CN103496733A - Method for preparing carbon doped zinc oxide - Google Patents
Method for preparing carbon doped zinc oxide Download PDFInfo
- Publication number
- CN103496733A CN103496733A CN201310468043.8A CN201310468043A CN103496733A CN 103496733 A CN103496733 A CN 103496733A CN 201310468043 A CN201310468043 A CN 201310468043A CN 103496733 A CN103496733 A CN 103496733A
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- carbon
- solution
- zinc gluconate
- doped zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 title abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 14
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 claims abstract description 63
- 239000011670 zinc gluconate Substances 0.000 claims abstract description 63
- 235000011478 zinc gluconate Nutrition 0.000 claims abstract description 63
- 229960000306 zinc gluconate Drugs 0.000 claims abstract description 63
- 239000007787 solid Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002243 precursor Substances 0.000 claims abstract description 20
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 14
- 230000035484 reaction time Effects 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 238000001354 calcination Methods 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 230000031700 light absorption Effects 0.000 abstract description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052725 zinc Inorganic materials 0.000 abstract description 6
- 239000011701 zinc Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 2
- 238000000120 microwave digestion Methods 0.000 description 16
- 230000001699 photocatalysis Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000174 gluconic acid Substances 0.000 description 4
- 235000012208 gluconic acid Nutrition 0.000 description 4
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明提供了一种制备碳掺杂氧化锌的方法,将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后调节葡萄糖酸锌溶液的pH值为6-8;将调节pH值后的葡萄糖酸锌溶液放入微波水热合成仪中,在180℃~250℃下进行合成反应,然后自然冷却到室温,得到产物;将产物进行离心分离,收集固体,然后将固体洗涤、烘干后得到棕色的氧化锌前驱体;将棕色的氧化锌前驱体煅烧,得到碳掺杂氧化锌。本发明具有反应时间短,效率高,重复性好的特点;以葡萄糖酸锌为原材料环境友好无污染;本发明制得的碳掺杂氧化锌粒度均匀,具有疏松多孔结构,比表面积高、纯度高、碳掺杂量可控性好、可见光吸收优异的特点。The invention provides a method for preparing carbon-doped zinc oxide, dissolving zinc gluconate in water to obtain a zinc gluconate solution, and then adjusting the pH value of the zinc gluconate solution to 6-8; Put the acid zinc solution into a microwave hydrothermal synthesizer, carry out the synthesis reaction at 180 ° C ~ 250 ° C, and then naturally cool to room temperature to obtain the product; the product is centrifuged to collect the solid, and then the solid is washed and dried to obtain Brown zinc oxide precursor; the brown zinc oxide precursor is calcined to obtain carbon-doped zinc oxide. The invention has the characteristics of short reaction time, high efficiency and good repeatability; zinc gluconate is used as raw material to be environmentally friendly and pollution-free; the carbon-doped zinc oxide prepared by the invention has uniform particle size, loose porous structure, high specific surface area and high purity High carbon doping, good controllability, and excellent visible light absorption.
Description
技术领域technical field
本发明属于半导体材料制备技术领域,具体涉及一种碳掺杂氧化锌的制备方法。The invention belongs to the technical field of semiconductor material preparation, and in particular relates to a preparation method of carbon-doped zinc oxide.
背景技术Background technique
ZnO是一种新型的直接带隙半导体材料,它的禁带宽度为3.2eV,激子束缚能为60meV,有优良的光电特性,可广泛应用于发光二极管、光催化、太阳能电池、气敏传感器、生物传感器等领域,引起了科技工作者的关注。近年来,随着纳米科技的飞速发展,不同形貌的纳米ZnO被人们用多种方法制得,表现出很多独特的物理化学性能。其中,纳米ZnO的光催化性能倍受研究人员的青睐。目前,人们对于它进行了大量研究,但主要集中于控制ZnO的形貌,提高其比表面积,仅仅提高了材料在紫外光照射下的催化活性。而紫外光只占太阳光的5%,这些工作虽然创意新颖,但离实际应用还遥遥无期。与紫外光相比,可见光占太阳光的46%。因此,在制备出高比表面积形貌的基础上,开发出具有高可见光催化活性的ZnO光催化材料对于其实际应用有非常重要的意义。ZnO is a new type of direct bandgap semiconductor material. Its forbidden band width is 3.2eV, and the exciton binding energy is 60meV. It has excellent photoelectric properties and can be widely used in light-emitting diodes, photocatalysis, solar cells, and gas sensors. , biosensors and other fields have attracted the attention of scientific and technological workers. In recent years, with the rapid development of nanotechnology, nano-ZnO with different shapes has been prepared by various methods, showing many unique physical and chemical properties. Among them, the photocatalytic properties of nano-ZnO are favored by researchers. At present, people have done a lot of research on it, but they mainly focus on controlling the morphology of ZnO, increasing its specific surface area, and only improving the catalytic activity of the material under ultraviolet light irradiation. Ultraviolet light only accounts for 5% of sunlight. Although these works are innovative, they are still far away from practical applications. Visible light makes up 46% of sunlight compared to ultraviolet light. Therefore, on the basis of preparing high specific surface area morphology, it is of great significance to develop ZnO photocatalytic materials with high visible light catalytic activity for its practical application.
目前,通常通过金属元素离子掺杂如Fe、Cr、Sb、Co、Mn和Ni或者非金属元素N、C、S掺杂来提高半导体氧化物对可见光的吸收能力,也取得一定的成果。但相对于以过渡金属离子为主的阳离子掺杂,阴离子掺杂光催化剂的研究较少,且方法较复杂。中国发明专利201210466728.4报道了一种简便制备碳掺杂介孔ZnO汉堡结构纳米组装体的方法。该方法以乙二醇为反应溶剂,以过渡金属的无机盐醋酸锌以及过量的碱源为反应前驱物,加入结构导向剂葡萄糖,通过诱导聚合以及孪晶极性场驱动实现了碳掺杂的ZnO纳米颗粒自组装。中国发明专利201110332997.7报道了一种具有可见光催化活性的碳掺杂半导体氧化物及其制备方法,将金属盐、尿素和碳源溶解于蒸馏水中搅拌得到前躯体溶液,置于高压反应釜中密封反应;冷却,去离子水洗涤,真空干燥;然后焙烧,制得碳掺杂半导体氧化物。上述制备方法均需要在反应体系中加入结构导向剂或加入尿素和碳源等物质参与合成,条件苛刻,工艺复杂,不利于工业化。At present, metal element ion doping such as Fe, Cr, Sb, Co, Mn, and Ni or non-metal element N, C, and S doping is usually used to improve the absorption capacity of semiconductor oxides for visible light, and certain results have been achieved. However, compared with transition metal ion-based cation doping, the research on anion doped photocatalysts is less and the method is more complicated. Chinese invention patent 201210466728.4 reports a simple method for preparing carbon-doped mesoporous ZnO Hamburg structure nanoassemblies. In this method, ethylene glycol is used as the reaction solvent, the transition metal inorganic salt zinc acetate and excess alkali source are used as the reaction precursor, and the structure-directing agent glucose is added to achieve carbon doping by inducing polymerization and twinning polar field drive. Self-assembly of ZnO nanoparticles. Chinese invention patent 201110332997.7 reports a carbon-doped semiconductor oxide with visible light catalytic activity and its preparation method. Metal salt, urea and carbon source are dissolved in distilled water and stirred to obtain a precursor solution, which is placed in a high-pressure reactor and sealed for reaction. ; Cooling, washing with deionized water, drying in vacuum; then roasting to obtain carbon-doped semiconductor oxide. The above-mentioned preparation methods all need to add a structure-directing agent to the reaction system or add substances such as urea and carbon source to participate in the synthesis. The conditions are harsh and the process is complicated, which is not conducive to industrialization.
发明内容Contents of the invention
本发明的目的是提供一种制备碳掺杂氧化锌的制备方法,该方法具有反应时间短,反应温度低,操作简单,重复性好的优点。The object of the present invention is to provide a method for preparing carbon-doped zinc oxide, which has the advantages of short reaction time, low reaction temperature, simple operation and good repeatability.
为实现上述目的,本发明采用如下的技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明包括以下步骤:The present invention comprises the following steps:
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后调节葡萄糖酸锌溶液的pH值为6-8;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.1~1mol/L;1) Dissolving zinc gluconate in water to obtain a zinc gluconate solution, and then adjusting the pH of the zinc gluconate solution to 6-8; wherein, the concentration of zinc gluconate in the zinc gluconate solution is 0.1-1mol/L;
2)将调节pH值后的葡萄糖酸锌溶液放入微波水热合成仪中,在180℃~250℃下进行合成反应,然后自然冷却到室温,得到产物;2) Put the pH-adjusted zinc gluconate solution into a microwave hydrothermal synthesizer, carry out the synthesis reaction at 180°C to 250°C, and then naturally cool to room temperature to obtain the product;
3)将产物进行离心分离,收集固体,然后将固体洗涤、烘干后得到棕色的氧化锌前驱体;3) Centrifuge the product, collect the solid, then wash and dry the solid to obtain a brown zinc oxide precursor;
4)将棕色的氧化锌前驱体在200~400℃下煅烧,自然冷却至室温,得到碳掺杂氧化锌。4) Calcining the brown zinc oxide precursor at 200-400° C., and naturally cooling to room temperature to obtain carbon-doped zinc oxide.
所述步骤1)中的pH值是采用KOH溶液,NaOH溶液或者氨水进行调节的。The pH value in step 1) is adjusted by KOH solution, NaOH solution or ammonia water.
所述KOH溶液、NaOH溶液、氨水的浓度均为0.2‐1mol/L。The concentrations of the KOH solution, NaOH solution and ammonia water are all 0.2-1mol/L.
所述步骤2)中合成反应的时间为1h~3h。The synthesis reaction time in the step 2) is 1h-3h.
所述步骤3)中洗涤具体为分别用去离子水及无水乙醇洗涤固体。The washing in step 3) specifically includes washing the solid with deionized water and absolute ethanol respectively.
所述步骤4)中煅烧的时间为0.5~2小时。The calcining time in the step 4) is 0.5-2 hours.
本发明具有以下有益效果:本发明以葡萄糖酸锌为原材料,无需添加其他的诱导剂或碳源,利用微波辅助水热法合成氧化锌的前驱体,再通过低温煅烧的方法合成具有多孔结构的碳掺杂氧化锌。本发明中煅烧温度低,在200~400℃的温度下即可完成碳的掺杂;采用微波辅助的水热合成方法使得本发明具有反应时间短,效率高,重复性好的特点;以葡萄糖酸锌为原材料环境友好无污染;本发明制得的碳掺杂氧化锌粒度均匀,具有疏松多孔结构,比表面积高、纯度高、碳掺杂量可控性好、可见光吸收优异的特点,可应用于可见光光催化、太阳能利用领域。The present invention has the following beneficial effects: the present invention uses zinc gluconate as the raw material, without adding other inducers or carbon sources, utilizes microwave-assisted hydrothermal method to synthesize the precursor of zinc oxide, and then synthesizes the precursor of zinc oxide by low-temperature calcination. Carbon doped zinc oxide. In the present invention, the calcination temperature is low, and carbon doping can be completed at a temperature of 200-400°C; the microwave-assisted hydrothermal synthesis method makes the present invention have the characteristics of short reaction time, high efficiency, and good repeatability; Zinc acid is a raw material that is environmentally friendly and pollution-free; the carbon-doped zinc oxide prepared by the present invention has a uniform particle size, a loose porous structure, a high specific surface area, high purity, good controllability of carbon doping, and excellent visible light absorption. It is applied in the fields of visible light photocatalysis and solar energy utilization.
附图说明Description of drawings
图1是由本发明制备的碳掺杂氧化锌的X-射线衍射(XRD)图谱;其中图1(a)是煅烧前后产物的XRD对比;图1(b)是煅烧后产物的XRD局部放大图;Fig. 1 is the X-ray diffraction (XRD) spectrum of the carbon-doped zinc oxide prepared by the present invention; Wherein Fig. 1 (a) is the XRD comparison of the product before and after calcination; Fig. 1 (b) is the XRD partial enlarged view of the product after calcination ;
图2是本发明制备的碳掺杂氧化锌的扫描电镜(SEM)照片;其中图2(a)是碳掺杂氧化锌5000倍的形貌;图2(b)是碳掺杂氧化锌20000倍的形貌;图2(c)是碳掺杂氧化锌100000倍的形貌;Figure 2 is a scanning electron microscope (SEM) photo of carbon-doped zinc oxide prepared in the present invention; wherein Figure 2 (a) is the morphology of carbon-doped zinc oxide 5000 times; Figure 2 (b) is carbon-doped zinc oxide 20000 Figure 2(c) is the morphology of carbon-doped zinc oxide 100000 times;
图3是本发明制备的碳掺杂氧化锌的紫外-可见吸收光谱。Fig. 3 is the ultraviolet-visible absorption spectrum of the carbon-doped zinc oxide prepared in the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用0.2mol/L的NaOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为6;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.1mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 0.2mol/L NaOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 6; among them, gluconic acid in the zinc gluconate solution The concentration of zinc is 0.1mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在180℃下进行合成反应3h,然后自然冷却到室温,得到产物;2) Add the pH-adjusted zinc gluconate solution into a microwave digestion tank, then move the microwave digestion tank into a microwave hydrothermal synthesizer, perform a synthesis reaction at 180°C for 3 hours, and then cool naturally to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在200℃下空气气氛中煅烧2小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 200°C for 2 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
本实施例所得碳掺杂氧化锌的可见光吸收强度为0.23。The visible light absorption intensity of the carbon-doped zinc oxide obtained in this example is 0.23.
实施例2Example 2
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用1mol/L的NaOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为8;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为1mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 1mol/L NaOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 8; among them, zinc gluconate in the zinc gluconate solution The concentration is 1mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在250℃下进行合成反应1h,然后自然冷却到室温,得到产物;2) Add the pH-adjusted zinc gluconate solution into a microwave digestion tank, then move the microwave digestion tank into a microwave hydrothermal synthesizer, perform a synthesis reaction at 250°C for 1 hour, and then cool naturally to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在400℃下空气气氛中煅烧0.5小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined at 400°C in an air atmosphere for 0.5 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
本实施例所得碳掺杂氧化锌的可见光吸收强度为0.15。The visible light absorption intensity of the carbon-doped zinc oxide obtained in this example is 0.15.
实施例3Example 3
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用0.5mol/L的NaOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为7;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.5mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 0.5mol/L NaOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 7; among them, the gluconic acid in the zinc gluconate solution The concentration of zinc is 0.5mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在200℃下进行合成反应2h,然后自然冷却到室温,得到产物;2) Add the pH-adjusted zinc gluconate solution into a microwave digestion tank, then move the microwave digestion tank into a microwave hydrothermal synthesizer, perform a synthesis reaction at 200°C for 2 hours, and then cool naturally to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在300℃下空气气氛中煅烧1小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 300°C for 1 hour, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
本实施例所得碳掺杂氧化锌的可见光吸收强度为0.45。The visible light absorption intensity of the carbon-doped zinc oxide obtained in this example is 0.45.
实施例4Example 4
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用0.8mol/L的NaOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为7;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.3mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, then use 0.8mol/L NaOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 7; among them, the gluconic acid in the zinc gluconate solution The concentration of zinc is 0.3mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在220℃下进行合成反应2h,然后自然冷却到室温,得到产物;2) Add the zinc gluconate solution after adjusting the pH value into the microwave digestion tank, then move the microwave digestion tank into the microwave hydrothermal synthesizer, carry out the synthesis reaction at 220°C for 2 hours, and then naturally cool to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在350℃下空气气氛中煅烧0.5小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 350°C for 0.5 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
本实施例所得碳掺杂氧化锌的可见光吸收强度为0.30。The visible light absorption intensity of the carbon-doped zinc oxide obtained in this example is 0.30.
实施例5Example 5
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用0.2mol/L的KOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为6.5;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.6mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 0.2mol/L KOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 6.5; among them, gluconic acid in the zinc gluconate solution The concentration of zinc is 0.6mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在190℃下进行合成反应1.5h,然后自然冷却到室温,得到产物;2) Add the zinc gluconate solution after adjusting the pH value into the microwave digestion tank, then move the microwave digestion tank into the microwave hydrothermal synthesizer, carry out the synthesis reaction at 190°C for 1.5h, and then naturally cool to room temperature to obtain the product ;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在250℃下空气气氛中煅烧1.5小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 250°C for 1.5 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
实施例6Example 6
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用1mol/L的氨水作为pH调节剂,调节葡萄糖酸锌溶液的pH值为7.5;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.8mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 1mol/L ammonia water as a pH regulator to adjust the pH of the zinc gluconate solution to 7.5; wherein, the zinc gluconate in the zinc gluconate solution The concentration is 0.8mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在235℃下进行合成反应2.5h,然后自然冷却到室温,得到产物;2) Add the zinc gluconate solution after adjusting the pH value into the microwave digestion tank, then move the microwave digestion tank into the microwave hydrothermal synthesizer, carry out the synthesis reaction at 235°C for 2.5 hours, and then cool naturally to room temperature to obtain the product ;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在200℃下空气气氛中煅烧2小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 200°C for 2 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
实施例7Example 7
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用1mol/L的KOH溶液作为pH调节剂,调节葡萄糖酸锌溶液的pH值为6;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.6mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 1mol/L KOH solution as a pH regulator to adjust the pH of the zinc gluconate solution to 6; among them, zinc gluconate in the zinc gluconate solution The concentration is 0.6mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在180℃下进行合成反应3h,然后自然冷却到室温,得到产物;2) Add the pH-adjusted zinc gluconate solution into a microwave digestion tank, then move the microwave digestion tank into a microwave hydrothermal synthesizer, perform a synthesis reaction at 180°C for 3 hours, and then cool naturally to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在400℃下空气气氛中煅烧1小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined at 400°C in an air atmosphere for 1 hour, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
实施例8Example 8
1)将葡萄糖酸锌溶解在水中,得到葡萄糖酸锌溶液,然后用0.2mol/L的氨水作为pH调节剂,调节葡萄糖酸锌溶液的pH值为8;其中,葡萄糖酸锌溶液中葡萄糖酸锌的浓度为0.8mol/L;1) Dissolve zinc gluconate in water to obtain a zinc gluconate solution, and then use 0.2mol/L ammonia water as a pH regulator to adjust the pH of the zinc gluconate solution to 8; among them, zinc gluconate in the zinc gluconate solution The concentration is 0.8mol/L;
2)将调节pH值后的葡萄糖酸锌溶液加入到微波消解罐中,再将微波消解罐移入微波水热合成仪中,在250℃下进行合成反应1h,然后自然冷却到室温,得到产物;2) Add the pH-adjusted zinc gluconate solution into a microwave digestion tank, then move the microwave digestion tank into a microwave hydrothermal synthesizer, perform a synthesis reaction at 250°C for 1 hour, and then cool naturally to room temperature to obtain the product;
3)将产物通过离心分离,收集固体,然后将固体分别用去离子水及无水乙醇洗涤,烘干后,得到棕色的氧化锌前驱体;3) Centrifuge the product to collect the solid, then wash the solid with deionized water and absolute ethanol, and dry it to obtain a brown zinc oxide precursor;
4)将产物在200℃下空气气氛中煅烧2小时,自然冷却至室温,得到碳掺杂氧化锌。4) The product was calcined in an air atmosphere at 200°C for 2 hours, and cooled naturally to room temperature to obtain carbon-doped zinc oxide.
请参阅图1所示,图1为本发明方法制备的碳微球的XRD图谱。由图1(a)可以看出:煅烧前的ZnO结晶性不好、纯度不高,煅烧后的ZnO为纯相且具有六方纤锌矿结构的ZnO。由图1(b)可以看出:煅烧后的氧化锌的衍射峰位置向大角度方向发生偏移,说明ZnO晶格发生了畸变,由于共价碳的半径为77皮米,远远小于氧离子的半径140皮米,说明碳成功取代了氧化锌中部分氧,实现了掺杂。Please refer to FIG. 1, which is an XRD spectrum of carbon microspheres prepared by the method of the present invention. It can be seen from Fig. 1(a): ZnO before calcination has poor crystallinity and low purity, and ZnO after calcination is ZnO with pure phase and hexagonal wurtzite structure. It can be seen from Figure 1(b) that the position of the diffraction peak of the calcined zinc oxide shifts to a large angle direction, indicating that the ZnO lattice is distorted. Since the radius of the covalent carbon is 77 picometers, which is much smaller than that of the oxygen The radius of the ions is 140 picometers, indicating that carbon has successfully replaced part of the oxygen in zinc oxide and achieved doping.
请参阅图2所示,图2为本发明制备的碳掺杂氧化锌的SEM形貌。由图2(a)可以看出:本发明制备的碳掺杂氧化锌的尺寸在5μm左右,且具有多孔疏松的结构;由图2(b)可以看出:在碳掺杂氧化锌的颗粒表面有许多纳米级的孔洞;由图2(c)可以看出:碳掺杂氧化锌是由很多的纳米颗粒组装而成,这些颗粒的大小约为50-100nm。Please refer to FIG. 2 . FIG. 2 is the SEM morphology of the carbon-doped zinc oxide prepared in the present invention. It can be seen from Figure 2 (a) that the carbon-doped zinc oxide prepared by the present invention has a size of about 5 μm and has a porous and loose structure; it can be seen from Figure 2 (b) that the particles of carbon-doped zinc oxide There are many nanoscale pores on the surface; it can be seen from Figure 2(c): carbon-doped zinc oxide is assembled by many nanoparticles, and the size of these particles is about 50-100nm.
请参阅图3所示,图3是本发明制备的碳掺杂氧化锌的紫外-可见吸收光谱。从图3可以看出:相比纯的氧化锌,本发明制备的碳掺杂氧化锌不仅在紫外光区域有着较强的吸收能力,而且吸收峰向可将光区域偏移,在可见光区域(400nm~800nm)也表现出了较强的吸收能力,本发明制备的碳掺杂氧化锌具有优异的可见光响应能力,在可见光光催化、太阳能利用领域大有可为。Please refer to FIG. 3 . FIG. 3 is the ultraviolet-visible absorption spectrum of the carbon-doped zinc oxide prepared in the present invention. As can be seen from Figure 3: compared with pure zinc oxide, the carbon-doped zinc oxide prepared by the present invention not only has a stronger absorption capacity in the ultraviolet light region, but also has an absorption peak that can shift to the light region, and in the visible light region ( 400nm to 800nm) also exhibits strong absorption capacity, and the carbon-doped zinc oxide prepared by the present invention has excellent visible light responsiveness, and has great potential in the fields of visible light photocatalysis and solar energy utilization.
本发明以葡萄糖酸锌作为原料,将其在水中溶解后,调节pH至6-8,再经微波水热反应、洗涤、干燥,得到氧化锌前驱体,再通过低温煅烧(200-400℃),即可得到高纯度的具有多孔结构的碳掺杂氧化锌。本发明以葡萄糖酸锌为原材料,无需添加其他诱导剂或碳源,利用微波辅助水热法合成氧化锌的前驱体,再通过低温煅烧的方法合成具有疏松多孔结构的碳掺杂氧化锌。本发明得到的碳掺杂氧化锌具有比表面积高、纯度高、碳掺杂量可控性好、可见光吸收优异的特点。The present invention uses zinc gluconate as a raw material, dissolves it in water, adjusts the pH to 6-8, and undergoes microwave hydrothermal reaction, washing, and drying to obtain a zinc oxide precursor, which is then calcined at a low temperature (200-400°C). , and high-purity carbon-doped zinc oxide with a porous structure can be obtained. The invention uses zinc gluconate as a raw material without adding other inducers or carbon sources, utilizes a microwave-assisted hydrothermal method to synthesize a zinc oxide precursor, and then synthesizes carbon-doped zinc oxide with a loose porous structure by a low-temperature calcination method. The carbon-doped zinc oxide obtained by the invention has the characteristics of high specific surface area, high purity, good controllability of carbon doping amount and excellent visible light absorption.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310468043.8A CN103496733A (en) | 2013-09-30 | 2013-09-30 | Method for preparing carbon doped zinc oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310468043.8A CN103496733A (en) | 2013-09-30 | 2013-09-30 | Method for preparing carbon doped zinc oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103496733A true CN103496733A (en) | 2014-01-08 |
Family
ID=49862026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310468043.8A Pending CN103496733A (en) | 2013-09-30 | 2013-09-30 | Method for preparing carbon doped zinc oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103496733A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104148047A (en) * | 2014-08-31 | 2014-11-19 | 华东理工大学 | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst |
CN104445372A (en) * | 2014-11-26 | 2015-03-25 | 燕山大学 | Method for preparing carbon doped zinc oxide nanoparticles |
CN105272206A (en) * | 2015-10-13 | 2016-01-27 | 北京科技大学 | A kind of preparation method of C and Ni co-doped ZnO thermoelectric material |
CN109638244A (en) * | 2018-12-05 | 2019-04-16 | 岭南师范学院 | A kind of zinc sulphide@carbon complex microsphere and the preparation method and application thereof |
CN110203963A (en) * | 2019-04-30 | 2019-09-06 | 昆明理工大学 | A method of recycling expired zinc gluconate |
CN113680291A (en) * | 2021-09-09 | 2021-11-23 | 吉林农业大学 | Preparation method of paramagnetic metal oxide/spinel/carbon composite microsphere |
CN116253315A (en) * | 2023-03-13 | 2023-06-13 | 山东大学 | Glucose-zinc gluconate carbonized polymer point and its preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1763263A (en) * | 2005-09-27 | 2006-04-26 | 清华大学 | A zinc oxide oriented nanorod or wire film and its preparation method |
CN101182028A (en) * | 2007-11-23 | 2008-05-21 | 陕西科技大学 | A kind of preparation method of ZnO nano rod |
CN102543456A (en) * | 2011-12-23 | 2012-07-04 | 中国科学院过程工程研究所 | Zinc oxide membrane electrode material for dye sensitized solar cell and preparation method thereof |
CN102942208A (en) * | 2012-11-16 | 2013-02-27 | 浙江师范大学 | Method for easily and conveniently preparing carbon doped mesoporous ZnO Hamburg structure nanometer assembly |
-
2013
- 2013-09-30 CN CN201310468043.8A patent/CN103496733A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1763263A (en) * | 2005-09-27 | 2006-04-26 | 清华大学 | A zinc oxide oriented nanorod or wire film and its preparation method |
CN101182028A (en) * | 2007-11-23 | 2008-05-21 | 陕西科技大学 | A kind of preparation method of ZnO nano rod |
CN102543456A (en) * | 2011-12-23 | 2012-07-04 | 中国科学院过程工程研究所 | Zinc oxide membrane electrode material for dye sensitized solar cell and preparation method thereof |
CN102942208A (en) * | 2012-11-16 | 2013-02-27 | 浙江师范大学 | Method for easily and conveniently preparing carbon doped mesoporous ZnO Hamburg structure nanometer assembly |
Non-Patent Citations (1)
Title |
---|
OUYANG HAIBO, ET AL.: "Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties", 《MATERIALS LETTERS》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104148047A (en) * | 2014-08-31 | 2014-11-19 | 华东理工大学 | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst |
CN104148047B (en) * | 2014-08-31 | 2017-02-01 | 华东理工大学 | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst |
CN104445372A (en) * | 2014-11-26 | 2015-03-25 | 燕山大学 | Method for preparing carbon doped zinc oxide nanoparticles |
CN104445372B (en) * | 2014-11-26 | 2016-03-02 | 燕山大学 | A kind of method preparing carbon doping Zinc oxide nanoparticle |
CN105272206A (en) * | 2015-10-13 | 2016-01-27 | 北京科技大学 | A kind of preparation method of C and Ni co-doped ZnO thermoelectric material |
CN105272206B (en) * | 2015-10-13 | 2017-08-08 | 北京科技大学 | A kind of preparation method of C and Ni codopes ZnO thermoelectric materials |
CN109638244A (en) * | 2018-12-05 | 2019-04-16 | 岭南师范学院 | A kind of zinc sulphide@carbon complex microsphere and the preparation method and application thereof |
CN110203963A (en) * | 2019-04-30 | 2019-09-06 | 昆明理工大学 | A method of recycling expired zinc gluconate |
CN113680291A (en) * | 2021-09-09 | 2021-11-23 | 吉林农业大学 | Preparation method of paramagnetic metal oxide/spinel/carbon composite microsphere |
CN113680291B (en) * | 2021-09-09 | 2023-12-01 | 吉林农业大学 | Preparation method of paramagnetic metal oxide/spinel/carbon composite microsphere |
CN116253315A (en) * | 2023-03-13 | 2023-06-13 | 山东大学 | Glucose-zinc gluconate carbonized polymer point and its preparation method and application |
CN116253315B (en) * | 2023-03-13 | 2024-05-24 | 山东大学 | Glucose-zinc gluconate carbonized polymer dots and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103626220B (en) | Method for preparing carbon-doped zinc oxide microsphere with multilevel structure | |
CN103496733A (en) | Method for preparing carbon doped zinc oxide | |
CN101844799B (en) | Preparation method of hexagonal tin disulfide nanosheet | |
CN103055903B (en) | Preparation method of energy band adjustable BiOI-AgI spherical solid solution visible light photocatalytic material | |
CN103058265B (en) | Preparation method of mesoporous nano flaky zinc oxide powder with high specific surface area | |
CN102795661A (en) | A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound | |
CN110344029A (en) | A kind of preparation method of surface hydroxylation sull optical anode material | |
CN102951675A (en) | Method for preparing monodisperse cadmium sulfide nanospheres | |
CN103265065A (en) | Preparation method of graded zinc stannate macroporous materials | |
CN103316698A (en) | Preparation method of energy band-tunable solid solution BiOI-Bi5O7I nanosheet visible light photocatalytic material | |
CN106315660A (en) | Preparation method of copper oxide nanowire | |
CN107268024B (en) | Tricobalt tetroxide composite α-type iron oxide worm-like nanostructure array photoanode, preparation method and application thereof | |
CN108101119B (en) | Preparation method of iron oxide nanosheet material | |
CN107523988A (en) | A kind of W18O49Coat carbon fibre composite and preparation method thereof | |
CN103979517A (en) | Method for synthesizing flower-ball-shaped bismuth phosphate nano-powder photocatalyst by microwave hydrothermal process | |
CN107308973A (en) | A kind of alkali formula cobalt phosphate nanoneedle is combined LTON photochemical catalysts and its preparation method and application | |
CN105060352A (en) | Preparation method for nickel oxide nanosheet/titanium dioxide nanorod heterojunction material | |
CN101723437B (en) | Method for preparing porous laminated zinc oxide sphere | |
CN105435796B (en) | Univalent zinc doped hydrotalcite nano photocatalyst and preparation method and application thereof | |
CN103922412A (en) | A method for preparing sheet-like SmWO4(OH) by microwave hydrothermal method | |
CN104692466B (en) | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms | |
CN103351026B (en) | A kind of preparation method of rod-shaped NH4V3O8 nanocrystal | |
CN114606527B (en) | One-dimensional defective ferric oxide nano rod visible light anode and preparation method and application thereof | |
CN108046334B (en) | A kind of preparation method of nanometer graded hollow spherical iron oxide and its application | |
CN108067277B (en) | Preparation method of high nitrogen-doped single crystal TiO2 mesoporous material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140108 |