CN103488485A - Parallel migration method for optimizing operating performance of application software on server - Google Patents
Parallel migration method for optimizing operating performance of application software on server Download PDFInfo
- Publication number
- CN103488485A CN103488485A CN201310438918.XA CN201310438918A CN103488485A CN 103488485 A CN103488485 A CN 103488485A CN 201310438918 A CN201310438918 A CN 201310438918A CN 103488485 A CN103488485 A CN 103488485A
- Authority
- CN
- China
- Prior art keywords
- parallel
- migration method
- parallel migration
- application software
- server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Stored Programmes (AREA)
Abstract
Description
技术领域 technical field
本本发明涉及高性能计算领域在计算化学,材料科学和纳米技术领域的应用,具体采用一种并行移植的方法进行密度泛函能量项的重新组建和移植,对密度泛函理论进行优化和分析进而达到优化量化软件的目的。 The present invention relates to the application of high-performance computing in the fields of computational chemistry, material science and nanotechnology. Specifically, a method of parallel transplantation is used to reorganize and transplant density functional energy items, and to optimize and analyze density functional theory. To achieve the purpose of optimizing the quantification software. the
背景技术 Background technique
随着科学的不断进步,人们对物质的认知以及延伸到电子的层次。薛定谔方程的建立使得物质世界的理论架构完全成立。通过量子力学的手段,人们已经能够在电子、原子或分子尺度上来精确把握物体的形态。但中间的困难是如何求解深入到电子结构的薛定谔方程的问题。迄今,关于电子结构的计算理论主要有两种类别,一种是建立在哈特里福克(HF)理论基础上的从头计算的量化理论或者以HF为基准的其它理论模型。通过这些理论的计算可以获得任意精度的能量和物质的其它性质。此外,哈特里福克(HF)以及与其有关的其它理论能够系统的对计算的精确度进行改正,但该理论方法的计算量特别大,会消耗巨大的计算资源,外层电子也只能考虑到若干原子的4重轨道。另一种电子结构的计算方法是密度泛函理论(DFT)。其相对于HF理论的主要优点是计算的体系可以扩大到粒子数为N3的体系。在DFT理论中,能量是可以分离的。其能量包括非相互作用的动能,电子和原子核相互作用的能量,电子和电子相互作用的势能,以及交换关联能。目前的DFT理论主要采用“Jacob梯技术”致力于研究更好的更为详细的描述交换关联泛函项。 With the continuous advancement of science, people's cognition of matter has extended to the level of electrons. The establishment of the Schrödinger equation makes the theoretical framework of the material world fully established. Through the means of quantum mechanics, people have been able to accurately grasp the shape of objects at the electronic, atomic or molecular scale. But the difficulty in the middle is how to solve the Schrödinger equation that goes deep into the electronic structure. So far, there are mainly two types of computational theories about electronic structure, one is the ab initio quantitative theory based on Hartley Falk (HF) theory or other theoretical models based on HF. Energy and other properties of matter can be obtained with arbitrary precision through the calculation of these theories. In addition, Hartree-Fock (HF) and other theories related to it can systematically correct the calculation accuracy, but the calculation amount of this theoretical method is particularly large, which will consume huge computing resources, and the outer electrons can only Consider 4-fold orbitals of several atoms. Another method for calculating electronic structure is density functional theory (DFT). Its main advantage over HF theory is that the calculated system can be expanded to a system with a particle number of N 3 . In DFT theory, energy is separable. Its energies include non-interacting kinetic energy, electron-nucleus interaction energy, electron-electron interaction potential energy, and exchange-correlation energy. The current DFT theory mainly uses "Jacob's Ladder Technique" to study better and more detailed descriptions of exchange-correlation functional terms.
密度泛函理论中的前三个能量可以用来分析和更新交换关联项,而交换关联项,以及关联项的微分的计算必须依赖一系列的系统网格。即使后来用密度来形成的交换关联能的计算也是在系统网格点上才能进行的,一系列的系统网格当然不具备任意精度的分析计算,但计算依赖于复杂的系统网格。而且,计算过程中在系统网格上的一系列的能量计算取决于分子相对于系统网格的方向,这显然不具有任何物理意义。再加上,要进行系统网格的重新改进是可以实现的,进而可以缩短计算的速度。 The first three energies in density functional theory can be used to analyze and update the exchange correlation term, and the calculation of the exchange correlation term and the differential of the correlation term must rely on a series of system grids. Even if the calculation of the exchange-correlation energy formed by the density can only be performed on the system grid points, a series of system grids certainly do not have arbitrary precision analysis and calculation, but the calculation depends on the complex system grid. Moreover, a series of energy calculations on the system grid during the calculation depends on the orientation of the molecules relative to the system grid, which obviously does not have any physical meaning. In addition, the re-improvement of the system grid can be realized, which can shorten the calculation speed. the
为了提高DFT理论的软件在服务器上的运算速度,这里设计了一种并行移植方法来优化和分析DFT软件的方案,并取得了理想的结果。此并行移植方法有许多优点,其最主要优点是可量测性,这也打破了一个单纯的优化器可能会困在极小应用范围内而找不到更好的可用点。这里的并行移植方法为单纯的移植方法拓宽了应用的领域,能够更方便找到能够优化的DFT软件的参数 ,加快软件收敛的速度。 In order to improve the operation speed of DFT theory software on the server, a parallel transplantation method is designed here to optimize and analyze the DFT software program, and achieved ideal results. This parallel porting method has many advantages, the main advantage of which is scalability, which also breaks that a pure optimizer may be trapped in a very small application range and cannot find a better available point. The parallel transplantation method here broadens the application field for the simple transplantation method, and it is easier to find the parameters of the DFT software that can be optimized , to speed up the speed of software convergence.
发明内容 Contents of the invention
本发明的目的是提供一种优化应用软件在服务器上运行性能的并行移植方法。 The purpose of the present invention is to provide a parallel transplantation method for optimizing the running performance of application software on a server. the
本发明的目的是按以下方式实现的,优化参数公式如下, The object of the present invention is achieved in the following manner, and the optimized parameter formula is as follows,
= =
校正最优的绝对平均误差,得到其它的相对平均误差,该数据的确定对后面的实现平行移植方法有决定意义,能够实现单移植方法的快速收敛,并对计算的结果无影响,基本的程序架构和组织流程为: corrected optimal absolute mean error , to get other relative mean errors , the determination of this data has decisive significance for the implementation of the parallel transplantation method later, and can realize the rapid convergence of the single transplantation method without affecting the calculation results. The basic program structure and organization flow are:
1)逐一测试单一移植方法对应DFT理论软件中的每种元素的优化参数; 1) Test one by one the optimization parameters of each element in the DFT theory software corresponding to the single transplantation method ;
2)0.5,测试并找到对应每种元素的最优参数值; 2) 0.5 , test and find the optimal parameters for each element value;
3)计算原子能的的绝对平均误差的导数; 3) Calculation of atomic energy The derivative of the absolute mean error of ;
4)校正最优的绝对平均误差,可以得到其它的相对平均误差,这些数值即为并行移植方法中的初始优化参数; 4) Correct the optimal absolute mean error , other relative average errors can be obtained , these values are the initial optimization parameters in the parallel transplantation method;
5)安装并行版本的移植方法程序Python; 5) Install the parallel version of the transplant method program Python;
6)实现DFT应用软件与移植方法程序Python的结合; 6) Realize the combination of DFT application software and transplantation method program Python;
7)找到各个元素的最优的优化设置参数。 7) Find the optimal optimization setting parameters for each element .
本发明的有益效果是:本发明针对单移植的方法应用领域受限和应用软件在服务器上的运行性能不高而进行的一些新的技术改进与发明。本技术发明主要在单移植方法能够很好的优化DFT理论的应用的软件的基础上,采用了并行的方法将单移植优化器变成了并行的优化器,大大提高了其应用范围也达到了有效优化应用软件在服务器上运行的性能。 The beneficial effect of the present invention is : the present invention aims at some new technical improvements and inventions for the limited application field of the single transplant method and the low operating performance of the application software on the server. This technical invention is mainly on the basis that the single-transplant method can well optimize the application software of DFT theory, and adopts a parallel method to turn the single-transplant optimizer into a parallel optimizer, which greatly improves its application range and reaches Effectively optimize the performance of application software running on the server.
具体实施方式 Detailed ways
本发明描述了一种利用并行移植的方法加速和优化密度泛函理论的可用性,其特征在于:有效的拓宽应用领域的空间,从而更为有效的利用集群和超级计算机的资源,该方法在运算过程中可以有效的减少量化软件在服务器上运行时的数据通信量,从而更为有效的利用多个集群节点上的多个核心。 The invention describes a method of using parallel transplantation to accelerate and optimize the usability of density functional theory. In the process, the data communication volume when the quantitative software is running on the server can be effectively reduced, so that multiple cores on multiple cluster nodes can be more effectively utilized. the
为了使本发明的目的、技术方案和优势更加清晰,我们使用guassian应用软件为例,对本发明中的关键步骤进行详细说明,对于实现设置优化的参数详细给出。 In order to make the purpose, technical solution and advantages of the present invention clearer, we use the guassian application software as an example to describe the key steps in the present invention in detail, and provide the parameters for realizing setting optimization in detail. the
优化参数公式如下, The optimization parameter formula is as follows,
= =
校正最优的绝对平均误差,可以得到其它的相对平均误差。该数据的确定对后面的实现平行移植方法有决定意义,能够实现单移植方法的快速收敛,并对计算的结果无影响。 corrected optimal absolute mean error , other relative average errors can be obtained . The determination of this data has decisive significance for the implementation of the parallel transplantation method later, and can realize the rapid convergence of the single transplantation method without affecting the calculation result.
基本的程序架构和组织流程为: The basic program structure and organizational process are:
1. 逐一测试单一移植方法对应DFT理论软件中的每种元素的优化参数; 1. Test one by one the optimization parameters of each element in the DFT theoretical software corresponding to the single transplantation method ;
2. 0.5,测试并找到对应每种元素的最优参数值; 2.0.5 , test and find the optimal parameters for each element value;
3. 计算原子能的的绝对平均误差的导数; 3. Calculation of atomic energy The derivative of the absolute mean error of ;
4. 校正最优的绝对平均误差,可以得到其它的相对平均误差,这些数值即为并行移植方法中的初始优化参数; 4. Correct the optimal absolute mean error , other relative average errors can be obtained , these values are the initial optimization parameters in the parallel transplantation method;
5. 安装并行版本的移植方法程序Python; 5. Install the parallel version of the transplant method program Python;
6. 实现DFT应用软件与移植方法程序Python的结合; 6. Realize the combination of DFT application software and transplantation method program Python;
7. 找到各个元素的最优的优化设置参数 7. Find the optimal optimization setting parameters for each element
本发明所采用的并行移植方法可以极大的加速对DFT应用软件的优化,对于使用guassian应用软件为例,找到了其优化参数,比较易于实现其优化设置,可以极大的利用有限的计算资源加速计算化学、材料科学和纳米科学等的科学研究,并且能够减少对服务器的损耗提高服务器运算性能,还比较节能。本发明的应用算例Gaussian应用软件优化参数数值如下表:
本发明充分剖析了DFT应用软件的理论运行特征,充分的利用了可实现并行移植方法的程序Python,大幅的加速了应用软件的在服务器上的运行速度。此方法是一种解决应用软件在服务器运行耗时的有效方式,比较得到广泛的应用推广,极大的方便了研究人员对微、纳体系做更深入的探索和发现。 The invention fully analyzes the theoretical operation characteristics of DFT application software, fully utilizes the program Python that can realize the parallel transplantation method, and greatly accelerates the operation speed of the application software on the server. This method is an effective way to solve the time-consuming operation of application software on the server. It has been widely used and promoted, and it greatly facilitates researchers to do more in-depth exploration and discovery of micro and nano systems.
除说明书所述的技术特征外,均为本专业技术人员的已知技术。 Except for the technical features described in the instructions, all are known technologies by those skilled in the art. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310438918.XA CN103488485A (en) | 2013-09-25 | 2013-09-25 | Parallel migration method for optimizing operating performance of application software on server |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310438918.XA CN103488485A (en) | 2013-09-25 | 2013-09-25 | Parallel migration method for optimizing operating performance of application software on server |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103488485A true CN103488485A (en) | 2014-01-01 |
Family
ID=49828742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310438918.XA Pending CN103488485A (en) | 2013-09-25 | 2013-09-25 | Parallel migration method for optimizing operating performance of application software on server |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103488485A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105260169A (en) * | 2014-07-16 | 2016-01-20 | 中兴通讯股份有限公司 | Cross-platform python program transplanting method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040107056A1 (en) * | 2002-05-28 | 2004-06-03 | Robert Doerksen | Methods, systems, and computer program products for computational analysis and design of amphiphilic polymers |
CN102937946A (en) * | 2012-10-30 | 2013-02-20 | 复旦大学 | Complicated function minimal value searching method based on constrained regular pattern |
-
2013
- 2013-09-25 CN CN201310438918.XA patent/CN103488485A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040107056A1 (en) * | 2002-05-28 | 2004-06-03 | Robert Doerksen | Methods, systems, and computer program products for computational analysis and design of amphiphilic polymers |
CN102937946A (en) * | 2012-10-30 | 2013-02-20 | 复旦大学 | Complicated function minimal value searching method based on constrained regular pattern |
Non-Patent Citations (2)
Title |
---|
LILIN LU.ET: "《An improved B3LYP method in the calculation of organic thermochemistry and reactivity》", 《COMPUTATIONAL AND THEORETICAL CHEMISTRY》 * |
张颖等: "《新一代密度泛函方法XYG3》", 《化学进展》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105260169A (en) * | 2014-07-16 | 2016-01-20 | 中兴通讯股份有限公司 | Cross-platform python program transplanting method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102819647B (en) | A kind of heterogeneous material random microscopic structure finite element modeling method | |
Bao et al. | Numerical solution of the Kohn-Sham equation by finite element methods with an adaptive mesh redistribution technique | |
Shao et al. | Large-scale ab initio simulations for periodic system | |
CN113640584A (en) | A System Harmonic Impedance Estimation Method Based on Impedance Deviation Minimum Criterion | |
CN104378371A (en) | Network intrusion detection method for parallel AP cluster based on MapReduce | |
CN109446727B (en) | Particle simulation method of graphene surface plasmon | |
CN102692491B (en) | Soil moisture characteristic parameter calculating method based on a staging tabu searching algorithm | |
CN102841881A (en) | Multiple integral computing method based on many-core processor | |
CN114925845A (en) | Machine learning construction method embedded with atomic potential function | |
CN108984914B (en) | Rapid multi-scale calculation method for solving complex time domain electromagnetic problem | |
CN103488485A (en) | Parallel migration method for optimizing operating performance of application software on server | |
CN109408838B (en) | Method and system for rapidly analyzing residual oil of fracture-cavity oil reservoir | |
Qu et al. | Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation | |
CN104714929B (en) | It is a kind of to realize method of the AH FDTD algorithms by rank Parallel implementation | |
CN104978485A (en) | Method for calculating wing bending rigidity of high-aspect-ratio aircraft | |
CN104391822A (en) | Method for solving mesoscopic system by using OPENMP and MPI mixed acceleration quanta | |
CN113065251B (en) | Method and device for obtaining propagation amplitude of strong coupling waveguide | |
Ozhgibesov et al. | Simulation of copper nanocluster deposition on the contaminated surface using gaming GPU | |
Liang et al. | Computing the permanental polynomial of C60 in parallel | |
Li et al. | Numerical validation for high order hyperbolic moment system of Wigner equation | |
CN110647989B (en) | Graphene defect modification prediction method based on neural network | |
CN103164186A (en) | Time-varying reciprocal calculation method of solving division-by-zero situation | |
CN107732938A (en) | A kind of PSD SSAP Small signal stability analysis intelligence screening methods of object-oriented | |
Liu et al. | Parallel fourth-order Runge-Kutta method to solve differential equations | |
CN104361165B (en) | Porous piezoelectric material electricity plays field analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140101 |