CN103474868A - Thulium-doped all-fiber laser device capable of outputting high-power 2-micron linearly polarized laser - Google Patents
Thulium-doped all-fiber laser device capable of outputting high-power 2-micron linearly polarized laser Download PDFInfo
- Publication number
- CN103474868A CN103474868A CN2013103956262A CN201310395626A CN103474868A CN 103474868 A CN103474868 A CN 103474868A CN 2013103956262 A CN2013103956262 A CN 2013103956262A CN 201310395626 A CN201310395626 A CN 201310395626A CN 103474868 A CN103474868 A CN 103474868A
- Authority
- CN
- China
- Prior art keywords
- fiber
- thulium
- doped
- laser
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 134
- 239000013307 optical fiber Substances 0.000 claims description 42
- 238000005086 pumping Methods 0.000 claims description 19
- 229910052775 Thulium Inorganic materials 0.000 claims description 6
- 150000001768 cations Chemical class 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 6
- 238000005253 cladding Methods 0.000 claims description 5
- 238000007526 fusion splicing Methods 0.000 claims description 5
- 230000010287 polarization Effects 0.000 abstract description 16
- 238000000034 method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 6
- 238000002310 reflectometry Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
一种输出高功率2微米线偏振激光的掺铥全光纤激光器,包括:N个带尾纤输出头的第一高功率激光二极管、N个带尾纤输出头的第二高功率激光二极管、第一光纤合束器、第二光纤合束器、第一段刻写了布拉格光栅的无源光纤、第二段刻写了布拉格光栅的无源光纤、第一段保偏双包层掺铥光纤、第二段保偏双包层掺铥光纤、第一光纤端帽、第二光纤端帽和单偏光纤。本发明具有结构简单、紧凑,输出2微米激光的功率高、线偏振度高等优点,且由于全光纤结构,易于搭建和使用以及商业化推广。
A thulium-doped all-fiber laser that outputs high-power 2-micron linearly polarized laser light, including: N first high-power laser diodes with pigtail output heads, N second high-power laser diodes with pigtail output heads, and the first A fiber combiner, a second fiber combiner, the first passive fiber with Bragg grating written, the second passive fiber with Bragg grating written, the first polarization-maintaining double-clad thulium-doped fiber, the first Two sections of polarization-maintaining double-clad thulium-doped fiber, a first fiber end cap, a second fiber end cap and a single-polarized fiber. The invention has the advantages of simple and compact structure, high output power of 2-micron laser, high degree of linear polarization, etc., and is easy to build, use and commercialize because of the all-fiber structure.
Description
技术领域technical field
本发明涉及光纤激光器技术领域,特别是一种输出高功率2微米线偏振激光的掺铥全光纤激光器。The invention relates to the technical field of fiber lasers, in particular to a thulium-doped all-fiber laser outputting high-power 2-micron linearly polarized lasers.
背景技术Background technique
近年来,由于2微米激光在国防、医疗、遥感技术以及生物学研究等领域的广泛应用,激发了研究其产生手段的热潮,进而使得2微米激光器在功率、光束质量、商业化等方面有了长足的进步。在这之中,可用来产生2微米激光的掺铥光纤激光器尤为引人注目。这一方面是由于光纤激光器共有的一些优良特性,如热效应弱、单模运转、光束质量高以及全光纤化后易于集成为产品等。另一方面则是由于掺铥二氧化硅作为激光增益介质本身所具有的一些特点。首先,掺铥二氧化硅在各波长有多个吸收峰,所以泵浦源的选择有很大余地。特别是在790纳米附近的吸收峰有很大的吸收截面,因此即使采用包层泵浦也可在几米内充分吸收在此波长范围的泵浦光,进而产生很高的增益。这就正好可以利用目前也发展得十分迅猛的这个波长范围的激光二极管作为泵浦源。在这二者的结合下,目前已有公司报道获得超过1千瓦的两微米连续光输出。其次,掺铥二氧化硅在2微米附近有很宽的发射谱,这意味着其具有很宽的波长调谐范围,前人实验表明,可输出从约1850纳米到2050纳米的激光。此外,宽的发射谱同样意味其支持超短秒冲输出。根据傅里叶变化关系,理论上可支持小于100飞秒超短脉冲的产生。再者,800纳米附近泵浦光可引发铥的三价阳离子引发能级间的交叉弛豫过程,进而使得泵浦光到激光的量子效率大大提升,理论上接近百分之两百,实验中也已获得约百分之六十的斜效率。如此高的转化效率使得掺铥激光器在2微米激光产生领域具有主导地位。In recent years, due to the wide application of 2-micron lasers in the fields of national defense, medical treatment, remote sensing technology, and biological research, the upsurge of research on its production methods has been stimulated, which in turn has made 2-micron lasers in power, beam quality, and commercialization. Great progress. Among them, thulium-doped fiber lasers, which can be used to generate 2-micron laser light, are particularly attractive. On the one hand, this is due to some excellent characteristics shared by fiber lasers, such as weak thermal effect, single-mode operation, high beam quality, and easy integration into products after full-fiber. On the other hand, it is due to some characteristics of thulium-doped silicon dioxide as a laser gain medium. First of all, thulium-doped silica has multiple absorption peaks at each wavelength, so the choice of pump source has a lot of room. In particular, the absorption peak near 790 nm has a large absorption cross section, so even with cladding pumping, the pump light in this wavelength range can be fully absorbed within a few meters, resulting in high gain. This just makes it possible to use laser diodes in this wavelength range, which are currently developing very rapidly, as pumping sources. Under the combination of the two, companies have reported to obtain a two-micron continuous light output of more than 1 kilowatt. Secondly, thulium-doped silica has a very broad emission spectrum near 2 microns, which means it has a wide wavelength tuning range. Previous experiments have shown that it can output laser light from about 1850 nm to 2050 nm. In addition, the wide emission spectrum also means that it supports ultra-short second pulse output. According to the Fourier transform relationship, it can theoretically support the generation of ultrashort pulses less than 100 femtoseconds. Furthermore, the pump light around 800 nm can trigger the cross-relaxation process between the energy levels of the trivalent cations of thulium, which greatly improves the quantum efficiency from the pump light to the laser, which is close to 200% in theory. In the experiment Slope efficiencies of about sixty percent have also been obtained. Such a high conversion efficiency makes thulium-doped lasers dominant in the field of 2-micron laser generation.
尽管已有报道通过全光纤掺铥激光器获得了超过1千瓦的2微米连续光输出,但其输出光是随机偏振的,无法满足一些需要线偏振激光的应用如激光雷达、非线性波长转换等的要求。目前,报道的输出百瓦以上2微米偏振光的激光器都采用了空间光耦合的方式,这不利于激光器的使用和实现商业化。而易于使用的全光纤激光器目前还未有获得百瓦级2微米偏振光输出的报道。此外,为实现偏振光振荡输出,目前普遍采用了谐振腔两端反馈快慢轴波长匹配的方式,这一方式由于受到激光在保偏光纤中传输时偏振度的退化、熔接时对轴的精确度等因素的影响很难获得很高的线偏振度。偏振度的问题同样出现在了采用传统的“主功率振荡放大”构型的激光器中。由于这一类激光器通常有多个放大级,也就意味着需要采用较长的保偏光纤以及多个需要对轴熔接的熔接点,这些因素都是获得高功率、高线偏振度激光的阻碍。Although it has been reported that a 2-micron continuous light output of more than 1 kW has been obtained by an all-fiber thulium-doped laser, the output light is randomly polarized, which cannot meet the requirements of some applications that require linearly polarized lasers, such as lidar, nonlinear wavelength conversion, etc. Require. At present, the reported lasers that output more than 100 watts of polarized light of 2 microns have adopted the method of spatial optical coupling, which is not conducive to the use and commercialization of lasers. However, there is no report on obtaining a hundred-watt-level 2-micron polarized light output from an easy-to-use all-fiber laser. In addition, in order to realize the output of polarized light oscillation, the method of fast and slow axis wavelength matching with feedback from both ends of the resonator is generally used at present. It is difficult to obtain a high degree of linear polarization due to the influence of other factors. The degree of polarization problem also arises in lasers using the traditional "primary power oscillator amplification" configuration. Since this type of laser usually has multiple amplification stages, it means that a long polarization-maintaining fiber and multiple splicing points that need to be fused on the axis are required. These factors are obstacles to obtaining high-power, high-degree-of-linear-polarization lasers .
发明内容Contents of the invention
本发明为克服上述采用全光纤结构获得高功率、高线偏振度2微米激光的困难,提出了一种输出高功率2微米线偏振激光的掺铥全光纤激光器。The present invention proposes a thulium-doped all-fiber laser that outputs a high-power 2-micron linearly polarized laser to overcome the above-mentioned difficulties in obtaining a high-power, high-degree linearly polarized 2-micron laser with an all-fiber structure.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种输出高功率2微米线偏振激光的掺铥全光纤激光器,其特点在于,包括:N个带尾纤输出头的第一高功率激光二极管、N个带尾纤输出头的第二高功率激光二极管、第一光纤端帽、第二光纤端帽、第一光纤合束器、第二光纤合束器、第一段刻写了布拉格光栅的无源光纤、第二段刻写了布拉格光栅的无源光纤、第一段保偏双包层掺铥光纤、第二段保偏双包层掺铥光纤和单偏光纤;A thulium-doped all-fiber laser outputting high-power 2-micron linearly polarized laser, which is characterized in that it includes: N first high-power laser diodes with pigtail output heads, N second high-power laser diodes with pigtail output heads Laser diode, the first fiber end cap, the second fiber end cap, the first fiber combiner, the second fiber combiner, the first section of passive optical fiber with Bragg grating written, the second section of non-active fiber with Bragg grating written Source fiber, the first section of polarization-maintaining double-clad thulium-doped fiber, the second section of polarization-maintaining double-clad thulium-doped fiber and single-polarized fiber;
上述各元件的连接关系如下:The connection relationship of the above components is as follows:
所述的N个第一高功率激光二极管的输出端分别经N段第一泵浦光纤与第一光纤合束器的第一泵浦光输入端、第二泵浦光输入端、……、第N泵浦光输入端连接,该第一光纤合束器的信号光输入端与所述的第一光纤端帽连接,第一光纤合束器的信号光输出端依次经所述的第一段刻写了布拉格光栅的无源光纤、第一段保偏双包层掺铥光纤、单偏光纤、第二段保偏双包层掺铥光纤和第二段刻写了布拉格光栅的无源光纤与所述的第二光纤合束器的信号光输入端连接,所述的N个第二高功率激光二极管的输出端分别经N段第二泵浦光纤与第二光纤合束器的第一泵浦光输入端、第二泵浦输入端、……、第N泵浦光输入端连接,该第二光纤合束器的信号光输出端与第二光纤端帽连接。The output ends of the N first high-power laser diodes are respectively passed through N sections of first pumping optical fiber and the first pumping light input end, the second pumping light input end of the first fiber combiner, ..., The Nth pump light input end is connected, the signal light input end of the first fiber combiner is connected to the first optical fiber end cap, and the signal light output end of the first fiber combiner sequentially passes through the first A section of passive fiber with Bragg grating written, the first section of polarization-maintaining double-clad thulium-doped fiber, single-polarization fiber, the second section of polarization-maintaining double-clad thulium-doped fiber, and the second section of passive fiber with Bragg grating written The signal light input end of the second optical fiber combiner is connected, and the output ends of the N second high-power laser diodes are respectively passed through N sections of second pumping fibers and the first pump of the second optical fiber combiner. The pump light input end, the second pump light input end, ..., the Nth pump light input end are connected, and the signal light output end of the second optical fiber combiner is connected with the second optical fiber end cap.
所述的第一保偏双包层掺铥光纤和第二保偏双包层掺铥光纤纤芯中铥的三价阳离子的掺杂重量比均大于等于百分之一。The doping weight ratios of thulium trivalent cations in the cores of the first polarization-maintaining double-clad thulium-doped optical fiber and the second polarization-maintaining double-clad thulium-doped optical fiber are greater than or equal to 1%.
第一段刻写了布拉格光栅的无源光纤对激光波长处的光反射率大于等于95%,所述的第二段刻写了布拉格光栅的无源光纤对激光波长处的光反射率小于等于20%。The light reflectance of the passive fiber with Bragg grating written in the first paragraph at the laser wavelength is greater than or equal to 95%, and the light reflectance of the second paragraph of the passive fiber with Bragg grating written at the laser wavelength is less than or equal to 20%. .
所述的第一段刻写了布拉格光栅的无源光纤、第二段刻写了布拉格光栅的无源光纤中布拉格光栅的反射线宽分别小于0.5纳米。The reflection line width of the Bragg grating in the first section of the passive optical fiber with the Bragg grating written and the second section of the passive optical fiber with the Bragg grating written is less than 0.5 nanometers.
所述的第一光纤合束器和第二光纤合束器的泵浦光输入端个数为N=2、6、12或18。The number of pump light input ends of the first fiber combiner and the second fiber combiner is N=2, 6, 12 or 18.
所述的带尾纤输出头的第一高功率激光二极管和第二高功率激光二极管的输出的泵浦光为连续光,波长范围为750纳米到820纳米。The pump light output by the first high-power laser diode and the second high-power laser diode with pigtail output head is continuous light with a wavelength range of 750 nanometers to 820 nanometers.
所述的单偏光纤的长度为0.1~0.5米。The length of the single-polarized optical fiber is 0.1-0.5 meters.
所述的第一光纤端帽和第二光纤端帽的截面直径均大于1毫米,各输出面均为8度角斜切。The cross-sectional diameters of the first fiber end cap and the second fiber end cap are both greater than 1 mm, and each output surface is chamfered at an angle of 8 degrees.
所述的各元件之间通过熔接连接,以实现全光纤结构。The components are connected by fusion splicing to realize an all-fiber structure.
所述的第一保偏双包层掺铥光纤和单偏光纤熔接时熔接点的两侧、单偏光纤和第二保偏双包层掺铥光纤熔接时熔接点的两侧、第二保偏双包层掺铥光纤和第二无源光纤熔接时熔接点的两侧慢轴和慢轴之间保持相互垂直,其余各元件熔接时熔接点两侧的慢轴和慢轴之间保持相互重合。The two sides of the fusion point when the first polarization-maintaining double-clad thulium-doped fiber and the single-polarized fiber are fused, the two sides of the fusion point when the single-polarization fiber is fused with the second polarization-maintaining double-clad thulium-doped fiber, and the second polarization-maintaining double-clad thulium-doped fiber. When the partial double-clad thulium-doped fiber and the second passive fiber are fused, the slow axes on both sides of the fusion point and the slow axes are kept perpendicular to each other, and the slow axes and the slow axes on both sides of the fusion point are kept mutually perpendicular when the other components are fused. coincide.
本发明掺铥全光纤激光器各元件的光纤连接处应满足数值孔径的匹配,其激光的输出波长和光谱宽度由第一无源光纤和第二无源光纤中的布拉格光栅决定。,激光输出的波长范围为1850纳米到2050纳米。The optical fiber connection of each component of the thulium-doped all-fiber laser of the present invention should meet the matching of numerical aperture, and the output wavelength and spectral width of the laser are determined by the Bragg gratings in the first passive optical fiber and the second passive optical fiber. , the wavelength range of the laser output is 1850 nm to 2050 nm.
与现有技术相比,本发明的改进和创新包括:Compared with prior art, improvement and innovation of the present invention include:
1)在激光谐振腔内加入了一段单偏光纤。不同保偏光纤只是保持通过光的偏振态,单偏光纤在选定波段只有慢轴光可以通过,快轴光则被损耗。由于这一特点,只有特定偏振方向的光可以在腔内起振和被放大,其它方向的光则在通过单偏光纤时被损耗,这可使得输出偏振光的线偏振度提高。同时,由于其它偏振成分的减少,增益介质中所储存的能量也可以得到更为有效的利用,这使得泵浦光到激光的转化效率得到提高。1) A section of single-polarized fiber is added to the laser resonator. Different polarization-maintaining fibers only maintain the polarization state of passing light, and single-polarized fibers can only pass through the slow-axis light in the selected wavelength band, while the fast-axis light is lost. Because of this feature, only light with a specific polarization direction can be oscillated and amplified in the cavity, while light in other directions is lost when passing through the single-polarized fiber, which can increase the linear polarization degree of the output polarized light. At the same time, due to the reduction of other polarization components, the energy stored in the gain medium can also be used more effectively, which improves the conversion efficiency of pump light to laser light.
2)本发明采用了直接通过振荡级输出百瓦级高功率激光的方式,相较于传统的采用“主功率振荡放大”方式的激光器,直接振荡更为高效,且由于激光在光纤中传输距离的变短,偏振态退化效应的影响变弱,使得输出激光具有更高的线偏振度。2) The present invention adopts the method of outputting hundreds of watts of high-power laser directly through the oscillation stage. Compared with the traditional laser that adopts the "main power oscillation amplification" method, the direct oscillation is more efficient, and because the laser transmission distance in the optical fiber The shortening of the polarization state degeneration effect makes the output laser have a higher degree of linear polarization.
3)将高功率激光二极管泵浦、光纤包层泵浦、合束器合束和耦合入腔、端泵浦、光纤熔接、端帽抑制放大的自发辐射以及谐振腔两端反馈快慢轴波长匹配等技术结合了起来使得全光纤掺铥激光器输出高功率、高线偏振度的2微米激光成为了可能。3) High-power laser diode pumping, fiber cladding pumping, beam combiner beam combining and coupling into the cavity, end pumping, fiber fusion splicing, end cap suppression of amplified spontaneous radiation, and fast and slow axis wavelength matching at both ends of the resonant cavity feedback The combination of such technologies makes it possible for the all-fiber thulium-doped laser to output a 2-micron laser with high power and high degree of linear polarization.
本发明具有结构简单、紧凑,输出2微米激光的功率高、线偏振度高等优点,且由于全光纤结构,易于搭建和使用以及商业化推广。The invention has the advantages of simple and compact structure, high output power of 2-micron laser, high degree of linear polarization, etc., and is easy to build, use and commercialize because of the all-fiber structure.
附图说明Description of drawings
图1是本发明输出高功率2微米线偏振激光的掺铥全光纤激光器的结构示意图。Figure 1 is a schematic structural view of a thulium-doped all-fiber laser outputting high-power 2-micron linearly polarized laser light according to the present invention.
图2是铥的三价阳离子的简易能级结构图,各箭头代表了利用3H6到3H4跃迁泵浦产生2微米激光时所涉及的主要物理过程。Figure 2 is a simple energy level structure diagram of trivalent cations of thulium, and the arrows represent the main physical processes involved in generating 2-micron laser light by pumping from 3 H 6 to 3 H 4 .
图3所示为两段写有布拉格光栅的无源光纤的反射谱和单偏光纤的透射谱。Figure 3 shows the reflection spectrum of two passive fibers with Bragg gratings and the transmission spectrum of a single-polarized fiber.
具体实施方式Detailed ways
下面结合实施例和附图对本发明做详细的说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。Below in conjunction with embodiment and accompanying drawing, the present invention is described in detail, present embodiment implements under the premise of technical solution of the present invention, has provided detailed embodiment and specific operation process, but protection scope of the present invention is not limited to Examples described below.
请先参阅图1,图1是本发明输出高功率2微米线偏振激光的掺铥全光纤激光器的结构示意图,如图所示,一种输出高功率2微米线偏振激光的掺铥全光纤激光器,其构成包括:N个带尾纤输出头的第一高功率激光二极管1、N个带尾纤输出头的第二高功率激光二极管5、第一光纤端帽7、第二光纤端帽8、第一光纤合束器41、第二光纤合束器42和激光谐振腔。激光谐振腔由第一段刻写了布拉格光栅的无源光纤2、第二段刻写了布拉格光栅的无源光纤3、第一段保偏双包层掺铥光纤11、第二段保偏双包层掺铥光纤12和单偏光纤6组成。Please refer to Fig. 1 first. Fig. 1 is a structural schematic diagram of a thulium-doped all-fiber laser outputting a high-power 2-micron linearly polarized laser according to the present invention. As shown in the figure, a thulium-doped all-fiber laser outputting a high-power 2-micron linearly polarized laser , which consists of: N first high-power laser diodes 1 with pigtail output heads, N second high-
第一段保偏双包层掺铥光纤11和第二段保偏双包层掺铥光纤12是增益介质,受激吸收泵浦光和自发及受激辐射2微米光。第一段刻写了布拉格光栅的无源光纤2和第二段刻写了布拉格光栅的无源光纤3则相当于传统固体激光器中前后腔镜,提供了在特定波长及方向上的光反馈。一段单偏光纤6则对产生激光的偏振态进行了进一步筛选。增益介质的长度通常根据掺铥光纤对泵浦的包层吸收系数决定。优选可吸收约百分之九十泵浦光的掺杂光纤为宜。为保证2微米激光从第二光纤端帽8的端面输出,第一段刻写了布拉格光栅的无源光纤2在激光波长处的反射率应越高越好,根据目前工艺,反射率通常可达百分之九十九以上,而第二段刻写了布拉格光栅的无源光纤3,由于掺铥光纤在2微米附近的高增益系数,通常不需要高的反射率,一般取百分之十左右为宜。单偏光纤6不需要太长,小于半米即可,这一方面是由于其价格昂贵,另一方面也是因为当其过长时同样会出现偏振态退化现象。此外,关于激光腔选偏振态的部分我们将在下面结合图3进行说明。The first section of polarization-maintaining double-clad thulium-doped
泵浦源为若干第一高功率激光二激管1和第二高功率激光二激管5,泵浦光的输出则是通过微透镜耦合进光纤,然后通过光纤输出。根据目前工艺,激光二极管的输出光可以高效的耦合入纤芯直径细至100微米光纤之中。泵浦源的波长选择我们则在下面结合图2进行说明。高功率激光二极管的输出光纤通过与光纤合束器的泵浦光输入纤熔接,将若干个高功率激光二极管的输出光合束并注入激光谐振腔。为了进一步提高激光器的斜效率,采用了双向端面泵浦的方式,即如图1所示第一光纤合束器41和第二光纤合束器42分别连接激光谐振腔两端,将泵浦光注入腔内。光纤合束器需进行高功率封装以及主动散热。The pumping sources are several first high-power laser diodes 1 and second high-
本发明掺铥全光纤激光器的两端分别所接8度角切割的第一光纤端帽7和第二光纤端帽8的主要是用来抑制激光器中的寄生振荡和放大的自发辐射。此外,光纤端帽的输出端面最好镀上对激光波长光的增透膜,以减少输出损耗以及端面菲涅尔反射而产生的热效应。The two ends of the thulium-doped all-fiber laser of the present invention are respectively connected with the first
图2所示为铥的三价阳离子的简易能级结构图,各箭头代表了利用3H6到3H4跃迁泵浦产生2微米激光时所涉及的主要物理过程。其中箭头p代表了上面提到泵浦光的受激吸收过程。箭头l代表了3F4到3H6跃迁的激光受激发射过程。r1和r2分别代表了从3H4到3H5和从3H5到3F4的自发跃迁过程。c1和c2则代表了由p过程激发的一对交叉弛豫过程:3H4到3F4和3H6到3F4。正是这对交叉弛豫过程给出了我们选择泵浦波长为800纳米附近(对应于3H6到3H4跃迁的吸收峰)的理由:一个泵浦光子可以激发两个分别来自3H4和3H6能级的离子跃迁至激光上能级3F4,使得激光器量子效率接近百分之两百,也就使得掺铥光纤激光器具有很高的斜效率。此外,需要指出的是,在800纳米附近的商业高功率激光二极管通常有793纳米的和808纳米的,我们一般会选择793纳米的作为所述掺铥光纤激光器的泵浦源,这是因为铥的三价阳离子在这一波长具有更大的吸收截面。Figure 2 shows a simple energy level structure diagram of the trivalent cation of thulium, and each arrow represents the main physical process involved in the generation of 2 micron laser light by using the 3 H 6 to 3 H 4 transition pump. The arrow p represents the stimulated absorption process of the pump light mentioned above. Arrow l represents the laser stimulated emission process of the 3 F 4 to 3 H 6 transition. r1 and r2 represent the spontaneous transition processes from 3H4 to 3H5 and from 3H5 to 3F4 , respectively. c1 and c2 represent a pair of cross-relaxation processes excited by the p-process: 3 H 4 to 3 F 4 and 3 H 6 to 3 F 4 . It is this pair of cross-relaxation processes that gives us the reason for choosing a pump wavelength around 800 nm (corresponding to the absorption peak for the 3H6 to 3H4 transition): one pump photon can excite two The ions of the 4 and 3 H 6 energy levels jump to the upper laser energy level 3 F 4 , making the quantum efficiency of the laser close to 200%, which also makes the thulium-doped fiber laser have a high slope efficiency. In addition, it should be pointed out that commercial high-power laser diodes around 800 nm usually have 793 nm and 808 nm, and we generally choose 793 nm as the pump source for the thulium-doped fiber laser, because thulium The trivalent cations have a larger absorption cross section at this wavelength.
图3是两段写有布拉格光栅的无源光纤的反射谱和单偏光纤的透射谱。可以注意到高反射率光栅和低反射率光栅之间反射波长并不完全匹配,只有高反光栅的快轴反射波长与低反光栅的慢轴反射波长相吻合。这是刻写光栅时有意为之,这样在熔接时通过将低反光栅旋转90度(如图1所示),就可使得保偏掺铥光纤中只有一个轴可以形成激光振荡,从而输出线偏振光。同时利用如图3中间图所示单偏光纤对快慢轴光的截止波长不同这一性质,进一步抑制了其它偏振方向激光的起振,起到了对所需线偏振光的“净化”作用。Figure 3 is the reflection spectrum of two sections of passive fiber with Bragg gratings and the transmission spectrum of single-polarized fiber. It can be noticed that the reflection wavelengths between the high-reflectivity grating and the low-reflectivity grating do not exactly match, only the fast-axis reflection wavelength of the high-reflection grating matches the slow-axis reflection wavelength of the low-reflection grating. This is intentional when writing the grating, so that by rotating the low-reflection grating 90 degrees during splicing (as shown in Figure 1), only one axis in the polarization-maintaining thulium-doped fiber can form laser oscillation, thereby outputting linear polarization Light. At the same time, using the property that the cut-off wavelength of the single-polarized fiber is different for the fast and slow axis light as shown in the middle figure of Figure 3, it further suppresses the start-up of laser light in other polarization directions, and plays the role of "purifying" the required linearly polarized light.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310395626.2A CN103474868B (en) | 2013-09-03 | 2013-09-03 | Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310395626.2A CN103474868B (en) | 2013-09-03 | 2013-09-03 | Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103474868A true CN103474868A (en) | 2013-12-25 |
CN103474868B CN103474868B (en) | 2016-03-30 |
Family
ID=49799615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310395626.2A Expired - Fee Related CN103474868B (en) | 2013-09-03 | 2013-09-03 | Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103474868B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410576A (en) * | 2016-08-28 | 2017-02-15 | 北京工业大学 | Linear polarization output all-fiber pulse dual-cavity lasers |
CN108963738A (en) * | 2018-10-11 | 2018-12-07 | 中国人民解放军国防科技大学 | Double-end output linear cavity all-fiber laser oscillator |
CN109818237A (en) * | 2019-03-28 | 2019-05-28 | 上海交通大学 | Ultrashort laser pulse shaping system based on fiber loop cyclic modulation time grating |
CN110581434A (en) * | 2019-09-20 | 2019-12-17 | 中国空间技术研究院 | A method and laser device for generating a single-wavelength stable laser output in a 2-micron band |
CN110729626A (en) * | 2019-10-24 | 2020-01-24 | 武汉锐科光纤激光技术股份有限公司 | Method for changing laser output divergence angle |
CN110957627A (en) * | 2019-11-08 | 2020-04-03 | 北京工业大学 | High-power 2-micron intermediate infrared thulium-doped optical fiber picosecond laser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090067454A1 (en) * | 2006-11-27 | 2009-03-12 | Jds Uniphase Corporation | Power Stabilization Of Semiconductor Laser Harmonic Frequency Conversion Modules |
CN103078243A (en) * | 2013-01-30 | 2013-05-01 | 上海交通大学 | 2-micrometer high-pulse energy thulium-doped optical fiber laser of hybrid pump |
-
2013
- 2013-09-03 CN CN201310395626.2A patent/CN103474868B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090067454A1 (en) * | 2006-11-27 | 2009-03-12 | Jds Uniphase Corporation | Power Stabilization Of Semiconductor Laser Harmonic Frequency Conversion Modules |
CN103078243A (en) * | 2013-01-30 | 2013-05-01 | 上海交通大学 | 2-micrometer high-pulse energy thulium-doped optical fiber laser of hybrid pump |
Non-Patent Citations (2)
Title |
---|
GUILLEMET S, KINET D, BERTRAND A, ET AL.: "Experimental study and comparison of three innovative high power CW polarised all-in-fibre laser designs", 《PROCEEDINGS OF THE IEEE PHOTONICS BENELUX CHAPTER, SYMPOSIUM 2010》 * |
WANG J,HU J,ZHANG L,ET AL.: "A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm", 《OPTICS EXPRESS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410576A (en) * | 2016-08-28 | 2017-02-15 | 北京工业大学 | Linear polarization output all-fiber pulse dual-cavity lasers |
CN108963738A (en) * | 2018-10-11 | 2018-12-07 | 中国人民解放军国防科技大学 | Double-end output linear cavity all-fiber laser oscillator |
CN109818237A (en) * | 2019-03-28 | 2019-05-28 | 上海交通大学 | Ultrashort laser pulse shaping system based on fiber loop cyclic modulation time grating |
CN110581434A (en) * | 2019-09-20 | 2019-12-17 | 中国空间技术研究院 | A method and laser device for generating a single-wavelength stable laser output in a 2-micron band |
CN110729626A (en) * | 2019-10-24 | 2020-01-24 | 武汉锐科光纤激光技术股份有限公司 | Method for changing laser output divergence angle |
CN110957627A (en) * | 2019-11-08 | 2020-04-03 | 北京工业大学 | High-power 2-micron intermediate infrared thulium-doped optical fiber picosecond laser |
Also Published As
Publication number | Publication date |
---|---|
CN103474868B (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109066279B (en) | All-fiber vortex optical laser based on orbital angular momentum mode resonance | |
CN103474868B (en) | Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser | |
CN107623246B (en) | Fiber core co-band pumping fiber laser | |
CN103078243A (en) | 2-micrometer high-pulse energy thulium-doped optical fiber laser of hybrid pump | |
CN102709797A (en) | Intermediate infrared cascaded pulse optical fiber laser | |
CN103825164A (en) | High average power full optical fiber intermediate infrared supercontinuum light source | |
CN107181159A (en) | All -fiber passive Q regulation pulse optical fiber laser | |
CN103701022A (en) | Double-resonant-cavity all-optical-fiber mode-locked pulse laser | |
CN113675720A (en) | High-efficiency single-frequency thulium-doped fiber laser based on in-band pumping | |
CN106356704A (en) | 0.9-micron waveband high-power and single-frequency optical fiber laser device | |
JP5980909B2 (en) | High power single mode fiber laser system operating in the 2μm range | |
CN102299475B (en) | Narrow-linewidth single-transverse mode hundred watt level 2 micron thulium doped fiber laser with all-fiber structure | |
CN104051938A (en) | A fiber laser device | |
CN106848821B (en) | A pump laser | |
US20160099538A1 (en) | Pump recycling integrated amplifier | |
CN108155547A (en) | Injection locking optical taper laser | |
CN103531997A (en) | Tunable cascade raman thulium-doped optical fiber laser | |
CN104092095A (en) | A highly stable ultra-narrow linewidth single-frequency fiber laser | |
CN102332676A (en) | Mid-infrared fiber laser | |
CN106229803B (en) | A fiber-based single-frequency blue pulsed laser | |
CN208820223U (en) | A Linear Cavity All-fiber Laser Oscillator with Adjustable Double-End Output Power | |
CN114725762B (en) | Middle infrared saturable absorber and all-fiber middle infrared pulse laser | |
CN102201640B (en) | Watt-level 1050nm photonic crystal fiber pulse laser and its amplification system | |
CN106451049B (en) | 800 + -100 nm wave band high-repetition frequency all-fiber laser generating device | |
CN201323376Y (en) | Intracavity Frequency Doubled Blue Fiber Laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160330 Termination date: 20190903 |