CN103513577A - A displacement sensor simulation circuit - Google Patents

A displacement sensor simulation circuit Download PDF

Info

Publication number
CN103513577A
CN103513577A CN201210201368.5A CN201210201368A CN103513577A CN 103513577 A CN103513577 A CN 103513577A CN 201210201368 A CN201210201368 A CN 201210201368A CN 103513577 A CN103513577 A CN 103513577A
Authority
CN
China
Prior art keywords
input terminal
input
resistor
signal
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210201368.5A
Other languages
Chinese (zh)
Inventor
杜永良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aircraft Design and Research Institute of AVIC
Original Assignee
Xian Aircraft Design and Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aircraft Design and Research Institute of AVIC filed Critical Xian Aircraft Design and Research Institute of AVIC
Priority to CN201210201368.5A priority Critical patent/CN103513577A/en
Publication of CN103513577A publication Critical patent/CN103513577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明属于电传飞行控制系统试验技术领域,尤其是涉及一种位移传感器仿真电路。本发明位移传感器仿真电路可分为三部分:输入信号处理电路,信号调制电路,输出信号处理电路。所述仿真电路接收来模拟输出信号,将其分解为两路与两副边操纵量大小对应的直流模拟信号;随后利用调幅原理将此两路直流模拟信号调制为两路交流模拟信号;其后利用运算放大器与三极管构成的反馈电路提高信号的驱动能力,驱动变压器作为输出,从而模拟线位移传感器的副边输出阻抗特性。本发明设计简单、成本低,能够很好的模拟位移传感器的信号。

The invention belongs to the field of fly-by-wire flight control system test technology, and in particular relates to a displacement sensor simulation circuit. The simulation circuit of the displacement sensor of the present invention can be divided into three parts: an input signal processing circuit, a signal modulation circuit, and an output signal processing circuit. The simulation circuit receives the analog output signal and decomposes it into two DC analog signals corresponding to the magnitudes of the two side manipulation quantities; then uses the principle of amplitude modulation to modulate the two DC analog signals into two AC analog signals; then The feedback circuit composed of the operational amplifier and the triode is used to improve the driving ability of the signal, and the drive transformer is used as the output, thereby simulating the secondary output impedance characteristics of the linear displacement sensor. The invention has simple design and low cost, and can well simulate the signal of the displacement sensor.

Description

一种位移传感器仿真电路A Displacement Sensor Simulation Circuit

技术领域 technical field

本发明属于电传飞行控制系统试验技术领域,尤其是涉及一种位移传感器仿真电路。The invention belongs to the field of fly-by-wire flight control system test technology, and in particular relates to a displacement sensor simulation circuit.

背景技术 Background technique

在电传飞控系统的飞机上,驾驶员操纵传感器是飞机人工操纵的信号源,它将驾驶员对驾驶杆和脚蹬的操纵位移(或操纵力)转换成与其成比例的电压信号,送入飞控计算机。电传飞控系统或控制增强系统,普遍采用位移传感器作为驾驶员操纵传感器。驾驶员操纵传感器有以下两种形式:In the aircraft of the fly-by-wire flight control system, the pilot control sensor is the signal source of the manual control of the aircraft, which converts the pilot's control displacement (or control force) of the control stick and pedals into a voltage signal proportional to it, and sends it to into the flight control computer. Fly-by-wire flight control systems or control enhancement systems generally use displacement sensors as the driver's manipulation sensors. Driver manipulation sensors come in two forms:

线性可变差动变压器(位移传感器,LVDT):将直线位移转换成电压信号。Linear Variable Differential Transformer (Displacement Transducer, LVDT): Converts linear displacement into a voltage signal.

旋转可变差动变压器(角位移传感器,RVDT):将角位移转换成电压信号。Rotary Variable Differential Transformer (Angular Displacement Transducer, RVDT): Converts angular displacement into a voltage signal.

这两种传感器都具有结构简单、使用方便、适应的环境温度范围宽、灵敏度高和输出信号大的特点,更主要的是可靠性高、寿命长,被广泛应用。由于LVDT的量程大,线性输出范围宽、安装方便,应用更为广泛。These two sensors have the characteristics of simple structure, convenient use, wide adaptable ambient temperature range, high sensitivity and large output signal, more importantly, high reliability and long life, and are widely used. Due to the large measuring range of LVDT, wide linear output range, convenient installation and wider application.

在试验中,飞控计算机需要采集这些传感器的信号,传统的物理环境的构造往往需要很长的时间,同时也需要花费较多的费用。而且,在物理环境下也很难完成故障的构建、以及特定功能的自动试验。In the test, the flight control computer needs to collect the signals of these sensors. The construction of the traditional physical environment often takes a long time and costs a lot. Moreover, it is difficult to complete the construction of faults and automatic testing of specific functions in a physical environment.

发明内容 Contents of the invention

本发明所要解决的技术问题是:提供一种位移传感器仿真电路,实现对位移传感器信号的电子仿真。The technical problem to be solved by the present invention is to provide a displacement sensor simulation circuit to realize electronic simulation of displacement sensor signals.

本发明的技术方案是:一种位移传感器仿真电路,其特征为:所述仿真电路可分为三部分,即:输入信号处理电路,信号调制电路,输出信号处理电路;输入信号处理电路接收来自飞控计算机的激励信号,将其高端EX+连接到电容C1输入1端,低端EX-连接到电容C2输入1端,电容C1、C2输入2端分别连接电阻R1、R3输入1端,电阻R1输入2端连接电阻R2输入1端及运算放大器U1输入1端,电阻R3输入2端连接运算放大器输入2端及电阻R4输入1端,电阻R4输入2端接地,电阻R2输入2端连接运算放大器输入3端后作为载波信号VCAR输出,电阻R5输入1端连接VCC,电阻R5输入2端连接电阻R6输入1端,电阻R6输入2端连接电阻R7输入1端,电阻R7输入2端接地,电阻R6输入3端连接运算放大器输入2端,运算放大器输入1端连接运算放大器输入3端及电阻R12输入1端,R12输入2端连接运算放大器输入1端、电阻R13输入2端及电阻R14输入1端,来自仿真上位计算机模拟控制信号高端CON+连接电阻R8输入1端,来自仿真上位计算机模拟控制信号低端CON-连接电阻R9输入1端,电阻R8输入2端连接运算放大器输入1端及电阻R10输入1端电阻R9输入2端连接电阻R11输入1端及运算放大器输入2端,电阻R11输入2端接地,电阻R10输入2端连接电阻R13输入1端并连接运算放大器输入3端,并作为传感器线圈A仿真构造信号大小直流信号CommandA输出,电阻R14输入2端连接运算放大器U3输入3端后作为传感器线圈B仿真构造信号大小直流信号CommandB输出;信号调制电路接收输入信号电路处理后的信号,将载波信号VCAR连接到连接到模拟乘法器U1、U2的输入3端,CommandA信号连接到模拟乘法器U1、U2的输入1端,模拟乘法器U1、U2输入2、4、6接地,输入5端连接到电源负端VEE,输入8连接到到电源高端VCC,模拟乘法器U1输出7端输出调幅信号OUTA,模拟乘法器U2输出7端输出调幅信号OUTB;输出信号处理电路接收调幅信号OUTA及OUTB,将OUTA分别连接至运算放大器U1、U2输入2端,运算放大器U1输入1端连接到三极管Q1、Q2输入3端及变压器线圈输入1端,运算放大器U1输入3端连接至三极管Q1、Q2输入1端,电源高端VCC连接至三极管Q1输入2端,电源低端VEE连接至三级管Q2输入2端,变压器线圈T1输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈A高信号CoilA+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilA-,运算放大器U2输入1端连接到三极管Q3、Q4输入3端及变压器线圈输入1端,运算放大器U2输入3端连接至三极管Q3、Q4输入1端,电源高端VCC连接至三极管Q3输入2端,电源低端VEE连接至三级管Q4输入2端,变压器线圈T2输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈B高信号CoilB+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilB-,线位移传感器两副边信号便被仿真出来。The technical solution of the present invention is: a displacement sensor simulation circuit, characterized in that: the simulation circuit can be divided into three parts, namely: input signal processing circuit, signal modulation circuit, output signal processing circuit; input signal processing circuit receives input signal processing circuit from For the excitation signal of the flight control computer, connect its high-end EX+ to the input terminal 1 of capacitor C1, and connect the low-end EX- to the input terminal 1 of capacitor C2. Input 2 is connected to resistor R2 input 1 and operational amplifier U1 input 1, resistor R3 input 2 is connected to operational amplifier input 2 and resistor R4 input 1, resistor R4 input 2 is grounded, resistor R2 input 2 is connected to operational amplifier After inputting terminal 3, it is output as carrier signal VCAR, the input terminal 1 of resistor R5 is connected to VCC, the input terminal 2 of resistor R5 is connected to terminal 1 of resistor R6, the input terminal 2 of resistor R6 is connected to terminal 1 of resistor R7, and the input terminal 2 of resistor R7 is grounded. R6 input terminal 3 is connected to operational amplifier input terminal 2, operational amplifier input terminal 1 is connected to operational amplifier input terminal 3 and resistor R12 input terminal 1, R12 input terminal 2 is connected to operational amplifier input terminal 1, resistor R13 input terminal 2 and resistor R14 input terminal 1 Terminal, from the simulation upper computer analog control signal high-end CON+ connection resistor R8 input terminal 1, from the simulation upper computer analog control signal low-end CON- connection resistor R9 input terminal 1, resistor R8 input terminal 2 connected to the operational amplifier input terminal 1 and resistor R10 Input terminal 1, resistor R9, input terminal 2 connects resistor R11 input terminal 1 and operational amplifier input terminal 2, resistor R11 input terminal 2 is grounded, resistor R10 input terminal 2 connects resistor R13 input terminal 1 and operational amplifier input terminal 3, and acts as a sensor Coil A simulation structure signal size DC signal CommandA output, resistor R14 input 2 terminals connected to operational amplifier U3 input 3 terminals as sensor coil B simulation structure signal size DC signal CommandB output; signal modulation circuit receives the signal processed by the input signal circuit, and converts Carrier signal VCAR is connected to input 3 of analog multiplier U1 and U2, CommandA signal is connected to input 1 of analog multiplier U1 and U2, input 2, 4 and 6 of analog multiplier U1 and U2 are grounded, and input 5 is grounded Connect to the negative terminal VEE of the power supply, input 8 is connected to the high-end VCC of the power supply, the output terminal 7 of the analog multiplier U1 outputs the AM signal OUTA, and the output terminal 7 of the analog multiplier U2 outputs the AM signal OUTB; the output signal processing circuit receives the AM signals OUTA and OUTB , Connect OUTA to the input terminals 2 of operational amplifiers U1 and U2 respectively, the input terminal 1 of operational amplifier U1 is connected to the input terminal 3 of transistor Q1 and Q2 and the input terminal 1 of the transformer coil, and the input terminal 3 of operational amplifier U1 is connected to the input terminal of transistor Q1 and Q2 Terminal 1, the high-end VCC of the power supply is connected to the input terminal 2 of the transistor Q1, the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q2, and the output terminal of the transformer coil T1 Input terminal 2 is grounded, transformer coil output terminal 3 simulates output sensor secondary coil A high signal CoilA+, transformer coil output terminal 4 simulates sensor secondary coil A low signal CoilA-, operational amplifier U2 input terminal 1 is connected to transistor Q3, Q4 Input terminal 3 and input terminal 1 of the transformer coil, input terminal 3 of the operational amplifier U2 is connected to the input terminal 1 of the triode Q3 and Q4, the high-end VCC of the power supply is connected to the input terminal 2 of the transistor Q3, and the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q4 , Transformer coil T2 input terminal 2 is grounded, transformer coil output terminal 3 simulates output sensor secondary coil B high signal CoilB+, transformer coil output terminal 4 simulates sensor secondary coil A low signal CoilB-, line displacement sensor two secondary side signals are been simulated.

本发明设计简单、成本低,能够很好的模拟位移传感器的信号,能够带来以下有益效果:一是减少飞控试验对物理环境的需求,从而缩短了试验环境的构建周期,减少了费用;二是在使用过程中能够人工随意调整各余度传感器信号大小,可以方便设定恒偏差、卡死、恒增益、断路等传感器故障,极大的方便了飞控系统故障注入,同时减轻了试验中的人工负担。The invention is simple in design, low in cost, can well simulate the signal of the displacement sensor, and can bring the following beneficial effects: firstly, it reduces the demand for the physical environment of the flight control test, thereby shortening the construction period of the test environment and reducing the cost; The second is that the signal size of each redundancy sensor can be manually adjusted at will during use, and it is convenient to set sensor faults such as constant deviation, stuck, constant gain, and open circuit, which greatly facilitates the fault injection of the flight control system and reduces the test time. in the labor burden.

附图说明 Description of drawings

图1是本发明位移传感器仿真电路原理框图;Fig. 1 is the principle block diagram of displacement sensor emulation circuit of the present invention;

图2是本发明位移传感器仿真电路中输入信号处理电路图;Fig. 2 is the input signal processing circuit diagram in the displacement sensor emulation circuit of the present invention;

图3是本发明位移传感器仿真电路中信号调制电路图;Fig. 3 is a signal modulation circuit diagram in the displacement sensor simulation circuit of the present invention;

图4是本发明位移传感器仿真电路中输出信号处理电路原理图。Fig. 4 is a schematic diagram of the output signal processing circuit in the displacement sensor emulation circuit of the present invention.

具体实施方式 Detailed ways

下面结合附图对本发明的具体实施方式做进一步说明。The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.

参见图1,本发明一种位移传感器仿真电路实现仿真的原理是:所述仿真电路接收来自上位计算机由软件控制的代替实际物理操纵量大小的模拟输出信号,基于电路中设定好可调的对应传感器两副边和值电压信号将其分解为两路与两副边操纵量大小对应的直流模拟信号;随后根据来自飞控计算机的交流激励信号,利用调幅原理将此两路直流模拟信号调制为两路交流模拟信号,这两路交流模拟信号对应于所仿真传感器的输出信号;其后利用运算放大器与三极管构成的反馈电路提高信号的驱动能力,驱动变压器作为输出,从而模拟线位移传感器的副边输出阻抗特性。Referring to Fig. 1, a kind of displacement sensor emulation circuit of the present invention realizes the emulation principle is: described emulation circuit receives the analog output signal that replaces the actual physical manipulated quantity size by software control from the host computer, based on the adjustable value set in the circuit Corresponding to the two side and value voltage signals of the sensor, it is decomposed into two DC analog signals corresponding to the magnitude of the two side control quantities; then, according to the AC excitation signal from the flight control computer, the two DC analog signals are modulated by the principle of amplitude modulation These two AC analog signals correspond to the output signals of the simulated sensor; then use the feedback circuit composed of the operational amplifier and the triode to improve the driving ability of the signal, and drive the transformer as the output, thereby simulating the linear displacement sensor. Secondary output impedance characteristics.

参见图2,、图3、图4,本发明一种位移传感器仿真电路,可分为三部分,即:输入信号处理电路,信号调制电路,输出信号处理电路;输入信号处理电路接收来自飞控计算机的激励信号,将其高端EX+连接到电容C1输入1端,低端EX-连接到电容C2输入1端,电容C1、C2输入2端分别连接电阻R1、R3输入1端,电阻R1输入2端连接电阻R2输入1端及运算放大器U1输入1端,电阻R3输入2端连接运算放大器输入2端及电阻R4输入1端,电阻R4输入2端接地,电阻R2输入2端连接运算放大器输入3端后作为载波信号VCAR输出,电阻R5输入1端连接VCC,电阻R5输入2端连接电阻R6输入1端,电阻R6输入2端连接电阻R7输入1端,电阻R7输入2端接地,电阻R6输入3端连接运算放大器输入2端,运算放大器输入1端连接运算放大器输入3端及电阻R12输入1端,R12输入2端连接运算放大器输入1端、电阻R13输入2端及电阻R14输入1端,来自仿真上位计算机模拟控制信号高端CON+连接电阻R8输入1端,来自仿真上位计算机模拟控制信号低端CON-连接电阻R9输入1端,电阻R8输入2端连接运算放大器输入1端及电阻R10输入1端,电阻R9输入2端连接电阻R11输入1端及运算放大器输入2端,电阻R11输入2端接地,电阻R10输入2端连接电阻R13输入1端并连接运算放大器输入3端,并作为传感器线圈A仿真构造信号大小直流信号CommandA输出,电阻R14输入2端连接运算放大器U3输入3端后作为传感器线圈B仿真构造信号大小直流信号CommandB输出;信号调制电路接收输入信号电路处理后的信号,将载波信号VCAR连接到连接到模拟乘法器U1、U2的输入3端,CommandA信号连接到模拟乘法器U1、U2的输入1端,模拟乘法器U1、U2输入2、4、6接地,输入5端连接到电源负端VEE,输入8连接到到电源高端VCC,模拟乘法器U1输出7端输出调幅信号OUTA,模拟乘法器U2输出7端输出调幅信号OUTB;输出信号处理电路接收调幅信号OUTA及OUTB,将OUTA分别连接至运算放大器U1、U2输入2端,运算放大器U1输入1端连接到三极管Q1、Q2输入3端及变压器线圈输入1端,运算放大器U1输入3端连接至三极管Q1、Q2输入1端,电源高端VCC连接至三极管Q1输入2端,电源低端VEE连接至三级管Q2输入2端,变压器线圈T1输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈A高信号CoilA+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilA-,运算放大器U2输入1端连接到三极管Q3、Q4输入3端及变压器线圈输入1端,运算放大器U2输入3端连接至三极管Q3、Q4输入1端,电源高端VCC连接至三极管Q3输入2端,电源低端VEE连接至三级管Q4输入2端,变压器线圈T2输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈B高信号CoilB+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilB-,线位移传感器两副边信号便被仿真出来。Referring to Fig. 2, Fig. 3, Fig. 4, a kind of displacement sensor simulation circuit of the present invention can be divided into three parts, namely: input signal processing circuit, signal modulation circuit, output signal processing circuit; For the computer’s excitation signal, connect its high-end EX+ to the input terminal 1 of capacitor C1, and connect the low-end EX- to the input terminal 1 of capacitor C2. Terminal connected to resistor R2 input 1 and operational amplifier U1 input 1, resistor R3 input 2 connected to operational amplifier input 2 and resistor R4 input 1, resistor R4 input 2 to ground, resistor R2 input 2 to operational amplifier input 3 After the terminal is used as the carrier signal VCAR output, the resistor R5 input terminal 1 is connected to VCC, the resistor R5 input terminal 2 is connected to the resistor R6 input terminal 1, the resistor R6 input terminal 2 is connected to the resistor R7 input terminal 1, the resistor R7 input terminal 2 is grounded, and the resistor R6 input terminal Terminal 3 is connected to input terminal 2 of the operational amplifier, input terminal 1 of the operational amplifier is connected to input terminal 3 of the operational amplifier and input terminal 1 of the resistor R12, and input terminal 2 of R12 is connected to the input terminal 1 of the operational amplifier, input terminal 2 of the resistor R13 and input terminal 1 of the resistor R14. The high-end CON+ of the analog control signal from the simulation host computer is connected to the input terminal 1 of the resistor R8, the low terminal CON- of the analog control signal from the simulation host computer is connected to the input terminal 1 of the resistor R9, and the input terminal 2 of the resistor R8 is connected to the input terminal 1 of the operational amplifier and the input terminal 1 of the resistor R10 Terminal, resistor R9 input terminal 2 is connected to resistor R11 input terminal 1 and operational amplifier input terminal 2, resistor R11 input terminal 2 is grounded, resistor R10 input terminal 2 is connected to resistor R13 input terminal 1 and operational amplifier input terminal 3, and is used as a sensor coil A simulation structure signal size DC signal CommandA output, resistor R14 input 2 terminals connected to the operational amplifier U3 input 3 terminals as a sensor coil B simulation structure signal size DC signal CommandB output; signal modulation circuit receives the signal processed by the input signal circuit and converts the carrier The signal VCAR is connected to the input 3 terminals of the analog multipliers U1 and U2, the CommandA signal is connected to the input 1 terminals of the analog multipliers U1 and U2, the inputs 2, 4 and 6 of the analog multipliers U1 and U2 are grounded, and the input 5 terminals are connected to To the negative terminal VEE of the power supply, the input 8 is connected to the high-end VCC of the power supply, the output terminal 7 of the analog multiplier U1 outputs the amplitude modulation signal OUTA, and the output terminal 7 of the analog multiplier U2 outputs the amplitude modulation signal OUTB; the output signal processing circuit receives the amplitude modulation signals OUTA and OUTB, Connect OUTA to operational amplifier U1, U2 input 2, operational amplifier U1 input 1 to triode Q1, Q2 input 3 and transformer coil input 1, operational amplifier U1 input 3 to triode Q1, Q2 input 1 The high-end VCC of the power supply is connected to the input terminal 2 of the transistor Q1, the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q2, and the input terminal 2 of the transformer coil T1 is grounded , transformer coil output terminal 3 simulates output sensor secondary coil A high signal CoilA+, transformer coil output terminal 4 simulates sensor secondary coil A low signal CoilA-, operational amplifier U2 input terminal 1 is connected to transistor Q3, Q4 input terminal 3 and The input terminal 1 of the transformer coil, the input terminal 3 of the operational amplifier U2 are connected to the input terminal 1 of the transistor Q3 and Q4, the high-end VCC of the power supply is connected to the input terminal 2 of the transistor Q3, the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q4, and the transformer coil T2 Input terminal 2 is grounded, transformer coil output terminal 3 simulates output sensor secondary coil B high signal CoilB+, transformer coil output terminal 4 simulates sensor secondary coil A low signal CoilB-, and the two secondary side signals of the linear displacement sensor are simulated.

在具体实施过程中,模拟位移传感器LVDT/RVDT电路需要解决以下问题:In the specific implementation process, the analog displacement sensor LVDT/RVDT circuit needs to solve the following problems:

①阻抗匹配问题。位移传感器仿真电路输入输出阻抗应基本满足位移传感器阻抗特性要求。① Impedance matching problem. The input and output impedance of the displacement sensor simulation circuit should basically meet the impedance characteristic requirements of the displacement sensor.

②输入输出信号对应关系。② Correspondence between input and output signals.

位移传感器仿真电路应能接收来自飞控计算机的激励信号,输出与激励信号同频率且相位滞后小的交流信号。The displacement sensor simulation circuit should be able to receive the excitation signal from the flight control computer, and output an AC signal with the same frequency as the excitation signal and a small phase lag.

③输出信号电压和。③ output signal voltage and.

由位移传感器原理可知,位移传感器仿真电路仿真次级线圈输出电压的和应为定值。It can be seen from the principle of the displacement sensor that the sum of the secondary coil output voltages of the displacement sensor simulation circuit should be a constant value.

④电路相关参数易于调节。④ Circuit-related parameters are easy to adjust.

在设计的电路中,应考虑到不同的特性,采取了可调节的措施,这样使得设计出的电路有了较大的通用性。In the designed circuit, different characteristics should be taken into consideration, and adjustable measures should be taken, so that the designed circuit has greater versatility.

从外部电气输入输出特性来看,位移传感器仿真电路具有以下不同:在输入级,以一个模拟电信号输入端代替了操纵装置的物理输入信号,这样便于应用计算机控制。From the perspective of external electrical input and output characteristics, the displacement sensor simulation circuit has the following differences: In the input stage, an analog electrical signal input terminal replaces the physical input signal of the manipulator, which is convenient for the application of computer control.

位移传感器仿真电路,主要是应用调幅原理来实现。调幅是用调制信号x去控制高频载波信号的幅值。位移传感器仿真电路以原传感器原边的激励信号为基础产生高频载波信号,以(代表LVDT、RVDT铁芯位置量的)仿真计算机模拟指令信号为基础产生两路调制信号,并经过相应电路调节后作为两个副边输出对应信号。The displacement sensor simulation circuit is mainly realized by applying the principle of amplitude modulation. AM is to use the modulation signal x to control the amplitude of the high-frequency carrier signal. The displacement sensor simulation circuit generates a high-frequency carrier signal based on the excitation signal of the original sensor primary side, and generates two modulation signals based on the simulated computer simulation command signal (representing the position of the LVDT and RVDT iron core), and adjusts it through the corresponding circuit. Afterwards, the corresponding signals are output as two secondary sides.

在电路设计时,本发明注意到以下几点:When designing the circuit, the present invention has noticed the following points:

①调幅电路原理①Amplitude modulation circuit principle

调幅电路是模拟位移传感器电路中最核心的部分。由两片AD633实现,每路AD633对应产生一路调幅信号,AD633的传递函数为

Figure BDA00001777985100041
如图3所示,X2,Y2,Z端接地,上述电路传递函数为:
Figure BDA00001777985100042
OutB = CommandB × Vcar 10 V . The amplitude modulation circuit is the core part of the analog displacement sensor circuit. It is realized by two pieces of AD633, and each AD633 corresponds to generate an AM signal, and the transfer function of AD633 is
Figure BDA00001777985100041
As shown in Figure 3, X 2 , Y 2 , and Z terminals are grounded, and the transfer function of the above circuit is:
Figure BDA00001777985100042
OutB = Command B × Vcar 10 V .

②基准电压提供电路。② Reference voltage supply circuit.

输出信号处理电路图4中对OutA,OutB仅做了同幅值处理,使驱动能力提高,从而作为电路板输出。为保证电路板输出满足位移传感器输出特性,即需要保证调幅电路两路输出和为定值。Output signal processing circuit In Figure 4, OutA and OutB are only processed with the same amplitude, so that the driving ability is improved, and thus output as a circuit board. In order to ensure that the output of the circuit board meets the output characteristics of the displacement sensor, it is necessary to ensure that the sum of the two outputs of the amplitude modulation circuit is a constant value.

即:OutA+OutB=常值That is: OutA+OutB=constant value

Figure BDA00001777985100051
Figure BDA00001777985100051

Figure BDA00001777985100052
Figure BDA00001777985100052

电路中Vcar为常值,所以由上面的关系式可知,只要保证CommandA+CommandB为常值即可。其中CommandA为计算机提供的代表LVDT、RVDT铁芯位置量的相应信号大小,在上述电路中CommandA为计算机指令输入对应值电压值。位移传感器仿真电路中输入信号处理电路图2中提供了一个基准电压,滑阻可以对电压值做部分调节,CommandB为基准和值电压与计算机指令电压的差值,从而保证了调幅电路输出和值的恒定。Vcar in the circuit is a constant value, so it can be known from the above relational expression, as long as CommandA+CommandB is a constant value. Among them, CommandA is the corresponding signal size provided by the computer to represent the position of the LVDT and RVDT iron cores. In the above circuit, CommandA is the computer command to input the corresponding value voltage value. In the input signal processing circuit of the displacement sensor simulation circuit, a reference voltage is provided in Figure 2. The slip resistance can partially adjust the voltage value. CommandB is the difference between the reference sum value voltage and the computer command voltage, thus ensuring the output and value of the amplitude modulation circuit. constant.

③输出信号驱动电路。③ output signal drive circuit.

TTL芯片的输出输入电流一般都比较小,约20mA。为了保证其带负载能力,利用运算放大器的非线性反馈特性,设计了以下驱动电路,大大的提高了带负载能力。The output and input current of the TTL chip is generally relatively small, about 20mA. In order to ensure its load capacity, the following drive circuit is designed by using the nonlinear feedback characteristics of the operational amplifier, which greatly improves the load capacity.

④电路的其它特性④Other characteristics of the circuit

输入信号变换:位移传感器仿真电路对输入信号进行了差分变换,使得各信号变换为与电路同地的信号。Input signal conversion: The displacement sensor simulation circuit performs a differential conversion on the input signal, so that each signal is converted into a signal at the same ground as the circuit.

输入输出隔离:为了模拟相关阻抗特性及保证电路的可靠性工作。对输入输出电路采取了不同的隔离措施,提高了输入输出设备的连接安全性,并且使得输入输出阻抗接近。Input and output isolation: In order to simulate the relevant impedance characteristics and ensure the reliability of the circuit. Different isolation measures are taken for the input and output circuits, which improves the connection safety of the input and output devices and makes the input and output impedances close.

本发明的一个实施例中,运算放大器采用LM124J芯片,模拟乘法器采用AD633JN,三极管Q1、Q3采用S8050,三极管Q3、Q4采用S8550。In one embodiment of the present invention, the operational amplifier adopts LM124J chip, the analog multiplier adopts AD633JN, the transistors Q1 and Q3 adopt S8050, and the transistors Q3 and Q4 adopt S8550.

Claims (1)

1.一种位移传感器仿真电路,其特征为:所述仿真电路可分为三部分,即:输入信号处理电路,信号调制电路,输出信号处理电路;输入信号处理电路接收来自飞控计算机的激励信号,将其高端EX+连接到电容C1输入1端,低端EX-连接到电容C2输入1端,电容C1、C2输入2端分别连接电阻R1、R3输入1端,电阻R1输入2端连接电阻R2输入1端及运算放大器U1输入1端,电阻R3输入2端连接运算放大器输入2端及电阻R4输入1端,电阻R4输入2端接地,电阻R2输入2端连接运算放大器输入3端后作为载波信号VCAR输出,电阻R5输入1端连接VCC,电阻R5输入2端连接电阻R6输入1端,电阻R6输入2端连接电阻R7输入1端,电阻R7输入2端接地,电阻R6输入3端连接运算放大器输入2端,运算放大器输入1端连接运算放大器输入3端及电阻R12输入1端,R12输入2端连接运算放大器输入1端、电阻R13输入2端及电阻R14输入1端,来自仿真上位计算机模拟控制信号高端CON+连接电阻R8输入1端,来自仿真上位计算机模拟控制信号低端CON-连接电阻R9输入1端,电阻R8输入2端连接运算放大器输入1端及电阻R10输入1端,电阻R9输入2端连接电阻R11输入1端及运算放大器输入2端,电阻R11输入2端接地,电阻R10输入2端连接电阻R13输入1端并连接运算放大器输入3端,并作为传感器线圈A仿真构造信号大小直流信号CommandA输出,电阻R14输入2端连接运算放大器U3输入3端后作为传感器线圈B仿真构造信号大小直流信号CommandB输出;信号调制电路接收输入信号电路处理后的信号,将载波信号VCAR连接到连接到模拟乘法器U1、U2的输入3端,CommandA信号连接到模拟乘法器U1、U2的输入1端,模拟乘法器U1、U2输入2、4、6接地,输入5端连接到电源负端VEE,输入8连接到到电源高端VCC,模拟乘法器U1输出7端输出调幅信号OUTA,模拟乘法器U2输出7端输出调幅信号OUTB;输出信号处理电路接收调幅信号OUTA及OUTB,将OUTA分别连接至运算放大器U1、U2输入2端,运算放大器U1输入1端连接到三极管Q1、Q2输入3端及变压器线圈输入1端,运算放大器U1输入3端连接至三极管Q1、Q2输入1端,电源高端VCC连接至三极管Q1输入2端,电源低端VEE连接至三级管Q2输入2端,变压器线圈T1输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈A高信号CoilA+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilA-,运算放大器U2输入1端连接到三极管Q3、Q4输入3端及变压器线圈输入1端,运算放大器U2输入3端连接至三极管Q3、Q4输入1端,电源高端VCC连接至三极管Q3输入2端,电源低端VEE连接至三级管Q4输入2端,变压器线圈T2输入端2接地,变压器线圈输出端3仿真输出传感器副边线圈B高信号CoilB+,变压器线圈输出端4仿真输出传感器副边线圈A低信号CoilB-,线位移传感器两副边信号便被仿真出来。1. a displacement sensor emulation circuit, it is characterized in that: described emulation circuit can be divided into three parts, namely: input signal processing circuit, signal modulation circuit, output signal processing circuit; Input signal processing circuit receives the excitation from flight control computer signal, connect its high-end EX+ to the input terminal 1 of capacitor C1, connect the low-end EX- to the input terminal 1 of capacitor C2, connect the input terminals 2 of capacitors C1 and C2 to the input terminal 1 of resistors R1 and R3 respectively, and connect the input terminal 2 of resistor R1 to the resistor R2 input terminal 1 and operational amplifier U1 input terminal 1, resistor R3 input terminal 2 connected to operational amplifier input terminal 2 and resistor R4 input terminal 1, resistor R4 input terminal 2 to ground, resistor R2 input terminal 2 connected to operational amplifier input terminal 3 as Carrier signal VCAR output, resistor R5 input terminal 1 is connected to VCC, resistor R5 input terminal 2 is connected to resistor R6 input terminal 1, resistor R6 input terminal 2 is connected to resistor R7 input terminal 1, resistor R7 input terminal 2 is connected to ground, resistor R6 input terminal 3 is connected to Operational amplifier input 2, operational amplifier input 1 is connected to operational amplifier input 3 and resistor R12 input 1, R12 input 2 is connected to operational amplifier input 1, resistor R13 input 2 and resistor R14 input 1, from the simulation host The high end CON+ of the computer analog control signal is connected to the input terminal 1 of the resistor R8, and the low terminal CON- of the simulated control signal from the upper computer is connected to the input terminal 1 of the resistor R9, and the input terminal 2 of the resistor R8 is connected to the input terminal 1 of the operational amplifier and the input terminal 1 of the resistor R10. R9 input terminal 2 is connected to resistor R11 input terminal 1 and operational amplifier input terminal 2, resistor R11 input terminal 2 is grounded, resistor R10 input terminal 2 is connected to resistor R13 input terminal 1 and operational amplifier input terminal 3, and used as sensor coil A simulation structure Signal size DC signal CommandA output, resistor R14 input 2 terminals connected to operational amplifier U3 input 3 terminals as sensor coil B simulation structure signal size DC signal CommandB output; signal modulation circuit receives the signal processed by the input signal circuit, and connects the carrier signal VCAR Connect to input 3 of analog multiplier U1, U2, CommandA signal is connected to input 1 of analog multiplier U1, U2, input 2, 4, 6 of analog multiplier U1, U2 are grounded, input 5 is connected to power negative Terminal VEE, input 8 is connected to the high-end VCC of the power supply, the analog multiplier U1 outputs the amplitude modulation signal OUTA at the output terminal 7, and the analog multiplier U2 outputs the amplitude modulation signal OUTB at the output terminal 7; the output signal processing circuit receives the amplitude modulation signals OUTA and OUTB, and converts OUTA respectively Connect to input 2 of operational amplifier U1 and U2, input 1 of operational amplifier U1 is connected to input 3 of transistor Q1 and Q2 and input 1 of transformer coil, input 3 of operational amplifier U1 is connected to input 1 of transistor Q1 and Q2, power supply The high-end VCC is connected to the input terminal 2 of the transistor Q1, the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q2, and the input terminal 2 of the transformer coil T1 is grounded. Transformer coil output terminal 3 simulates output sensor secondary coil A high signal CoilA+, transformer coil output terminal 4 simulates output sensor secondary coil A low signal CoilA-, operational amplifier U2 input terminal 1 is connected to triode Q3, Q4 input terminal 3 and The input terminal 1 of the transformer coil, the input terminal 3 of the operational amplifier U2 are connected to the input terminal 1 of the transistor Q3 and Q4, the high-end VCC of the power supply is connected to the input terminal 2 of the transistor Q3, the low-end VEE of the power supply is connected to the input terminal 2 of the transistor Q4, and the transformer coil T2 Input terminal 2 is grounded, transformer coil output terminal 3 simulates output sensor secondary coil B high signal CoilB+, transformer coil output terminal 4 simulates sensor secondary coil A low signal CoilB-, and the two secondary side signals of the linear displacement sensor are simulated.
CN201210201368.5A 2012-06-18 2012-06-18 A displacement sensor simulation circuit Pending CN103513577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210201368.5A CN103513577A (en) 2012-06-18 2012-06-18 A displacement sensor simulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210201368.5A CN103513577A (en) 2012-06-18 2012-06-18 A displacement sensor simulation circuit

Publications (1)

Publication Number Publication Date
CN103513577A true CN103513577A (en) 2014-01-15

Family

ID=49896498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210201368.5A Pending CN103513577A (en) 2012-06-18 2012-06-18 A displacement sensor simulation circuit

Country Status (1)

Country Link
CN (1) CN103513577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773786A (en) * 2016-12-27 2017-05-31 北京润科通用技术有限公司 A kind of RVDT signal simulations circuit, method and device
CN108089053A (en) * 2017-11-23 2018-05-29 中国航空工业集团公司西安航空计算技术研究所 A kind of excitation self testing circuit
CN108170128A (en) * 2017-12-28 2018-06-15 西安庆安航空试验设备有限责任公司 Simulator, analogy method and the simulated assembly of LVDT input-output characteristics
CN105444663B (en) * 2014-09-28 2018-07-24 中国航空工业集团公司西安飞机设计研究所 A kind of RVDT design methods based on black box
CN109445321A (en) * 2018-09-29 2019-03-08 庆安集团有限公司 A kind of Sensor Signal Simulation Circuit
CN109656152A (en) * 2018-12-25 2019-04-19 西安翔迅科技有限责任公司 One kind being based on numerically controlled engine import/exhaust door actuator emulation component system and method
CN114660957A (en) * 2022-04-06 2022-06-24 北京蓝天航空科技股份有限公司 Redundancy RVDT excitation simulation equipment and method for exciting flight control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305719B2 (en) * 1993-02-10 2002-07-24 ノイズ キャンセレーション テクノロジーズ インコーポレーテッド Method and apparatus for online system identification
CN1614357A (en) * 2004-11-27 2005-05-11 陈万元 A-D converting circuit device of spring coil sensor
CN201075056Y (en) * 2006-06-20 2008-06-18 刘仲国 Sensor simulation signal generator
US7542879B2 (en) * 2007-08-31 2009-06-02 Caterpillar Inc. Virtual sensor based control system and method
CN202041173U (en) * 2011-01-21 2011-11-16 北京中纺锐力机电有限公司 Three-phase angular displacement sensor circuit
CN202264734U (en) * 2011-10-17 2012-06-06 苏州凌创电子科技有限公司 Automobile collision sensor simulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305719B2 (en) * 1993-02-10 2002-07-24 ノイズ キャンセレーション テクノロジーズ インコーポレーテッド Method and apparatus for online system identification
CN1614357A (en) * 2004-11-27 2005-05-11 陈万元 A-D converting circuit device of spring coil sensor
CN201075056Y (en) * 2006-06-20 2008-06-18 刘仲国 Sensor simulation signal generator
US7542879B2 (en) * 2007-08-31 2009-06-02 Caterpillar Inc. Virtual sensor based control system and method
CN202041173U (en) * 2011-01-21 2011-11-16 北京中纺锐力机电有限公司 Three-phase angular displacement sensor circuit
CN202264734U (en) * 2011-10-17 2012-06-06 苏州凌创电子科技有限公司 Automobile collision sensor simulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜永良: "某型飞机驾驶舱操纵指令传感器仿真器设计", 《飞机工程》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444663B (en) * 2014-09-28 2018-07-24 中国航空工业集团公司西安飞机设计研究所 A kind of RVDT design methods based on black box
CN106773786A (en) * 2016-12-27 2017-05-31 北京润科通用技术有限公司 A kind of RVDT signal simulations circuit, method and device
CN108089053A (en) * 2017-11-23 2018-05-29 中国航空工业集团公司西安航空计算技术研究所 A kind of excitation self testing circuit
CN108089053B (en) * 2017-11-23 2020-02-14 中国航空工业集团公司西安航空计算技术研究所 Excitation self-test circuit
CN108170128A (en) * 2017-12-28 2018-06-15 西安庆安航空试验设备有限责任公司 Simulator, analogy method and the simulated assembly of LVDT input-output characteristics
CN108170128B (en) * 2017-12-28 2020-03-31 西安庆安航空试验设备有限责任公司 LVDT input/output characteristic simulation device, LVDT input/output characteristic simulation method and LVDT input/output characteristic simulation module
CN109445321A (en) * 2018-09-29 2019-03-08 庆安集团有限公司 A kind of Sensor Signal Simulation Circuit
CN109656152A (en) * 2018-12-25 2019-04-19 西安翔迅科技有限责任公司 One kind being based on numerically controlled engine import/exhaust door actuator emulation component system and method
CN114660957A (en) * 2022-04-06 2022-06-24 北京蓝天航空科技股份有限公司 Redundancy RVDT excitation simulation equipment and method for exciting flight control system
CN114660957B (en) * 2022-04-06 2024-01-26 北京蓝天航空科技股份有限公司 Redundancy RVDT excitation simulation equipment and method for exciting flight control system

Similar Documents

Publication Publication Date Title
CN103513577A (en) A displacement sensor simulation circuit
CN103095191B (en) Switch reluctance motor memory sensor model modeling method
CN101299062B (en) Device for checking zinc oxide lightning arrester block property current tester
CN101271152B (en) Calibration method and device for capacitive equipment insulation on-line monitoring system
CN101295454B (en) A non-inductor Chua's circuit
CN201402145Y (en) Analog sensor circuit
CN203376374U (en) Voltage sensing module based on photoelectric couplers
CN205748924U (en) Aero-engine LVDT signal hardware is at loop test device
CN107315156A (en) High-accuracy direct current standard electric energy meter
CN201100880Y (en) Analog Resistor Based on PC104 Bus
CN100570618C (en) Behavior Model of Ferroelectric Capacitor Applied in SPICE Circuit Simulation Program
CN202404223U (en) Transition resistance simulating device of on-load tapping switch of transformer
CN106057060A (en) Automobile electronic throttle pedal teaching platform
CN207318565U (en) A kind of active device of compensation current transformer error
Gaskill et al. Compact equivalent circuit modeling of microfluxgate devices with thin-film magnetic cores
CN102495384B (en) Transition resistance simulation device of on-load tap-changer of transformer
CN109002602A (en) One kind floating ground magnetic control recalls sensor emulator circuit
CN205725711U (en) Highly integrated digital integrator for squirrel cage type hollow-core current transformer
CN205079729U (en) Simulation LVDT sensor module
CN101660971A (en) Electronic simulating device of differential type displacement sensor
CN207081824U (en) High-accuracy direct current standard electric energy meter
CN204514973U (en) A kind of AC electronic load device improving waveform distortion under rectification mode
CN206115850U (en) Automotive electronics accelerator pedal teaching platform
CN203643762U (en) Current source circuit and semi-physical simulation system
CN107589394A (en) A kind of electric energy meter direct current and even-order harmonic pilot system and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140115