater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597740B (en) * 2014-11-20 2018-04-06 中国石油化工股份有限公司 Heterogeneous catalysis wet oxidizing catalyst and preparation method thereof
CN105597740A (en) * 2014-11-20 2016-05-25 中国石油化工股份有限公司 Heterogeneous catalysis wet oxidation catalyst and preparation method thereof
CN106582705A (en) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 Heterogeneous wet oxidation catalyst
CN106582705B (en) * 2015-10-14 2019-08-06 中国石油化工股份有限公司 Multiphase wet oxidation catalyst
CN105347573A (en) * 2015-12-10 2016-02-24 浙江奇彩环境科技有限公司 Treatment method for pyridine wastewater
CN107552046A (en) * 2016-07-01 2018-01-09 中国科学院大连化学物理研究所 Treatment of acrylic acid waste water by catalytic wet oxidation catalyst and its preparation method and application
CN106045000A (en) * 2016-07-11 2016-10-26 上海应用技术学院 Wet-oxidation treatment method of wastewater generated in wood cooking processing process
CN107335454A (en) * 2017-08-28 2017-11-10 安徽大学 A kind of loading type Pd3The preparation and its application of Cl cluster catalyst
CN107335454B (en) * 2017-08-28 2020-07-24 安徽大学 Load type Pd3Preparation and application of Cl cluster catalyst
CN109465008A (en) * 2018-11-19 2019-03-15 厦门大学 A kind of catalytic wet oxidation catalyst and its preparation method and application
CN109465008B (en) * 2018-11-19 2020-09-15 厦门大学 Catalytic wet oxidation catalyst and preparation method and application thereof
CN111018089A (en) * 2019-11-08 2020-04-17 康纳新型材料(杭州)有限公司 Catalytic wet oxidation treatment method for propylene oxide wastewater
CN111333169A (en) * 2020-03-05 2020-06-26 上海耀嵘环保科技有限公司 Catalytic wet oxidation treatment method for organic wastewater
CN113880217A (en) * 2021-09-30 2022-01-04 中化环境科技工程有限公司 Method for treating nitrogenous heterocyclic pesticide wastewater

Also Published As

Publication number Publication date
CN103523891B (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN103523891B (en) Containing the method for organism Catalytic Wet Air Oxidation for Wastewater
Vinoth et al. TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight
CN107617447B (en) Ag @ MOFs/TiO2Preparation method and application of photocatalyst
CN105600909B (en) The method of catalytic wet oxidation processing organic wastewater
CN104084217B (en) Catalyst that a kind of ammonia nitrogen waste water CWO is processed and preparation method thereof
CN105268435B (en) Heterogeneous catalysis wet oxidizing catalyst
CN102626641B (en) Nano-composite catalyst and preparation method thereof
CN101811049A (en) Method for preparing honeycomb ceramic catalyst for catalytically ozonizing organic matters in water
CN104043452A (en) Heterogeneous catalytic wet oxidation catalyst using active carbon as carrier and preparation method thereof
CN105597740B (en) Heterogeneous catalysis wet oxidizing catalyst and preparation method thereof
Babu et al. Ultrasound-assisted synthesis of nanoparticles for energy and environmental applications
CN104628118B (en) Catalytic Wet Air Oxidation for Wastewater processing method
CN102161003B (en) Preparation and application method of hydrazine-degrading catalyst
CN105084505B (en) The method that multiphase wet oxidation handles industrial wastewater
CN111135823A (en) Wet oxidation catalyst and preparation method and application thereof
CN113019364A (en) Preparation method of porous ruthenium dioxide-cerium dioxide microsphere composite material
Li et al. Preparation and application of high-performance and acid-tolerant TiO2/carbon electrocatalytic membrane for organic wastewater treatment
Colmenares et al. Ultrasound and photochemical procedures for nanocatalysts preparation: application in photocatalytic biomass valorization
Fei et al. Facile preparation of visible light-sensitive layered g-C3N4 for photocatalytic removal of organic pollutants
CN107570159A (en) One kind prepares high-performance black TiO2The method of photochemical catalyst
CN107469818B (en) CaZrO3Preparation method of carrier, catalyst with noble metal loaded on carrier, preparation method and application thereof
CN109179495A (en) A kind of preparation method of high-dispersion nano titanium dioxide
CN107866219B (en) Wet oxidation catalyst and preparation method thereof
CN113813957A (en) Bimetal composite catalyst, preparation method and application thereof, working electrode and battery system
Hsiao et al. Photocatalytic degradation of reactive orange 16 dye over Au-doped TiO2 in aqueous suspension

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant