CN103486905B - Determining method for terminal guidance shift-exchange conditions of reenter vehicle - Google Patents

Determining method for terminal guidance shift-exchange conditions of reenter vehicle Download PDF

Info

Publication number
CN103486905B
CN103486905B CN201310403444.5A CN201310403444A CN103486905B CN 103486905 B CN103486905 B CN 103486905B CN 201310403444 A CN201310403444 A CN 201310403444A CN 103486905 B CN103486905 B CN 103486905B
Authority
CN
China
Prior art keywords
guidance
shift
time
command
preset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310403444.5A
Other languages
Chinese (zh)
Other versions
CN103486905A (en
Inventor
吴炜平
李杰奇
张振兴
王炀
刘刚
张永
蔡巧言
张旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Original Assignee
China Academy of Launch Vehicle Technology CALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201310403444.5A priority Critical patent/CN103486905B/en
Publication of CN103486905A publication Critical patent/CN103486905A/en
Application granted granted Critical
Publication of CN103486905B publication Critical patent/CN103486905B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种再入飞行器末制导交班条件确定方法,(1)生成预置交班点信息;(2)对步骤(1)中生成的预置交班点信息进行修正,并生成预置交班点误差球;(3)设计随时间变化的制导增益;(4)确定按照时间排序的指令平滑时间系数序列;(5)确定交班逻辑;当完全满足交班逻辑时,导引头末制导启动;(6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满足交班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。

A method for determining handover conditions for the terminal guidance of a re-entry vehicle, (1) generating preset handover point information; (2) correcting the preset handover point information generated in step (1), and generating preset handover point error balls; (3) Design the guidance gain that changes with time; (4) Determine the sequence of order smoothing time coefficients sorted by time; (5) Determine the shift logic; when the shift logic is fully satisfied, the seeker end guidance starts; During the guidance flight process of entering the aircraft, use the time-varying guidance gain determined in step (3) to carry out mid-guidance, and judge in real time whether the shift logic determined in step (5) is satisfied at the same time. When the shift logic is satisfied, start the guidance First and last guidance, and take values from the command smoothing time coefficient sequence determined in step (4) in order, use this coefficient to smooth the middle guidance command and the final guidance command, and use the smoothed command to guide, to achieve After the preset time, it will switch to simple seeker end guidance.

Description

一种再入飞行器末制导交班条件确定方法A Method for Determining Shift Conditions of Reentry Vehicle Terminal Guidance

技术领域technical field

本发明属于武器系统设计技术领域,涉及一种再入飞行器末制导交班条件确定方法。本发明主要应用于再入精确打击飞行器的中末制导交班条件设计和实现,以确保有效载荷打击精度。The invention belongs to the technical field of weapon system design, and relates to a method for determining the shift condition of the terminal guidance of a reentry vehicle. The invention is mainly applied to the design and realization of the transition conditions of the middle and terminal guidance of the reentry precision strike aircraft, so as to ensure the strike precision of the payload.

背景技术Background technique

针对再入飞行器具有高动态、多约束等特点,这些特性对于具有末制导能力的飞行器尤为重要。具有末制导能力的再入飞行器需要经历较大范围的速度变化和高度变化,对制导控制系统的性能要求较为苛刻,一般情况,中制导与末制导采用不同的制导体制。在中末制导交班后,由导引头信息测量飞行器位置,所以要保证末制导精度条件以及速度、角度约束,就必须采用高可靠度的末制导交班体制。因此,它是一种高可靠性、高精度的飞行制导控制模式,给控制系统带来了许多全新的挑战和困难。Reentry vehicles have the characteristics of high dynamics and multiple constraints, which are especially important for vehicles with terminal guidance capabilities. A reentry vehicle with terminal guidance capability needs to experience a wide range of speed changes and altitude changes, and the performance requirements for the guidance and control system are relatively strict. In general, different guidance systems are used for intermediate guidance and terminal guidance. After the mid-to-terminal guidance is handed over, the position of the aircraft is measured by the seeker information. Therefore, to ensure the terminal-guidance accuracy conditions and speed and angle constraints, it is necessary to adopt a highly reliable terminal-guidance handover system. Therefore, it is a high-reliability, high-precision flight guidance control mode, which brings many new challenges and difficulties to the control system.

发明内容Contents of the invention

本发明的技术解决问题是:克服现有技术的不足,提供一种再入飞行器末制导交班条件确定方法。The technical problem of the present invention is to overcome the deficiencies of the prior art and provide a method for determining the handover condition of the terminal guidance of the re-entry vehicle.

本发明的技术解决方案是:一种再入飞行器末制导交班条件确定方法,步骤如下:The technical solution of the present invention is: a kind of reentry aircraft terminal guidance handover condition determination method, the steps are as follows:

(1)根据给定的初始再入点及打击目标信息,规划再入轨迹,生成预置交班点信息,所述的交班点信息包括交班时刻的位置、速度大小、弹道倾角、弹道偏角、视线旋转角速率;(1) According to the given initial re-entry point and strike target information, plan the re-entry trajectory and generate preset shift point information. The shift point information includes the position at the shift time, speed, trajectory inclination, trajectory deflection angle, Line of sight rotation angular rate;

(2)根据再入飞行器导引头末制导工作条件,对步骤(1)中生成的预置交班点信息进行修正,并根据导航定位精度及末制导命中精度要求,生成预置交班点误差球;(2) Correct the preset handover point information generated in step (1) according to the working conditions of the reentry vehicle seeker terminal guidance, and generate the preset handover point error ball according to the requirements of navigation positioning accuracy and terminal guidance hit accuracy ;

(3)交班前再入飞行器制导控制系统采用变增益跟踪制导律,以步骤(2)中修正后的预置交班点信息为终端约束,设计随时间变化的制导增益;(3) The guidance and control system of the reentry vehicle before the shift adopts the variable gain tracking guidance law, and the modified preset shift point information in step (2) is used as the terminal constraint to design the guidance gain that changes with time;

(4)根据步骤(3)变增益跟踪中制导指令以及导引头自寻的制导控制指令,对两组指令求差并分析控制系统响应,确定按照时间排序的指令平滑时间系数序列;(4) According to the guidance command in step (3) variable gain tracking and the guidance control command of the seeker self-seeking, calculate the difference between the two sets of commands and analyze the response of the control system, and determine the command smoothing time coefficient sequence sorted by time;

(5)根据交班点位置速度及误差球、交班点视线转率及速度方向确定交班逻辑;当完全满足交班逻辑时,导引头末制导启动;(5) Determine the shift logic according to the position speed and error ball of the shift point, the line-of-sight rate of the shift point, and the direction of the speed; when the shift logic is fully satisfied, the seeker end guidance is activated;

(6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满足交班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。(6) During the mid-guidance flight of the re-entry vehicle, use the time-varying guidance gain determined in step (3) to carry out mid-guidance, and judge in real time whether the shift logic determined in step (5) is satisfied at the same time. When the shift logic is satisfied , start the seeker end guidance, and take values from the command smoothing time coefficient sequence determined in step (4) in order, use this coefficient to smooth the center guidance command and the end guidance command, and use the smoothed command Guidance is carried out, and after the preset time is reached, it is transferred to simple guidance at the end of the seeker.

所述的交班逻辑包括交班点位置速度及误差球组合条件和交班点视线转率及速度方向组合条件;其中交班点位置速度及误差球组合条件为:The shift logic includes the combination condition of shift point position speed and error sphere and the combination condition of shift point line-of-sight rate and speed direction; wherein the combination condition of shift point position speed and error ball is:

||r*-rc||<Kr·||δrc||+Kv·δvc ||r * -r c ||<K r ·||δr c ||+K v ·δv c

其中,r*为实际飞行器位置,rc为步骤(2)修正后的预置交班点位置,δrc为预置交班点误差球中的位置误差,δvc为预置交班点误差球中的速度误差,Kr、Kv误差系数;|| ||代表矢量求模;Among them, r * is the actual position of the aircraft, r c is the position of the preset handover point corrected in step (2), δr c is the position error in the error sphere of the preset handover point, and δv c is the position error in the error sphere of the preset handover point Speed error, K r , K v error coefficient; || || represents vector modulo;

交班点视线转率及速度方向组合条件为:Combination conditions of line-of-sight turn rate and speed direction at the shift point are:

cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)cos -1 (cosθ * cosψ * )<K θ cos -1 (cosθ c cosψ c )+K ωLOSLOSC )

其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为预置弹道倾角和弹道偏角,Kθ、Kω为误差系数。Among them, θ * , ψ * are the actual ballistic inclination angle and ballistic deflection angle, θ c , ψ c are preset ballistic inclination angles and ballistic deflection angle, K θ , K ω are error coefficients.

本发明与现有技术相比有益效果为:Compared with the prior art, the present invention has beneficial effects as follows:

(1)本发明解决了复杂条件下的末制导交班问题,增强了制导系统的容错能力。首先通过初始信息、目标信息计算预置交班点信息,并利用导引头末制导工作条件对其进行修正。进而通过可变增益、指令平滑系数以及多重条件判断逻辑,防止交班状态指令阶跃、突变,提高了武器系统交班的可靠性,可减少武器系统的指令硬件限位等不必要环节。(1) The present invention solves the problem of terminal guidance handover under complex conditions, and enhances the fault tolerance of the guidance system. Firstly, the preset shift point information is calculated through the initial information and target information, and it is corrected by using the working conditions of the seeker and terminal guidance. Furthermore, through variable gains, command smoothing coefficients, and multiple conditional judgment logics, steps and mutations in the shift state commands are prevented, the reliability of the weapon system shift is improved, and unnecessary links such as command hardware limits of the weapon system can be reduced.

(2)本发明方法可以解决末制导再入飞行器交班条件复杂多变问题,增强了方案的健壮性、提升了制导系统的容错能力。(2) The method of the present invention can solve the problem of complex and changeable shift conditions of the terminal-guided re-entry aircraft, enhance the robustness of the scheme, and improve the fault-tolerant capability of the guidance system.

(3)本发明设计含误差的交班逻辑,确保交班时刻飞行器状态满足导引头捕获条件,为武器系统末制导提供了有利条件。(3) The invention designs shift logic with errors to ensure that the state of the aircraft at the shift time meets the capture conditions of the seeker, which provides favorable conditions for the terminal guidance of the weapon system.

(4)本发明中末制导交班设计指令平滑系数序列,防止交班状态指令阶跃、突变,提高了武器系统交班的可靠性,可减少武器系统的指令硬件限位等不必要环节。(4) In the present invention, the command smoothing coefficient sequence of the terminal guidance handover design order prevents the step and mutation of the handover state order, improves the reliability of the handover of the weapon system, and can reduce unnecessary links such as the command hardware limit of the weapon system.

附图说明Description of drawings

图1为本发明方法流程图;Fig. 1 is a flow chart of the method of the present invention;

图2为本发明预置交班点信息生成及修正过程图;Fig. 2 is a process diagram of generating and correcting preset shift point information of the present invention;

图3为本发明交班点要求与设计指标关系图;Fig. 3 is a relational diagram of shift point requirement and design index of the present invention;

图4为本发明末制导指令平滑工作过程图。Fig. 4 is a diagram of the smoothing work process of the final guidance command in the present invention.

具体实施方式Detailed ways

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

如图1所示,本发明涉及一种再入飞行器末制导交班条件确定方法,具体步骤如下:As shown in Figure 1, the present invention relates to a method for determining the handover condition of the terminal guidance of a reentry vehicle, and the specific steps are as follows:

1、生成预置交班点;1. Generate preset shift points;

如图2所示,通过给定的再入点信息(包括位置、速度大小、速度倾角以及姿态)及打击目标信息(目标的位置、速度),设置再入约束边界(热流、过载、动压等),通过仿真规划,生成再入飞行器纵向剖面,从中初步得到满足飞行要求的预置交班点信息。As shown in Figure 2, the reentry constraint boundary (heat flow, overload, dynamic pressure, etc.), through simulation planning, the longitudinal profile of the re-entry vehicle is generated, and the preset handover point information that meets the flight requirements is preliminarily obtained.

再入轨迹的规划可以采用目前常用的基于Gauss伪谱法的再入轨迹优化算法或者序列二次规划算法等,利用上述算法计算得到的交班时刻的位置速度大小弹道倾角弹道偏角视线旋转角速率 The planning of the reentry trajectory can adopt the commonly used reentry trajectory optimization algorithm based on the Gauss pseudospectral method or the sequence quadratic programming algorithm, etc., and use the above algorithm to calculate the position of the shift time speed size Ballistic inclination Ballistic angle Line of sight rotation rate

2、修正预置交班点及生成预置交班点误差球;2. Correct the preset shift point and generate the preset shift point error ball;

在初步得到预置交班点信息后,考虑导引头捕获条件约束,主要是视场角范围与视线角转率约束,从而对预置交班点信息进行修正,同时考虑捕获边界条件给出预置交班点误差球。After preliminarily obtaining the preset shift point information, consider the constraints of seeker capture conditions, mainly the field of view angle range and line-of-sight angle rotation rate constraints, so as to correct the preset shift point information, and at the same time consider the capture boundary conditions to give a preset Shift point error ball.

采用步骤(1)生成的预置交班点信息没有考虑图3所示的约束影响,着重考虑导引头捕获条件对弹道倾角、弹道偏角和视线旋转角速率造成的约束进行修正。选取导引头捕获条件中视场角、视线角转率为目标函数,选取弹道倾角、弹道偏角和视线旋转角速率为设计变量,采用拟牛顿迭代法,以步骤(1)生成的预置交班点为迭代初值,满足导引头捕获条件中视场角和视线角转率范围中值为迭代停止条件,完成预置交班点信息修正。取满足迭代停止条件时飞行器位置rc、速度大小vc、弹道倾角θc、弹道偏角ψc、视线旋转角速率ωLOSC为修正后的预置交班点信息。The preset handover point information generated by step (1) does not consider the constraints shown in Figure 3, and focuses on the constraints caused by the capture conditions of the seeker on the ballistic inclination angle, ballistic deflection angle, and line-of-sight rotation angular rate. Select the objective function of field of view angle and line-of-sight angle rotation rate in the capture conditions of the seeker, select the ballistic inclination angle, ballistic deflection angle, and line-of-sight rotation angle rate as design variables, and use the quasi-Newton iterative method to use the preset shift generated in step (1) The point is the initial value of the iteration, and the median of the field of view angle and the line-of-sight angle rotation rate range satisfying the capture condition of the seeker is the iteration stop condition, and the correction of the preset handover point information is completed. Take aircraft position r c , velocity v c , ballistic inclination angle θ c , ballistic deflection angle ψ c , line of sight rotation angular rate ω LOSC when the iteration stop condition is met as the corrected preset handover point information.

以修正后交班点信息为迭代初值,上述方法其他条件不变,将迭代停止条件设为满足视场角和视线角转率上下边界,计算得到的交班点位置速度与修正后的预置交班点位置rc速度vc求差,即得到预置位置误差δrc、预置速度误差δvc,称为误差球。Taking the corrected shift point information as the initial value of the iteration, the other conditions of the above method remain unchanged, and the iteration stop condition is set to meet the upper and lower boundaries of the field of view and line of sight angle rotation rate. The calculated shift point position and speed are consistent with the corrected preset shift Calculate the difference of the point position r c and velocity v c to obtain the preset position error δr c and preset speed error δv c , which are called error spheres.

3、设计变增益中制导;3. Design medium guidance with variable gain;

设计变增益中制导指令,制导指令可以采取下式的形式:Design the guidance command in the variable gain, the guidance command can take the form of the following formula:

δa=K·KL·[Δr,Δv]T δ a =K·K L ·[Δr,Δv] T

其中Δr、Δv分别为飞行器当前位置、速度与参考轨迹位置、速度之差,KL为LQR方法得到的制导增益,K为可变增益。Among them, Δr and Δv are the difference between the current position and speed of the aircraft and the position and speed of the reference trajectory, K L is the guidance gain obtained by the LQR method, and K is the variable gain.

设计可变增益K(亦称时间变化的制导增益)Design variable gain K (also known as time-varying guidance gain)

KK == ee &alpha;&alpha; ,, &alpha;&alpha; == -- || || rr ** -- rr cc || || || || rr ** || || -- || vv ** -- vv cc || || vv ** ||

对中制导指令作增益处理使得飞行过程中,既不影响中制导全程的飞行性能,能够到达预置交班点,又可以兼顾接近交班点时的中制导指令平稳需求。The gain processing of the center guidance command makes it possible to reach the preset handover point without affecting the flight performance of the center guidance throughout the flight process, and can also take into account the stability requirements of the center guidance command when approaching the handover point.

v*代表实际飞行速度大小,r*代表飞行器实际位置矢量,|| ||代表矢量求模,||代表求绝对值。v * represents the actual flight speed, r * represents the actual position vector of the aircraft, || || represents the modulus of the vector, and || represents the absolute value.

4、确定指令平滑系数序列;4. Determine the command smoothing coefficient sequence;

如图4所示,按照标准工况交班,针对步骤(3)中变增益跟踪中制导指令δa以及导引头自寻的制导控制指令δb,设计按照时间排序的指令平滑系数序列β函数As shown in Fig. 4, according to the standard working condition, according to the guidance command δ a in the variable gain tracking and the guidance control command δ b of the seeker self-seeking in step (3), the command smoothing coefficient sequence β function sorted by time is designed

&beta;&beta; == 11 -- &delta;&delta; aa (( tt 00 )) &delta;&delta; bb (( tt 00 )) ee tt -- tt 00

其中t0为满足交班逻辑导引头开机时刻,δa(t0)是该时刻中制导指令,δb(t0)是该时刻末制导指令。Among them, t 0 is the start-up time of the seeker satisfying the shift logic, δ a (t 0 ) is the guidance command at this time, and δ b (t 0 ) is the last guidance command at this time.

5、设计交班逻辑;5. Design shift logic;

交班逻辑包括两个条件:The shift logic includes two conditions:

第一是交班点位置速度及误差球组合条件The first is the combination condition of shift point position, speed and error ball

||r*-rc||<Kr·||δrc||+Kv·δvc ||r * -r c ||<K r ·||δr c ||+K v ·δv c

其中,r*为实际飞行器位置,rc为修正后的预置交班点位置,δrc为预置位置误差,δvc为预置速度误差,Kr、Kv为误差系数,根据经验取值,例如针对交班点速度小于3马赫的飞行器,Kr通常取值0.1~3,Kv一般为Kr的5~10倍,根据δvc对其进行调整。Among them, r * is the actual aircraft position, r c is the corrected preset handover point position, δr c is the preset position error, δv c is the preset speed error, K r and K v are error coefficients, which are selected according to experience , for example, for an aircraft whose speed at the handover point is less than Mach 3, K r usually takes a value of 0.1-3, and K v is generally 5-10 times of K r , which are adjusted according to δv c .

第二是交班点视线转率及速度方向组合条件The second is the combination conditions of line-of-sight turn rate and speed direction at the shift point

cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)cos -1 (cosθ * cosψ * )<K θ cos -1 (cosθ c cosψ c )+K ωLOSLOSC )

其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为修正后的弹道倾角和弹道偏角,Kθ、Kω为误差系数,根据经验取值,例如针对交班点视线旋转角速率小于5°/s的情况,Kr通常取值0.05~1,Kv一般为Kr的3~5倍。Among them, θ * , ψ * are the actual ballistic inclination angle and ballistic deflection angle, θ c , ψ c are the corrected ballistic inclination angle and ballistic deflection angle, K θ , K ω are error coefficients, which are taken according to experience, for example, for the shift point When the line-of-sight rotation angular rate is less than 5°/s, K r is usually 0.05 to 1, and K v is generally 3 to 5 times K r .

当同时满足两个条件时,导引头末制导启动。When both conditions are met at the same time, the seeker terminal guidance starts.

6、实际制导6. Actual Guidance

再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满足交班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对实际飞行生成的中制导指令δ* a和末制导指令δ* b进行平滑处理,并利用平滑处理后的指令δc进行制导,达到预设的时间后转入单纯的导引头末制导。During the mid-guidance flight of the re-entry vehicle, use the time-varying guidance gain determined in step (3) to carry out mid-guidance, and judge in real time whether the shift logic determined in step (5) is satisfied at the same time. When the shift logic is satisfied, start the guidance Seeker terminal guidance, and take values from the command smoothing time coefficient sequence determined in step (4) in order, and use this coefficient to smooth the mid-guidance command δ * a and final guidance command δ * b generated by the actual flight, And use the command δc after smoothing to guide, and after reaching the preset time, turn to the simple guidance of the end of the seeker.

δc=β·δ* a+(1-β)·δ* b δ c = β · δ * a + (1-β) · δ * b

其中,预设的时间可以根据经验值设为5ms~20s。也可以在设计时,直接根据指令平滑时间系数序列控制时间,当依顺序取值到序列中的最后一个系数后转入单纯的导引头末制导。Wherein, the preset time may be set to 5ms˜20s according to empirical values. It is also possible to control the time directly according to the sequence of order smoothing time coefficients during design, and switch to simple guidance at the end of the seeker after taking the value in sequence to the last coefficient in the sequence.

在XX的中/末制导交班条件设计中,采用本发明描述的再入飞行器末制导交班条件确定方法,实现了某武器的中/末制导交班条件的快速设计,通过六自由度仿真验证,得出采用该方法确定的交班流程及交班条件可以满足导引头捕获条件。In the design of the mid/terminal guidance transition condition of XX, the method for determining the transition condition of the reentry vehicle terminal guidance described in the present invention is used to realize the rapid design of the mid/terminal guidance transition condition of a certain weapon. Through six degrees of freedom simulation verification, it is obtained It is shown that the shift process and shift conditions determined by this method can meet the seeker capture conditions.

本发明未详细说明部分属于本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.

Claims (2)

1.一种再入飞行器末制导交班条件确定方法,其特征在于步骤如下:1. A re-entry vehicle terminal guidance handover condition determination method is characterized in that the steps are as follows: (1)根据给定的初始再入点及打击目标信息,规划再入轨迹,生成预置交班点信息,所述的交班点信息包括交班时刻的位置、速度大小、弹道倾角、弹道偏角、视线旋转角速率;(1) According to the given initial re-entry point and strike target information, plan the re-entry trajectory and generate preset shift point information. The shift point information includes the position at the shift time, speed, trajectory inclination angle, trajectory deflection angle, Line of sight rotation angular rate; (2)根据再入飞行器导引头末制导工作条件,对步骤(1)中生成的预置交班点信息进行修正,并根据导航定位精度及末制导命中精度要求,生成预置交班点误差球;(2) Correct the preset handover point information generated in step (1) according to the working conditions of the reentry vehicle seeker terminal guidance, and generate the preset handover point error ball according to the requirements of navigation positioning accuracy and terminal guidance hit accuracy ; (3)交班前再入飞行器制导控制系统采用变增益跟踪制导律,以步骤(2)中修正后的预置交班点信息为终端约束,设计随时间变化的制导增益;(3) The guidance and control system of the reentry vehicle before the shift adopts the variable gain tracking guidance law, and the modified preset shift point information in step (2) is used as the terminal constraint to design the guidance gain that changes with time; (4)根据步骤(3)变增益跟踪中制导指令以及导引头自寻的制导控制指令,对两组指令求差并分析控制系统响应,确定按照时间排序的指令平滑时间系数序列;(4) According to the guidance command in step (3) variable gain tracking and the guidance control command of the seeker self-seeking, the difference between the two groups of commands is calculated and the response of the control system is analyzed to determine the sequence of command smoothing time coefficients sorted by time; (5)根据交班点位置速度及误差球、交班点视线转率及速度方向确定交班逻辑;当完全满足交班逻辑时,导引头末制导启动;(5) Determine the shift logic according to the position speed and error ball of the shift point, the line-of-sight rotation rate of the shift point and the speed direction; when the shift logic is fully satisfied, the seeker end guidance is activated; (6)再入飞行器中制导飞行过程中,采用步骤(3)确定的随时间变化的制导增益进行中制导,并实时判断是否同时满足步骤(5)中确定的交班逻辑,当满足交班逻辑时,启动导引头末制导,并按顺序从步骤(4)中确定的指令平滑时间系数序列中取值,利用该系数对中制导指令和末制导指令进行平滑处理,并利用平滑处理后的指令进行制导,达到预设的时间后转入单纯的导引头末制导。(6) During the mid-guidance flight of the re-entry vehicle, use the time-varying guidance gain determined in step (3) to carry out mid-guidance, and judge in real time whether the shift logic determined in step (5) is satisfied at the same time. When the shift logic is satisfied , start the seeker end guidance, and take values from the command smoothing time coefficient sequence determined in step (4) in order, use this coefficient to smooth the center guidance command and the end guidance command, and use the smoothed command Guidance is carried out, and after the preset time is reached, it is transferred to simple guidance at the end of the seeker. 2.根据权利要求1所述的一种再入飞行器末制导交班条件确定方法,其特征在于:所述的交班逻辑包括交班点位置速度及误差球组合条件和交班点视线旋转角速率及速度方向组合条件;其中交班点位置速度及误差球组合条件为:2. A method for determining shift conditions for reentry vehicle terminal guidance according to claim 1, characterized in that: said shift logic includes shift point position velocity and error ball combination conditions, shift point line-of-sight rotation angular rate and velocity direction Combination conditions; where the combination conditions of shift point position velocity and error ball are: ||r*-rc||<Kr·||δrc||+Kv·δvc ||r * -r c ||<K r ·||δr c ||+K v ·δv c 其中,r*为实际飞行器位置,rc为步骤(2)修正后的预置交班点位置,δrc为预置交班点误差球中的位置误差,δvc为预置交班点误差球中的速度误差,Kr、Kv误差系数;||||代表矢量求模;Among them, r * is the actual position of the aircraft, r c is the position of the preset handover point corrected in step (2), δr c is the position error in the error sphere of the preset handover point, and δv c is the position error in the error sphere of the preset handover point Speed error, K r , K v error coefficient; |||| represents vector modulo; 交班点视线旋转角速率及速度方向组合条件为:Combination conditions of line-of-sight rotation angular rate and velocity direction at the shift point are: cos-1(cosθ*cosψ*)<Kθ·cos-1(cosθccosψc)+KωLOSLOSC)cos -1 (cosθ * cosψ * )<K θ cos -1 (cosθ c cosψ c )+K ωLOSLOSC ) 其中,θ*、ψ*为实际弹道倾角和弹道偏角,θc、ψc为预置弹道倾角和弹道偏角,Kθ、Kω为误差系数。Among them, θ * , ψ * are the actual ballistic inclination angle and ballistic deflection angle, θ c , ψ c are preset ballistic inclination angles and ballistic deflection angle, K θ , K ω are error coefficients.
CN201310403444.5A 2013-09-06 2013-09-06 Determining method for terminal guidance shift-exchange conditions of reenter vehicle Active CN103486905B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310403444.5A CN103486905B (en) 2013-09-06 2013-09-06 Determining method for terminal guidance shift-exchange conditions of reenter vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310403444.5A CN103486905B (en) 2013-09-06 2013-09-06 Determining method for terminal guidance shift-exchange conditions of reenter vehicle

Publications (2)

Publication Number Publication Date
CN103486905A CN103486905A (en) 2014-01-01
CN103486905B true CN103486905B (en) 2015-04-22

Family

ID=49827326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310403444.5A Active CN103486905B (en) 2013-09-06 2013-09-06 Determining method for terminal guidance shift-exchange conditions of reenter vehicle

Country Status (1)

Country Link
CN (1) CN103486905B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554824B (en) * 2014-12-18 2017-01-04 北京控制工程研究所 A kind of saltatory reentry vehicle overload protection method
CN109240323B (en) * 2018-11-02 2021-07-13 北京控制工程研究所 A real-time analytical structure for reentry guidance method of aerospace vehicle
CN111351401B (en) * 2018-12-21 2022-12-23 北京理工大学 Anti-sideslip guidance method applied to strapdown seeker guidance aircraft
CN111397441B (en) * 2019-01-03 2022-12-02 北京理工大学 Full-range coverage guidance system of remote guidance aircraft with strapdown laser seeker
CN110701963A (en) * 2019-10-15 2020-01-17 河北汉光重工有限责任公司 Method for improving shift-changing performance of infrared/radar composite seeker
CN111397449B (en) * 2020-04-03 2021-07-20 中国北方工业有限公司 Data chain end guidance method aiming at seeker failure mode
CN112180971A (en) * 2020-08-26 2021-01-05 北京理工大学 Multi-mode guidance method and system for multi-rotor aircraft
CN113608783B (en) * 2021-07-20 2023-12-12 北京航天飞腾装备技术有限责任公司 Gesture control shift-switching method and system during shift-switching of middle terminal guidance
CN114690794B (en) * 2022-03-31 2024-12-10 北京中科宇航技术有限公司 A method and system for controlling flight status in real time in a tabular form
CN117406763A (en) * 2023-08-23 2024-01-16 北京动力机械研究所 Satellite/inertial navigation combined type Cheng Zhidao shell increasing guidance method and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8416611D0 (en) * 1984-06-29 1992-11-04 British Aerospace Guidance system and method
US20080133074A1 (en) * 2006-12-01 2008-06-05 Zyss Michael J Autonomous rollout control of air vehicle
US8489258B2 (en) * 2009-03-27 2013-07-16 The Charles Stark Draper Laboratory, Inc. Propulsive guidance for atmospheric skip entry trajectories
CN102139768B (en) * 2010-10-28 2013-04-10 中国科学院力学研究所 Attack angle guidance method for reentry flight of sub-orbital vehicle
CN102880187B (en) * 2012-09-21 2015-02-11 北京控制工程研究所 Transverse guidance method for primary reentry section of skip reentry aircraft

Also Published As

Publication number Publication date
CN103486905A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103486905B (en) Determining method for terminal guidance shift-exchange conditions of reenter vehicle
CN104714553B (en) Glide vehicle terminal area energy method for planning track based on geometric programming
CN104392047B (en) Quick trajectory programming method based on smooth glide trajectory analytic solution
CN107941087B (en) A reentry guidance method for high lift-drag ratio and ultra-smooth glide based on drag profile
CN109253730B (en) Method and system for online planning of three-dimensional trajectory of the end energy management section of a reusable vehicle
CN103587723B (en) One reenters initial segment analytic expression longitudinally online Trajectory Design and tracking
CN104331084B (en) Pneumatic rudder deflection range calculation method based on direction rudder roll control strategy
CN110006419B (en) Vehicle track tracking point determination method based on preview
CN110687931B (en) Integrated maneuvering guiding method for switching azimuth attitude and preposed guidance
CN111399529B (en) A composite guidance method for aircraft based on nonlinear sliding mode and forward
CN110764534B (en) Nonlinear conversion-based method for guiding preposed guidance and attitude stabilization matching
CN111309040B (en) Aircraft longitudinal pitch angle control method adopting simplified fractional order differentiation
CN111591470A (en) A Closed-loop Guidance Method for Accurate Soft Landing of Aircraft Adapting to Adjustable Thrust Mode
CN105573337A (en) De-orbit braking closed circuit guidance method satisfying constrains on reentry angles and flying ranges
CN106707759A (en) Airplane Herbst maneuvering control method
CN107121929A (en) Robust reentry guidance method based on linear covariance model PREDICTIVE CONTROL
CN105159311B (en) A kind of design method of automatic pilot for strapdown seeker
CN116578119A (en) An Adaptive-Based Aircraft Parallel Approach Guidance Method
CN115079565B (en) Variable-coefficient guidance method, device and aircraft with drop angle constraints
CN110703793B (en) A method of attacking maneuvering targets with integral proportional guidance of aircraft using attitude angle measurement
CN109484675B (en) Spacecraft orbit-in control method by utilizing space vector matching
CN105354380B (en) The glide trajectories rapid correction method of compensation is influenced towards perturbation factors
CN108981688B (en) Inertial navigation course angle origin transformation and error compensation algorithm based on laser navigation AGV
CN118642505A (en) A fast trajectory planning method for gliding aircraft against aerial stealth targets
CN115576192B (en) A radar servo system adaptive variable bandwidth tracking implementation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant