CN103500228A - Similarity measuring method improved through collaborative filtering recommendation algorithm - Google Patents
Similarity measuring method improved through collaborative filtering recommendation algorithm Download PDFInfo
- Publication number
- CN103500228A CN103500228A CN201310505323.1A CN201310505323A CN103500228A CN 103500228 A CN103500228 A CN 103500228A CN 201310505323 A CN201310505323 A CN 201310505323A CN 103500228 A CN103500228 A CN 103500228A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mover
- sim
- munder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 238000000691 measurement method Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000011524 similarity measure Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
A similarity measuring method improved through a collaborative filtering recommendation algorithm includes the following steps of (S1) building a rating matrix R(n*m) of n users in a user set U={U1, U2,..., Un} to m items in an item set I={I1, I2,..., Im}, taking Ra,i as representation of rating of an item Ii, wherein Ua belongs to U and Ii belongs to I, (S2) calculating the similarity sim(Ua, Ub) between a user Ua and a user Ub and the similarity sim(Ii, Ij) between an item Ii and an item Ij, defining a similarity influence divisor epsilon, so that sim'(Ua, Ub) equals to epsilon* sim(Ua, Ub) and sim'(Ii, Ij) equals to epsilon* sim'(Ii, Ij), (S3) taking a parameter lambada in an interval between 0 and 1, and predicting rating of the users to the items according to lambada, epsilon, an average rating value of the users to the items, similarity between the users and similarity between the items.
Description
Technical Field
The invention relates to a Collaborative filtering (Collaborative filtering) recommendation technology in recommendation system research, in particular to an improved similarity measurement method in a Collaborative filtering recommendation algorithm.
Background
With the rapid spread of the internet and the rapid development of electronic commerce, the information data on the internet is growing sharply, and how to make users quickly and efficiently obtain required information from vast data oceans becomes increasingly urgent. Providing active recommendation services for users is also increasingly being applied to various web portals and e-commerce systems. These systems provide recommendation services to users by collecting their historical information, learning their interests and behavior patterns, and analyzing their behavior characteristics.
Collaborative filtering recommendation technologies are widely applied in the field of recommendation systems, and are mainly classified into two types: based on User-based Collaborative Filtering and Item-based Collaborative Filtering, the basic idea is to generate recommendations to target users based on nearest neighbors, and the final recommendation form is score prediction and Top-N recommendation. Tapestry was the earliest proposed collaborative filtering recommendation system, which records the viewpoint of reading articles by each user, and the target user needs to explicitly point out other users whose behaviors are similar to the behavior of the target user. GroupLens, Ringo, and Video recommenders are also earlier collaborative filtering recommendation systems that provide users with recommendation services such as movies, news, and music, respectively, through opinions of other users.
With the continuous expansion of the scale of the electronic commerce system, the number of users and project data are increased sharply, so that the scoring data of user projects are extremely sparse. Under the condition that user scoring data is extremely sparse, the traditional similarity measurement method depends on the number of commonly scored items, so that certain contingency exists in the traditional similarity measurement, and the nearest neighbor of a target user and the item obtained through calculation is inaccurate, so that the recommendation quality of a recommendation system is reduced.
The collaborative filtering recommendation algorithm mainly predicts the scores of the items by the users through the similarity, the similarity can be respectively measured according to the relationship between the users or the items, and the accuracy of the similarity measurement is directly related to the recommendation quality of the whole recommendation system.
The similarity calculation may be based on similarity calculation between users or on similarity calculation between items. With sim (U)a,Ub) Representing a user UaAnd user UbThe similarity between the users is obtained firstlyaAnd user UbAll the scored projects are then used for calculating the user U through different similarity measurement methodsaAnd user UbSimilarity between sim (U)a,Ub). In the same way, item IiAnd item IjThe similarity between them is denoted sim (I)i,Ij) Then, the item I is acquirediAnd item IjAll existing users are graded, and a project I is obtained according to the existing grading valuesiAnd item IjSimilarity between them sim (I)i,Ij)。
Common similarity metrics include: cosine similarity, correlation similarity, and modified cosine similarity. In the cosine similarity measure method, a user item score matrix R (n × m) is constructed. If the user does not score an item, then the user is assumed to have a score of 0 for the item. The performance of similarity calculation can be effectively improved by setting the unknown score of the user to 0, but when the number of users and items is very large and the item evaluation data of the user is extremely sparse, the reliability of setting the unknown score to 0 is not high.
In practice, the user's preference for the unscored items may not be the same or different. When the user UaAnd user UbWhen no item is scored, the scoring of the item by the user is set to be 0, and the calculation of the U of the user is undoubtedly carried outaAnd user UbThe similarity between them is improved because they match the termsThe goal scores will not necessarily be exactly the same as 0. Therefore, when the user score data is extremely sparse, setting the unknown score to 0 has a high influence on calculating the similarity value. When the user UaAnd user UbWhen one user gives a score to an item and the other user gives no score, setting the unknown score to 0 will make the calculated value of similarity smaller than its actual value, but when the user score data is extremely sparse, the effect will be small.
Therefore, under the condition that the user scoring data is extremely sparse, the cosine similarity cannot effectively measure the similarity between users, the calculated value of the cosine similarity actually improves the similarity between users, and the modified cosine similarity measurement method has the same problem.
In the correlation similarity measurement method, letRepresenting a user UaScored item set, in computing user UaAnd user UbThe similarity between the users is calculated firstlyaAnd user UbCommon scored item intersection Then in the item collectionCalculating the user U by the measurement method of the correlation similarityaAnd user UbThe similarity between them. However, the confidence in similarity measured by the relative similarity depends on the intersection of the scoring itemsThe greater the number of commonly scored items, the greater the confidence in the similarity of their measures. In the case of extremely sparse user scoring dataIn case of a collection of items scored jointly by two usersEven smaller, even if the scores are very similar across such a small set of items, it cannot be determined that the similarity between users is relatively high. When the existing scoring items of the users are the same, namelyThe inter-user similarity is measured by their intersection, and the confidence of the similarity measurement result is higher. When in useWhen the similarity between users is measured through the intersection part of the user rating items, the similarity between the users is undoubtedly improved, because the scoring deviations of the users in the non-intersection part of the user rating items are not necessarily completely the same, but the similarity of the users is calculated only through the intersection part, and the method is similar to the method that the scoring deviations of the users in the non-intersection part are set to be the same and are 0, and the calculated similarity is higher than an actual value. Therefore, under the condition that the user scoring data is extremely sparse, the measurement method of the correlation similarity has certain disadvantages.
In summary, in order to make the similarity value affected by the sparsity as little as possible, the present invention provides a method for improving the similarity metric by using the similarity impact factor.
Disclosure of Invention
The invention provides an improved similarity measurement method in a collaborative filtering recommendation algorithm, which comprises the following steps:
s1, creating a user set U = { U = { (U)1,U2,…,UnN user pairs in the set of items I = { I = } {1,I2,…,ImScoring matrix R (n × m) of m items in (n) }, with Ra,iRepresenting a user UaFor item IiScore of (1), whichMiddle Ua∈U,Ii∈I;
S2, calculating the user U respectivelyaAnd UbSimilarity sim (U) betweena,Ub) Item IiAnd IjSimilarity between them sim (I)i,Ij) Defining a similarity influencing factor epsilon, let sim' (U)a,Ub)=ε×sim(Ua,Ub),sim'(Ii,Ij)=ε×sim(Ii,Ij);
And S3, taking a parameter lambda in the [0,1] interval, and predicting the grade of the user to the project according to the lambda, the epsilon, the average value of the grade of the user to the project, the similarity between the users and the similarity between the projects.
Preferably, in step S2, the method further comprises <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> The above-mentioned <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> WhereinAndrespectively represent users UaAnd user UbAverage score value for the scored item.
Preferably, in step S2, when sim' (U)a,Ub)=ε×sim(Ua,Ub) When is in use, theWhen sim' (I)i,Ij)=ε×sim(Ii,Ij) When is in use, theWhereinFor user UaAnd UbA set of commonly scored items,Andare respectively a user UaAnd UbA scored set of items.
Preferably, in step S2, 0 ≦ ε ≦ 1.
Preferably, in step S3, the user U is predictedaFor the unviewed item IiIs scored as <math>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>λ</mi>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>x</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<mi>λ</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>y</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>y</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein Respectively represent users Ua,UxThe average of the scores of the existing items, respectively represent items Ii,IyThere is a mean value of the user scores.
Preferably, when λ =0, said Ra,iIs based on project similarity prediction score, when lambda =1, the Ra,iIs based on user similarity prediction scores.
According to the improved similarity measurement method in the collaborative filtering recommendation algorithm, provided by the invention, the similarity between users and the similarity between items are respectively calculated, and the similarity influence factor epsilon is defined to respectively correct the similarity values of the users and the items, so that the measurement mode of the similarity is improved. Meanwhile, according to the result of the improved similarity measurement, the average value of the user to the project score and other factors, the user score to the project is calculated, errors can be measured under the condition that data are extremely sparse, and therefore recommendation quality is improved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is a flow chart of an improved similarity measure method in a collaborative filtering recommendation algorithm according to a preferred embodiment of the present invention;
FIG. 2 is a diagram illustrating a user-to-item scoring matrix R (n × m) according to a preferred embodiment of the present invention;
FIG. 3 is a flowchart of the collaborative filtering recommendation algorithm score prediction provided by the preferred embodiment of the present invention;
FIG. 4 is a flow chart of constructing a user or project similarity matrix according to the preferred embodiment of the present invention.
Detailed Description
The invention will be described in detail hereinafter with reference to the accompanying drawings in conjunction with embodiments. It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict.
Fig. 1 is a flowchart of an improved similarity measurement method in a collaborative filtering recommendation algorithm according to a preferred embodiment of the present invention. As shown in FIG. 1, the improved similarity measure method in the collaborative filtering recommendation algorithm according to the preferred embodiment of the present invention includes steps S1-S3.
Step S1: creating a set of users U = { U = }1,U2,…,UnN user pairs in the set of items I = { I = } {1,I2,…,ImScoring matrix R (n × m) of m items in (n) }, with Ra,iRepresenting a user UaFor item IiScore of (1), wherein Ua∈U,Ii∈I。
Specifically, FIG. 2 isThe preferred embodiment of the present invention provides a schematic diagram of a user-to-item scoring matrix R (n × m). As shown in fig. 2, the user-to-item scoring matrix R (n × m) has n rows and m columns, where n rows represent n users and m columns represent m items. If the user set is U and the project set is I, a certain user U is setaFor item Ii(wherein U isa∈U,IiE.g. I) is scored as Ra,iThen score Ra,iEmbodies the user UaFor item IiInterests and preferences.
Step S2: respectively calculate user UaAnd UbSimilarity sim (U) betweena,Ub) Item IiAnd IjSimilarity between them sim (I)i,Ij) Defining a similarity influencing factor epsilon, let sim' (U)a,Ub)=ε×sim(Ua,Ub),sim'(Ii,Ij)=ε×sim(Ii,Ij)。
Specifically, the modified cosine similarity may modify the problem of deviation of different scoring metrics between different users in the cosine similarity measure method. Therefore, the present embodiment calculates the similarity sim (U) between users according to the modified cosine similarity measure methoda,Ub) And similarity sim (I) between itemsi,Ij)。
For example, if the user UaAnd user UbThe collective scored set of items is represented as Andrespectively represent users UaAnd user UbScored item set, user UaAnd user UbSimilarity between sim (U)a,Ub) Is shown as <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>.</mo>
</mrow>
</math> Wherein,andrespectively represent users UaAnd user UbAverage rating value, R, for given rated itemsa,kRepresenting a user UaFor item IkThe value of (a).
If the items I are to be paired togetheriAnd item IjThe set of users giving a score is represented as Andrespectively represent the pair item IiAnd item IjGiven a scored set of users, item IiAnd item IjSimilarity between them sim (I)i,Ij) Expressed as: <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>.</mo>
</mrow>
</math> wherein R isk,iRepresenting item IiBy user UkThe value of the score given is given by,andrespectively represent items IiAnd item IjThe average of the scores is available.
In the embodiment, a similarity influence factor epsilon is introduced to correct the conventional similarity measurement method. When sim' (U)a,Ub)=ε×sim(Ua,Ub) When is in use, theWhen sim' (I)i,Ij)=ε×sim(Ii,Ij) When is in use, theHere, ε is 0. ltoreq. ε.ltoreq.1.
The similarity measure between users is taken as an example in the following, according to Anddifferent corresponding relations and different values of epsilon are explained.
When in useWhen, ε =1Represents the user UaAnd UbAll the scored items are the same, the similarity values obtained by the traditional similarity measurement method can fully reflect the similarity between users, and the corrected user similarity meets sim' (U)a,Ub)=sim(Ua,Ub)。
When in useWhen, ε =0, represents user UaAnd UbIf all the scored items are completely different, the similarity values obtained by the traditional similarity measurement method cannot explain the similarity between users, and sim' (U) is used at the momenta,Ub)=0。
When in useWhen is 0<ε<1, represents a user UaAnd UbThe scoring items have non-intersection items, the influence factors correct the traditional similarity metric value according to the proportion of the user common scoring items in the user scored item set, and the corrected similarity is sim' (U)a,Ub)=ε×sim(Ua,Ub)<sim(Ua,Ub)。
Similarly, for the measure of similarity between projects, the measure may be based on the condition of the projects that are commonly scored in the projects.
Step S3: and taking a parameter lambda in the [0,1] interval, and predicting the grade of the user to the project according to the lambda, the epsilon, the average value of the grade of the user to the project, the similarity between the users and the similarity between the projects.
Specifically, this step will predict the user's rating of the item based on the improved similarity metric results, resulting in a corresponding recommendation.
For example for user UaUnviewed item IiPredicting user UaFor the unviewed item IiIs scored as <math>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>λ</mi>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>x</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<mi>λ</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>y</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>y</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein Respectively represent users Ua,UxThe average of the scores of the existing items, respectively represent items Ii,IyThere is a mean value of the user scores.
In this embodiment, R is λ =0a,iIs based on project similarity prediction score, when lambda =1, Ra,iIs based on user similarity prediction scores.
FIG. 3 is a flowchart of the collaborative filtering recommendation algorithm score prediction provided by the preferred embodiment of the present invention. FIG. 4 is a flow chart of constructing a user or project similarity matrix according to the preferred embodiment of the present invention. As shown in fig. 3 and 4, the technical solution of the present invention can be better understood by referring to fig. 1.
In summary, according to the improved similarity measurement method in the collaborative filtering recommendation algorithm provided by the preferred embodiment of the present invention, the similarity between users and the similarity between items are respectively calculated, and the similarity influence factor epsilon is defined to respectively correct the similarity between the users and the items, so as to improve the measurement manner of the similarity. Meanwhile, according to the result of the improved similarity measurement, the average value of the user to the project score and other factors, the user score to the project is calculated, errors can be measured under the condition that data are extremely sparse, and therefore recommendation quality is improved.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
1. An improved similarity measurement method in a collaborative filtering recommendation algorithm is characterized by comprising the following steps:
s1, creating a user set U ═ U1,U2,…,UnN user pairs in the item set I ═ I1,I2,…,ImScoring matrix R (n × m) of m items in (n) }, with Ra,iRepresenting a user UaFor item IiScore of (1), wherein Ua∈U,Ii∈I;
S2, calculating the user U respectivelyaAnd UbBetweenSimilarity sim (U) ofa,Ub) Item IiAnd IjSimilarity between them sim (I)i,Ij) Defining a similarity influencing factor epsilon, let sim' (U)a,Ub)=ε×sim(Ua,Ub),sim'(Ii,Ij)=ε×sim(Ii,Ij);
And S3, taking a parameter lambda in the [0,1] interval, and predicting the grade of the user to the project according to the lambda, the epsilon, the average value of the grade of the user to the project, the similarity between the users and the similarity between the projects.
2. The method according to claim 1, wherein in step S2, the method comprises <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>I</mi>
<msub>
<mi>U</mi>
<mi>b</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>b</mi>
<mo>,</mo>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>b</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> The above-mentioned <math>
<mrow>
<mi>sim</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</mrow>
</msub>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<msqrt>
<munder>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<msub>
<mi>U</mi>
<msub>
<mi>I</mi>
<mi>j</mi>
</msub>
</msub>
</mrow>
</munder>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>k</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>j</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> WhereinAndrespectively represent users UaAnd user UbAverage score value for the scored item.
4. The method of claim 1, wherein 0 ≦ ε ≦ 1 in step S2.
5. The method of claim 1, wherein in step S3, a user U is predictedaFor the unviewed item IiIs scored as <math>
<mrow>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>λ</mi>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>a</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>x</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>U</mi>
<mi>a</mi>
</msub>
<mo>,</mo>
<msub>
<mi>U</mi>
<mi>x</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<mi>λ</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mover>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>+</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>R</mi>
<mrow>
<mi>a</mi>
<mo>,</mo>
<mi>y</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>R</mi>
<mi>y</mi>
</msub>
<mo>‾</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>∈</mo>
<mi>I</mi>
</mrow>
</munder>
<msup>
<mi>sim</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<msub>
<mi>I</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>I</mi>
<mi>y</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein Respectively represent users Ua,UxThe average of the scores of the existing items, respectively represent items Ii,IyThere is a mean value of the user scores.
6. The method of claim 5, wherein R is when λ =0a,iIs based on project similarity prediction score, when lambda =1, the Ra,iIs based on user similarity prediction scores.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310505323.1A CN103500228A (en) | 2013-10-23 | 2013-10-23 | Similarity measuring method improved through collaborative filtering recommendation algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310505323.1A CN103500228A (en) | 2013-10-23 | 2013-10-23 | Similarity measuring method improved through collaborative filtering recommendation algorithm |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103500228A true CN103500228A (en) | 2014-01-08 |
Family
ID=49865439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310505323.1A Pending CN103500228A (en) | 2013-10-23 | 2013-10-23 | Similarity measuring method improved through collaborative filtering recommendation algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103500228A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103927347A (en) * | 2014-04-01 | 2014-07-16 | 复旦大学 | Collaborative filtering recommendation algorithm based on user behavior models and ant colony clustering |
CN104021153A (en) * | 2014-05-19 | 2014-09-03 | 江苏金智教育信息技术有限公司 | Personalized recommendation method for campus books |
CN104166732A (en) * | 2014-08-29 | 2014-11-26 | 合肥工业大学 | Project collaboration filtering recommendation method based on global scoring information |
CN104182518A (en) * | 2014-08-25 | 2014-12-03 | 苏州大学 | Collaborative filtering recommendation method and device |
CN104298772A (en) * | 2014-10-29 | 2015-01-21 | 吴健 | Collaborative filtering recommendation method and device optimizing neighbor selection |
CN104715399A (en) * | 2015-04-09 | 2015-06-17 | 苏州大学 | Grading prediction method and grading prediction system |
CN104731866A (en) * | 2015-02-27 | 2015-06-24 | 湖南大学 | Individual gourmet recommending method based on position |
CN105843860A (en) * | 2016-03-17 | 2016-08-10 | 山东大学 | Microblog attention recommendation method based on parallel item-based collaborative filtering algorithm |
CN109117442A (en) * | 2017-06-23 | 2019-01-01 | 腾讯科技(深圳)有限公司 | A kind of application recommended method and device |
CN109389442A (en) * | 2017-08-04 | 2019-02-26 | 北京京东尚科信息技术有限公司 | Method of Commodity Recommendation and device, storage medium and electric terminal |
CN111414533A (en) * | 2019-01-04 | 2020-07-14 | 北京京东尚科信息技术有限公司 | Recommendation information generation method and device, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101320461A (en) * | 2008-07-01 | 2008-12-10 | 浙江大学 | Cooperated filtering method based on resistor network and sparse data estimation |
CN102609523A (en) * | 2012-02-10 | 2012-07-25 | 上海视畅信息科技有限公司 | Collaborative filtering recommendation algorithm based on article sorting and user sorting |
CN102779131A (en) * | 2011-05-12 | 2012-11-14 | 同济大学 | Collaborative filtering recommending method based on multiple-similarity of users |
CN103092911A (en) * | 2012-11-20 | 2013-05-08 | 北京航空航天大学 | K-neighbor-based collaborative filtering recommendation system for combining social label similarity |
-
2013
- 2013-10-23 CN CN201310505323.1A patent/CN103500228A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101320461A (en) * | 2008-07-01 | 2008-12-10 | 浙江大学 | Cooperated filtering method based on resistor network and sparse data estimation |
CN102779131A (en) * | 2011-05-12 | 2012-11-14 | 同济大学 | Collaborative filtering recommending method based on multiple-similarity of users |
CN102609523A (en) * | 2012-02-10 | 2012-07-25 | 上海视畅信息科技有限公司 | Collaborative filtering recommendation algorithm based on article sorting and user sorting |
CN103092911A (en) * | 2012-11-20 | 2013-05-08 | 北京航空航天大学 | K-neighbor-based collaborative filtering recommendation system for combining social label similarity |
Non-Patent Citations (3)
Title |
---|
任磊: "推荐系统关键技术研究", 《中国博士学位论文全文数据库·信息科技辑》 * |
吴月萍等: "改进相似性度量方法的协同过滤推荐算法", 《计算机应用与软件》 * |
王晓堤等: "基于云模型的时间修正协同过滤推荐算法", 《计算机工程与科学》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103927347A (en) * | 2014-04-01 | 2014-07-16 | 复旦大学 | Collaborative filtering recommendation algorithm based on user behavior models and ant colony clustering |
CN104021153A (en) * | 2014-05-19 | 2014-09-03 | 江苏金智教育信息技术有限公司 | Personalized recommendation method for campus books |
CN104021153B (en) * | 2014-05-19 | 2017-06-06 | 江苏金智教育信息技术有限公司 | A kind of personalized recommendation method of campus books |
CN104182518A (en) * | 2014-08-25 | 2014-12-03 | 苏州大学 | Collaborative filtering recommendation method and device |
CN104182518B (en) * | 2014-08-25 | 2017-12-26 | 苏州大学 | A kind of collaborative filtering recommending method and device |
CN104166732B (en) * | 2014-08-29 | 2017-04-12 | 合肥工业大学 | Project collaboration filtering recommendation method based on global scoring information |
CN104166732A (en) * | 2014-08-29 | 2014-11-26 | 合肥工业大学 | Project collaboration filtering recommendation method based on global scoring information |
CN104298772A (en) * | 2014-10-29 | 2015-01-21 | 吴健 | Collaborative filtering recommendation method and device optimizing neighbor selection |
CN104731866A (en) * | 2015-02-27 | 2015-06-24 | 湖南大学 | Individual gourmet recommending method based on position |
CN104731866B (en) * | 2015-02-27 | 2020-05-19 | 湖南松桂坊电子商务有限公司 | Personalized food recommendation method based on position |
CN104715399A (en) * | 2015-04-09 | 2015-06-17 | 苏州大学 | Grading prediction method and grading prediction system |
CN104715399B (en) * | 2015-04-09 | 2018-03-02 | 苏州大学 | A kind of score in predicting method and system |
CN105843860A (en) * | 2016-03-17 | 2016-08-10 | 山东大学 | Microblog attention recommendation method based on parallel item-based collaborative filtering algorithm |
CN105843860B (en) * | 2016-03-17 | 2019-03-22 | 山东大学 | A kind of microblogging concern recommended method based on parallel item-based collaborative filtering |
CN109117442A (en) * | 2017-06-23 | 2019-01-01 | 腾讯科技(深圳)有限公司 | A kind of application recommended method and device |
CN109389442A (en) * | 2017-08-04 | 2019-02-26 | 北京京东尚科信息技术有限公司 | Method of Commodity Recommendation and device, storage medium and electric terminal |
CN111414533A (en) * | 2019-01-04 | 2020-07-14 | 北京京东尚科信息技术有限公司 | Recommendation information generation method and device, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103500228A (en) | Similarity measuring method improved through collaborative filtering recommendation algorithm | |
Park et al. | Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbor graph | |
CN104935963B (en) | A kind of video recommendation method based on timing driving | |
Ramezani et al. | A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains | |
CN109933721B (en) | Interpretable recommendation method integrating user implicit article preference and implicit trust | |
CN102779182A (en) | Collaborative filtering recommendation method for integrating preference relationship and trust relationship | |
CN102495864A (en) | Collaborative filtering recommending method and system based on grading | |
Jiao et al. | A novel learning rate function and its application on the SVD++ recommendation algorithm | |
Hu et al. | Bayesian personalized ranking based on multiple-layer neighborhoods | |
Lu et al. | Scalable news recommendation using multi-dimensional similarity and Jaccard–Kmeans clustering | |
CN106126549A (en) | A kind of community's trust recommendation method decomposed based on probability matrix and system thereof | |
CN106294859A (en) | A kind of item recommendation method decomposed based on attribute coupling matrix | |
CN107491557A (en) | A kind of TopN collaborative filtering recommending methods based on difference privacy | |
CN102135999A (en) | User credibility and item nearest neighbor combination Internet recommendation method | |
CN105430505A (en) | IPTV program recommending method based on combined strategy | |
Zarei et al. | A memory-based collaborative filtering recommender system using social ties | |
Chen et al. | A fuzzy matrix factor recommendation method with forgetting function and user features | |
CN110059257B (en) | Project recommendation method based on score correction | |
Ha et al. | Social filtering using social relationship for movie recommendation | |
Ali et al. | Inferring context with reliable collaborators: a novel similarity estimation method for recommender systems | |
Margaris et al. | Enhancing rating prediction quality through improving the accuracy of detection of shifts in rating practices | |
Chen et al. | Trust-based collaborative filtering algorithm in social network | |
Sreepada et al. | Revisiting tendency based collaborative filtering for personalized recommendations | |
CN114912031A (en) | Mixed recommendation method and system based on clustering and collaborative filtering | |
JP2008305229A (en) | Demand forecast method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140108 |