CN103472844A - Mobile platform positioning system based on electronic tag automatic correcting - Google Patents

Mobile platform positioning system based on electronic tag automatic correcting Download PDF

Info

Publication number
CN103472844A
CN103472844A CN2013104376349A CN201310437634A CN103472844A CN 103472844 A CN103472844 A CN 103472844A CN 2013104376349 A CN2013104376349 A CN 2013104376349A CN 201310437634 A CN201310437634 A CN 201310437634A CN 103472844 A CN103472844 A CN 103472844A
Authority
CN
China
Prior art keywords
module
electronic
electronic tag
mobile platform
carry out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013104376349A
Other languages
Chinese (zh)
Inventor
孙维根
刘瑜
刘俊
俞建忠
苗林柯
沈斌
方曙光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CIXI MASTE ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
CIXI MASTE ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CIXI MASTE ELECTRONIC TECHNOLOGY Co Ltd filed Critical CIXI MASTE ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN2013104376349A priority Critical patent/CN103472844A/en
Publication of CN103472844A publication Critical patent/CN103472844A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

A mobile platform positioning system based on electronic tag automatic correcting comprises a power supply management module which provides a stable power supply, a microcontroller, a human-computer interface module, a walking driving module, an obstacle detecting module, an electronic gyroscope for location detecting, a task execution module for executing special tasks, electronic tags and an electronic tag identification module for identifying the electronic tags. The walking driving module controls the rotating direction and the rotating speed of a left driving motor and a right driving motor. A left coder is arranged on the left driving motor. A right coder is arranged on the right driving motor. The left coder and the right coder form a double-coder positioning module. The electronic lags are arranged in a working environment. The number of the electronic lags is at least two. The electronic lags are provided with position data. The electronic lag identification module is connected with the microcontroller which has an automatic correcting positioning algorithm, and the automatic correcting positioning algorithm can correct the position data of a mobile platform.

Description

Based on the self-tuning mobile platform positioning system of electronic tag
Technical field
The present invention relates to a kind ofly based on the self-tuning mobile platform positioning system of electronic tag, belong to the mobile robot technology field.
Background technology
The self-align problem of mobile platform is a technical barrier always, also do not properly settled up till now, so the development of service type robot seriously lags behind the development of industrial robot.Traditional localization method mainly adopts inertial navigation method, such as scrambler location, acceleration transducer etc., although technology maturation, and have advantages of with low cost, but the cumulative errors that can't eliminate, As time goes on, error can be increasing, and final data can't be used.The scientific worker is constantly attempting new method and is addressing this problem.Such as, the localization method based on image recognition, along with the development of computer technology and imaging technique, progressively grow up and obtain certain success.But this method easily is subject to the impact of ambient light and environmental change, locate failure easily occurs.Just being based on laser radar carries out the environment range finding in addition, and then environmental modeling, be map of paint environment, then based on this map, carry out self-align, the calculated amount of the method is very large, and also very high to storage capacity requirement, and can not solve the occlusion issue of personnel or furniture facility.
  
Summary of the invention
The present invention is in order to overcome the deficiency of existing mobile platform method for self-locating, provide a kind of based on the self-tuning mobile platform positioning system of electronic tag, Dual-encoder locating module, electronic gyroscope, electronic tag and electronic label identification module are set, the positional information of utilizing electronic tag to provide is proofreaied and correct traditional locator meams, to reach the purpose that improves positioning precision.
The technical solution adopted for the present invention to solve the technical problems is:
Based on the self-tuning mobile platform positioning system of electronic tag, comprise the power management module that stabilized power source is provided, the micro controller focused on, carry out the human-computer interface module of state demonstration and interface operation, the walking driver module moved freely, carry out the detection of obstacles module of detection of obstacles, described walking driver module is controlled sense of rotation and the rotational speed of left drive motor and right drive motor, left scrambler is installed on described left drive motor, right scrambler is installed on described right drive motor, described left scrambler and right scrambler form the Dual-encoder locating module, carry out the electronic gyroscope of the measurement of bearing of described mobile platform, carry out the task execution module of particular task, described human-computer interface module, the walking driver module, the detection of obstacles module, the Dual-encoder locating module, electronic gyroscope is connected with described micro controller with task execution module, also comprise the electronic tag be arranged in working environment, at least two of described electronic tag settings, described electronic tag setting position data, carry out the electronic label identification module of electronic label identification, described electronic label identification module is connected with described micro controller, and described micro controller arranges the self-correcting location algorithm, and described self-correcting location algorithm comprises the following steps:
(1), described mobile platform in the process of walking, calculate the orientation θ of self by described electronic gyroscope, described Dual-encoder locating module calculates the position (x, y) of self;
(2), when described mobile platform by described electronic label identification Module recognition to described electronic tag, and read the position data of described electronic tag, obtain the position (x ', y ') of described electronic tag;
(3), calculate the angular deflection θ=arctan (y '/x ') of described mobile platform-arctan (y/x), then carry out directional correction θ=θ+θ=θ+arctan (y '/x ')-arctan (y/x);
(4), carry out position correction x=x ', y=y ', return to step (1).
Described electronic tag arranges unique cognizance code, the position data that described micro controller setting is corresponding with described cognizance code.
Beneficial effect of the present invention is mainly manifested in: 1, can carry out the calculating in position and orientation based on Dual-encoder locating module and electronic gyroscope; 2, can position the correction of data based on electronic tag and electronic label identification module, reduce positioning error; 3, algorithm is simple, and calculated amount is little.
  
The accompanying drawing explanation
Fig. 1 is based on the system chart of the self-tuning mobile platform positioning system of electronic tag;
Fig. 2 is the process flow diagram of self-correcting location algorithm.
  
Embodiment
Below in conjunction with accompanying drawing, the invention will be further described.
With reference to Fig. 1-2, based on the self-tuning mobile platform positioning system of electronic tag, comprise the power management module 2 that stabilized power source is provided, the micro controller 1 focused on, carry out the human-computer interface module 3 of state demonstration and interface operation, the walking driver module 4 moved freely, carry out the detection of obstacles module 5 of detection of obstacles, described walking driver module 4 is controlled sense of rotation and the rotational speed of left drive motor and right drive motor, left scrambler is installed on described left drive motor, right scrambler is installed on described right drive motor, described left scrambler and right scrambler form Dual-encoder locating module 6, carry out the electronic gyroscope 7 of the measurement of bearing of described mobile platform, and the task execution module 9 of carrying out particular task.
Described power management module 2, for system provides voltage-stabilized source, also is responsible for carrying out Charge Management, detects in real time cell voltage, if undertension returns charging immediately; In charging process, the control of charging of described power management module 2, be responsible for controlling charging current and the judgement charging finishes.
Described human-computer interface module 3 is connected with described micro controller 1, carries out the input of state demonstration and user instruction, and the demonstration of various information, comprises LCDs, LED lamp, hummer, loudspeaker, button or touch-screen.
Described walking driver module 4 is connected with described micro controller 1, for sense of rotation and the rotational speed of controlling left drive motor and right drive motor.Described left drive motor and right drive motor drive two driving wheel rotations, thereby drive described mobile platform to move with any track.Left scrambler is installed on described left drive motor, right scrambler is installed on described right drive motor.
Described detection of obstacles module 5 is responsible for the barrier situation of testing environment, for the path planning of described mobile platform with keep away barrier.Described detection of obstacles module 5 is connected with described micro controller 1, by described micro controller 1, is controlled.Can adopt ultrasonic sensor to form supersonic barrier detection apparatus, also can adopt infrared distance sensor to form infrared barrier detection apparatus, or adopt two kinds of sensors to be combined.
Described Dual-encoder locating module 6 is connected with described micro controller 1.Described Dual-encoder locating module 6 gathers the output signal of described left scrambler and right scrambler, constantly adds up the rotating cycle of left drive motor and right drive motor, thereby calculates travel distance and the anglec of rotation of described mobile platform.But the continuous accumulated roundoff error of this mode meeting, and when the driving wheel of described mobile platform skids, positioning error can worsen rapidly, causes serious location mistake.In order to make up this defect, also comprise the electronic gyroscope 7 be connected with described micro controller 1.The anglec of rotation of described electronic gyroscope 7 cumulative calculation platforms, the cumulative errors that can proofread and correct to a certain extent described Dual-encoder locating module 6.
Described task execution module 9 is connected with described micro controller 1, for realizing the specific tasks of described mobile platform.
Also comprise the electronic tag be arranged in working environment, described electronic tag setting position data, i.e. locative x coordinate, y coordinate.Also can unique cognizance code be set described electronic tag, and leave position data in described micro controller 1 inside, and be mapped with described cognizance code.At least two of described electronic tag settings, and described electronic tag is more, the frequency of gps correction data is just higher, and effect is also better, but therefore the cost also increased needs according to being the quantity that practical application determines to adopt electronic tag.
The electronic label identification module 8 of carrying out electronic label identification also is set, and described electronic label identification module 8 is connected with described micro controller 1, and described micro controller 1 arranges the self-correcting location algorithm, and described self-correcting location algorithm comprises the following steps:
(1), described mobile platform in the process of walking, calculate the orientation θ of self by described electronic gyroscope 7, described Dual-encoder locating module 6 calculates the position (x, y) of self;
(2), recognize described electronic tag by described electronic label identification module 8 when described mobile platform, and read the position data of described electronic tag, obtained the position (x ', y ') of described electronic tag;
(3), calculate the angular deflection θ=arctan (y '/x ') of described mobile platform-arctan (y/x), then carry out directional correction θ=θ+θ=θ+arctan (y '/x ')-arctan (y/x);
(4), carry out position correction x=x ', y=y ', return to step (1).
In step (3), the position data of utilizing described electronic tag to provide (x ', y ') and the position data (x that calculates of described Dual-encoder locating module 6, y) triangle formed with true origin, the deflection angle of coordinates computed system, and proofread and correct the orientation θ of described mobile platform with this deflection angle.
Circulation by described self-correcting location algorithm is carried out, and just can be proofreaied and correct the locator data of described mobile platform aperiodically, thereby improve positioning precision.

Claims (2)

1. based on the self-tuning mobile platform positioning system of electronic tag, comprise the power management module that stabilized power source is provided, the micro controller focused on, carry out the human-computer interface module of state demonstration and interface operation, the walking driver module moved freely, carry out the detection of obstacles module of detection of obstacles, described walking driver module is controlled sense of rotation and the rotational speed of left drive motor and right drive motor, left scrambler is installed on described left drive motor, right scrambler is installed on described right drive motor, described left scrambler and right scrambler form the Dual-encoder locating module, carry out the electronic gyroscope of the measurement of bearing of described mobile platform, carry out the task execution module of particular task, described human-computer interface module, the walking driver module, the detection of obstacles module, the Dual-encoder locating module, electronic gyroscope is connected with described micro controller with task execution module, it is characterized in that: also comprise the electronic tag be arranged in working environment, at least two of described electronic tag settings, described electronic tag setting position data, carry out the electronic label identification module of electronic label identification, described electronic label identification module is connected with described micro controller, and described micro controller arranges the self-correcting location algorithm, and described self-correcting location algorithm comprises the following steps:
(1), described mobile platform in the process of walking, calculate the orientation θ of self by described electronic gyroscope, described Dual-encoder locating module calculates the position (x, y) of self;
(2), when described mobile platform by described electronic label identification Module recognition to described electronic tag, and read the position data of described electronic tag, obtain the position (x ', y ') of described electronic tag;
(3), calculate the angular deflection θ=arctan (y '/x ') of described mobile platform-arctan (y/x), then carry out directional correction θ=θ+θ=θ+arctan (y '/x ')-arctan (y/x);
(4), carry out position correction x=x ', y=y ', return to step (1).
2. as claimed in claim 1 based on the self-tuning mobile platform positioning system of electronic tag, it is characterized in that: described electronic tag arranges unique cognizance code, the position data that described micro controller setting is corresponding with described cognizance code.
CN2013104376349A 2013-09-24 2013-09-24 Mobile platform positioning system based on electronic tag automatic correcting Pending CN103472844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013104376349A CN103472844A (en) 2013-09-24 2013-09-24 Mobile platform positioning system based on electronic tag automatic correcting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013104376349A CN103472844A (en) 2013-09-24 2013-09-24 Mobile platform positioning system based on electronic tag automatic correcting

Publications (1)

Publication Number Publication Date
CN103472844A true CN103472844A (en) 2013-12-25

Family

ID=49797734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013104376349A Pending CN103472844A (en) 2013-09-24 2013-09-24 Mobile platform positioning system based on electronic tag automatic correcting

Country Status (1)

Country Link
CN (1) CN103472844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321213A (en) * 2014-06-18 2016-02-10 深圳市金溢科技股份有限公司 On-street parking fee collection management method and system
CN105988471A (en) * 2015-02-15 2016-10-05 苏州宝时得电动工具有限公司 Intelligent mowing system of mower and mowing control method
CN106708033A (en) * 2015-11-18 2017-05-24 苏州宝时得电动工具有限公司 System and method of eliminating path errors
CN109739247A (en) * 2019-04-02 2019-05-10 常州市盈能电气有限公司 Rail mounted crusing robot localization method
CN110146078A (en) * 2019-06-25 2019-08-20 张收英 A kind of robot localization method and system
WO2022021416A1 (en) * 2020-07-31 2022-02-03 深圳市大疆创新科技有限公司 Electric motor control method, apparatus and system, and computer-readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092010A (en) * 1997-09-03 2000-07-18 Jervis B. Webb Company Method and system for describing, generating and checking non-wire guidepaths for automatic guided vehicles
JP2004021978A (en) * 2002-06-12 2004-01-22 Samsung Electronics Co Ltd Recognition device and method for position and direction of mobile robot
CN101398688A (en) * 2007-09-29 2009-04-01 宝山钢铁股份有限公司 Movable machinery non-contact walking address precision correcting method
US20100141483A1 (en) * 2008-12-10 2010-06-10 Russell James Thacher Method and system for determining a position of a vehicle
CN101833333A (en) * 2009-12-23 2010-09-15 湖南大学 Unknown environment route planning method of underwater cleaning robot
CN202404447U (en) * 2011-11-11 2012-08-29 陕西迅吉科技发展有限公司 Automatic guided vehicle based on RFID technology
CN102789233A (en) * 2012-06-12 2012-11-21 湖北三江航天红峰控制有限公司 Vision-based combined navigation robot and navigation method
CN202677193U (en) * 2012-01-03 2013-01-16 浙江理工大学 Combined positioning system for outdoor mobile robot
CN102955476A (en) * 2012-11-12 2013-03-06 宁波韵升股份有限公司 Automatic guided vehicle (AGV) path planning method based on radio frequency identification (RFID) technology

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092010A (en) * 1997-09-03 2000-07-18 Jervis B. Webb Company Method and system for describing, generating and checking non-wire guidepaths for automatic guided vehicles
JP2004021978A (en) * 2002-06-12 2004-01-22 Samsung Electronics Co Ltd Recognition device and method for position and direction of mobile robot
CN101398688A (en) * 2007-09-29 2009-04-01 宝山钢铁股份有限公司 Movable machinery non-contact walking address precision correcting method
US20100141483A1 (en) * 2008-12-10 2010-06-10 Russell James Thacher Method and system for determining a position of a vehicle
CN101833333A (en) * 2009-12-23 2010-09-15 湖南大学 Unknown environment route planning method of underwater cleaning robot
CN202404447U (en) * 2011-11-11 2012-08-29 陕西迅吉科技发展有限公司 Automatic guided vehicle based on RFID technology
CN202677193U (en) * 2012-01-03 2013-01-16 浙江理工大学 Combined positioning system for outdoor mobile robot
CN102789233A (en) * 2012-06-12 2012-11-21 湖北三江航天红峰控制有限公司 Vision-based combined navigation robot and navigation method
CN102955476A (en) * 2012-11-12 2013-03-06 宁波韵升股份有限公司 Automatic guided vehicle (AGV) path planning method based on radio frequency identification (RFID) technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321213A (en) * 2014-06-18 2016-02-10 深圳市金溢科技股份有限公司 On-street parking fee collection management method and system
CN105988471A (en) * 2015-02-15 2016-10-05 苏州宝时得电动工具有限公司 Intelligent mowing system of mower and mowing control method
CN105988471B (en) * 2015-02-15 2020-09-22 苏州宝时得电动工具有限公司 Intelligent mowing system and mowing control method of mower
CN106708033A (en) * 2015-11-18 2017-05-24 苏州宝时得电动工具有限公司 System and method of eliminating path errors
CN109739247A (en) * 2019-04-02 2019-05-10 常州市盈能电气有限公司 Rail mounted crusing robot localization method
CN110146078A (en) * 2019-06-25 2019-08-20 张收英 A kind of robot localization method and system
WO2022021416A1 (en) * 2020-07-31 2022-02-03 深圳市大疆创新科技有限公司 Electric motor control method, apparatus and system, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
CN103472844A (en) Mobile platform positioning system based on electronic tag automatic correcting
JP6769659B2 (en) Mobile management systems, methods, and computer programs
CN110673612A (en) Two-dimensional code guide control method for autonomous mobile robot
CN103064416B (en) Crusing robot indoor and outdoor autonomous navigation system
CN103092202B (en) Robot track positioning method and robot track positioning system
CN205121338U (en) AGV navigation based on image recognition and wireless network
CN107272008A (en) A kind of AGV Laser navigation systems with inertia compensation
CN111693050B (en) Indoor medium and large robot navigation method based on building information model
WO2018194768A1 (en) Method and system for simultaneous localization and sensor calibration
CN112461227B (en) Wheel type chassis robot inspection intelligent autonomous navigation method
CN104750115A (en) Laser active type navigation system and method of mobile equipment
CN113282092B (en) Method and device for calculating deviation of installation position of AGV (automatic guided vehicle) forklift laser scanner
CN202433774U (en) Multi-sensor fusion based robot locating system
CN109144068A (en) The automatically controlled mode and control device of three-dimensional shift-forward type navigation switching AGV fork truck
CN110825111A (en) Unmanned aerial vehicle control method suitable for overhead warehouse goods inventory, goods inventory method, device, server and storage medium
CN106647729A (en) AGV navigation system based on image identification and wireless network and navigation method thereof
Jeevan et al. Realizing autonomous valet parking with automotive grade sensors
CN202166895U (en) Laser navigation system of intelligent patrol robot at transformer substation
CN202677193U (en) Combined positioning system for outdoor mobile robot
CN111113415B (en) Robot positioning method based on two-dimensional code road sign, camera and gyroscope
Juntao et al. Research of AGV positioning based on the two-dimensional Code Recognition Method
Ye et al. A vision-based guidance method for autonomous guided vehicles
JP5439552B2 (en) Robot system
CN109828569A (en) A kind of intelligent AGV fork truck based on 2D-SLAM navigation
CN115454053A (en) Automatic guided vehicle control method, system and device and computer equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131225