CN103472418B - 一种磁聚焦核磁共振的设计方法 - Google Patents

一种磁聚焦核磁共振的设计方法 Download PDF

Info

Publication number
CN103472418B
CN103472418B CN201310458750.9A CN201310458750A CN103472418B CN 103472418 B CN103472418 B CN 103472418B CN 201310458750 A CN201310458750 A CN 201310458750A CN 103472418 B CN103472418 B CN 103472418B
Authority
CN
China
Prior art keywords
superconductor
magnetic
magnetic field
nmr
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310458750.9A
Other languages
English (en)
Other versions
CN103472418A (zh
Inventor
胡明建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Basda Medical Apparatus Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310458750.9A priority Critical patent/CN103472418B/zh
Publication of CN103472418A publication Critical patent/CN103472418A/zh
Application granted granted Critical
Publication of CN103472418B publication Critical patent/CN103472418B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

磁聚焦核磁共振的技术领域是属于,电磁学.精密仪器制造.图像分析.超导体技术领域,它的主要技术是把超导体产生的强磁场,通过超导体把它聚焦,形成更加强大的磁场来代替现有的磁场,因为核磁共振的磁场强度越高分辨率就越好,并且提高了灵敏度,使图谱简单易于分析,所以提高了磁场强度,就会提高仪器的分辨率,并且提高了灵敏度,使图谱简单易于分析。

Description

一种磁聚焦核磁共振的设计方法
技术领域
磁聚焦核磁共振的技术领域是属于,电磁学.精密仪器制造.图像分析.超导体技术领域,它的主要技术是把超导体产生的强磁场,通过超导体把它聚焦,形成更加强大的磁场来代替现有的磁场,因为核磁共振的磁场强度越高分辨率就越好,并且提高了灵敏度,使图谱简单易于分析,所以提高了磁场强度,就会提高仪器的分辨率,并且提高了灵敏度,使图谱简单易于分析。
背景技术
1946年以美国物理学家布洛赫(F.Bloch)和普舍尔(E.M.Purcell)为首的两个小组几乎在同一时间,用不同的方法各自独立地发现了物质的核磁共振现象,后来两人合作制造了世界上第一台核磁共振谱仪。1952年他们二人因此获得了诺贝尔物理奖。所谓核磁共振是根据处在某个静磁场中的物质原子核系统受到相应频率的电磁波作用时,在它们的磁能级间产生共振跃迁的原理而采取的一种新技术。核磁共振技术自创始以来经过了60年代连续波谱仪的大发展时代,以及70年代的脉冲傅里叶变换核磁共振和核磁双共振时代,近年来发展的多核NMR,多脉冲NMR,二维NMR和固体NMR在理论和实践上都取得了迅速发展。高强超导磁场的NMR仪器,大大提高灵敏度和分辨率;脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法采用,产生二维谱.三维谱,对判断化合物的空间结构起重大作用。目前,核磁共振已成为鉴定化合物结构和研究化学动力学的极为重要的方法。因此,在有机化学、生物化学、药物化学和化学工业、石油工业、橡胶工业、食品工业、医药工业、生命科学、脑神经研究等方面得到了广泛的应用。现在的核磁共振得到了广泛的应用,可是它还有存在一个缺点,那就是它的分辨率太低,现在世界上最好的核磁共振成像仪,它的分辨率直径大约在0.5毫米,根本无法满足现在高端科技的要求,特别是美国进行人类脑计划工程,欧洲也跟进,我国也实施了好多个973脑计划。主要要攻破大脑的神经网络结构和大脑的功能,现在研究大脑的最好设备和手段是使用核磁共振技术,可是现在核磁共振的低分辨率,让科学家们束手无策,提高核磁共振的分辨率可能是影响人类科学发展的重要仪器。
发明内容
提高核磁共振的分辨率,主要是提高核磁共振的磁场强度,它的基本原理是原子核在磁场中自旋时,会产生进动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动,自旋核进动的角速度ω 0与外磁场感应强度 B 0成正比,比例常数即为磁旋比γ,式中ν 0是进动频率。ω 0=2πν 0=γ B 0 所以提高了磁场强度,就会提高了进动频率,就需要更高的射频频率,频率的提高就会提高了灵敏度,使图谱简单易于分析。现在主要使用有三种磁铁:永久磁铁,电磁铁,超导磁铁,超导磁铁磁场强度确实是很高了,但还不能满足现代科技的需求。磁聚焦核磁共振,其特征是,把超导体线圈产生的强大磁场,把它照射到超导体上,根据超导体对磁力线排斥作用,按照这个原理,把磁力线压在一个点上,进行聚焦,这样就可以把磁场强度提高很多倍,由于产生核磁共振的射频频率和磁场强度成正比,所以磁场强度提高了很多倍,那么要求的射频频率也要提高很多倍,由于射频频率的提高,就会提高核磁共振的分辨率,磁聚焦核磁共振聚焦了十分强大的磁场强度,所以能够得到更高的分辨率,提高了灵敏度,使图谱简单易于分析。一种用排斥法进行磁聚焦采用如下设计,用超导体材料做成一个圆盘,圆盘的边厚,里面薄,中间有一个圆孔,这样当超导体线圈产生磁场,照射到超导体圆盘上,超导体圆盘就会排斥磁力线,让大部分磁力线从超导体圆盘中间的圆孔通过,通过超导体圆盘中间的圆孔的磁力线大幅提高,磁场强度大幅增强,这样就把磁力线聚焦起来。
附图说明
图1是磁聚焦核磁共振的原理图,1.2代表磁聚焦磁铁,3代表扫描线圈,4代表射频线圈,5代表接收线圈,6代表射频发射器,7代表检测器,8代表放大器,9代表示波器,10扫描发电器。图2是一种超导体排斥聚焦磁铁的原理图,1代表超导体线圈,2.3代表超导体圆盘的切面,在圆盘的中间有一个圆孔9,4.5.6.7.8代表磁力线,9.代表超导体圆盘中间的圆孔。 超导体排斥聚焦磁铁的设计方法很多种,但原理是一样的,根据超导体对磁力线有排斥作用。
实施方法
就目前使用的核磁共振仪有连续波和脉冲傅里叶变换两种形式。连续波磁聚焦核磁共振仪主要由磁聚焦磁铁、射频发射器、检测器、放大器及记录仪等组成。磁聚焦磁铁是通过把超导体线圈产生的磁场进行聚焦,产生更加强大的磁场,由于磁场强度和频率成正比,所以磁场越强,对应测到的频率也高了,频率高的仪器,分辨率好,灵敏度高,图谱简单易于分析。磁聚焦磁铁上备有扫描线圈,用它来保证磁聚焦磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生各种频率的电磁波,检测器用来接收样品的电磁场变化情况,放大器用来放大检测器接收到的信号,记录仪将共振信号绘制成共振图谱,这样就可以把样品放在磁场中间设定好的位置,通过调节扫描线圈,让磁聚焦磁铁产生的磁场更均匀,然后给样品进行射频扫描,当ν射频与B0匹配时,发生核磁共振,另一种方法是固定辐射波的辐射频率,然后从低场到高场,逐渐改变B0,当ν射与B0匹配时,发生核磁共振,检测器一直在检测信号,放大器放大检测信号,记录仪将共振信号绘制成共振图谱。脉冲傅里叶变换磁聚焦核磁共振仪的原理也是一样的,但发射的不是连续波而是脉冲波。

Claims (1)

1.一种磁聚焦核磁共振的设计方法,其特征是,把超导体线圈产生的强大磁场,把它照射到超导体上,根据超导体对磁力线排斥作用,按照这个原理,把磁力线压在一个点上,进行聚焦,这样就可以把磁场强度提高很多倍,由于产生核磁共振的射频频率和磁场强度成正比,所以磁场强度提高了很多倍,那么要求的射频频率也要提高很多倍,由于射频频率的提高,就会提高核磁共振的分辨率,磁聚焦核磁共振聚焦了十分强大的磁场强度,所以能够得到更高的分辨率,提高了灵敏度,使图谱简单易于分析,其中用排斥法进行磁聚焦采用如下设计,用超导体材料做成一个圆盘,圆盘的边厚,里面薄,中间有一个圆孔,这样当超导体线圈产生磁场,照射到超导体圆盘上,超导体圆盘就会排斥磁力线,让大部分磁力线从超导体圆盘中间的圆孔通过,通过超导体圆盘中间的圆孔的磁力线大幅提高,磁场强度大幅增强,这样就把磁力线聚焦起来。
CN201310458750.9A 2013-10-06 2013-10-06 一种磁聚焦核磁共振的设计方法 Expired - Fee Related CN103472418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310458750.9A CN103472418B (zh) 2013-10-06 2013-10-06 一种磁聚焦核磁共振的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310458750.9A CN103472418B (zh) 2013-10-06 2013-10-06 一种磁聚焦核磁共振的设计方法

Publications (2)

Publication Number Publication Date
CN103472418A CN103472418A (zh) 2013-12-25
CN103472418B true CN103472418B (zh) 2016-08-10

Family

ID=49797338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310458750.9A Expired - Fee Related CN103472418B (zh) 2013-10-06 2013-10-06 一种磁聚焦核磁共振的设计方法

Country Status (1)

Country Link
CN (1) CN103472418B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970427A (zh) * 2017-03-15 2017-07-21 吉林大学 一种聚焦型超导核磁共振探测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825692A (zh) * 2009-03-02 2010-09-08 绵阳西磁磁电有限公司 一种高场强聚焦核磁共振磁场及制备方法
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825692A (zh) * 2009-03-02 2010-09-08 绵阳西磁磁电有限公司 一种高场强聚焦核磁共振磁场及制备方法
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Local Magnetic Shielding of MRI Devices by Superconductive Materials;Mauro Zucca 等;《IEEE TRANSACTIONS ON MAGNETICS》;20111031;第47卷(第10期);第4278-4281页 *
SUPERCONDUCTING MAGNETS FOR MAGNETIC RESONANCE IMAGING APPLICATIONS;Garry R. Morrow 等;《IEEE TRANSACTIONS ON MAGNETICS》;19870331;第23卷(第2期);第1294-1298页 *
核磁共振成象的实验装置——核共振成象系统的基本构成与要求;冯义濂 等;《北京生物医学工程》;19831231;第13-21页 *

Also Published As

Publication number Publication date
CN103472418A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
Moser et al. Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity
Gruber et al. RF coils: A practical guide for nonphysicists
Ledbetter et al. Near-zero-field nuclear magnetic resonance
US8754644B2 (en) MRI apparatus and method with moving field component
AU2020248421B2 (en) Systems and methods for volumetric acquisition in a single-sided MRI system
Kupče et al. Parallel acquisition of two-dimensional NMR spectra of several nuclear species
Cooley et al. Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping
Sharp et al. High‐resolution MRI encoding using radiofrequency phase gradients
WO2009090609A1 (en) Measurement method using nuclear magnetic resonance spectroscopy and light with orbital angular momentum
Pfrommer et al. On the contribution of curl‐free current patterns to the ultimate intrinsic signal‐to‐noise ratio at ultra‐high field strength
CN103472418B (zh) 一种磁聚焦核磁共振的设计方法
Seo et al. A preliminary study for reference RF coil at 11.7 T MRI: Based on electromagnetic field simulation of hybrid-BC RF coil according to diameter and length at 3.0, 7.0 and 11.7 T
JP6334444B2 (ja) 磁気共鳴イメージング装置
Barbara et al. Target field design for magic angle gradient coils
Giovannetti et al. Radio frequency coils for hyperpolarized 13C magnetic resonance experiments with a 3T MR clinical scanner: Experience from a cardiovascular Lab
Ng Portable NMR-based sensors in medical diagnosis
Chizhik et al. NMR in magnetic field of the earth: Pre-polarization of nuclei with alternating magnetic field
Bray et al. Unilateral MRI using a rastered projection
Mitchell et al. Metabonomics and the endocrine system
Lurie et al. Techniques and Applications of Field-cycling Magnetic Resonance in Medicine
Xu et al. An radio frequency coil design for rat spinal magnetic resonance imaging at 9.4 T
Blanchard et al. Magnetic Resonance Searches
Fuhrer Advanced interfaces for biomedical engineering applications in high-and low field NMR/MRI
Reddy Introduction to NMR
Yamada Development of Sulfur-33 Nuclear Magnetic Resonance for Structural Study of Crosslinked Rubber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181226

Address after: 518172 No. 3 Workshops A1402 and A1403 of Tianan Digital Innovation Park, Longgang District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN BASDA MEDICAL APPARATUS CO.,LTD.

Address before: 325100 No. 35 Zhongxing Village Central Road, Shangtang Town, Yongjia County, Wenzhou City, Zhejiang Province

Patentee before: Hu Mingjian

TR01 Transfer of patent right
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 518000 workshop 1a1901, building a, beisida medical equipment building, 28 Nantong Avenue, Baolong community, Baolong street, Longgang District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN BASDA MEDICAL APPARATUS Co.,Ltd.

Address before: 518172 No. 3 Workshops A1402 and A1403 of Tianan Digital Innovation Park, Longgang District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN BASDA MEDICAL APPARATUS Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A design method of magnetic focusing nuclear magnetic resonance

Effective date of registration: 20200828

Granted publication date: 20160810

Pledgee: Shenzhen Longgang sub branch of Agricultural Bank of China Ltd.

Pledgor: SHENZHEN BASDA MEDICAL APPARATUS Co.,Ltd.

Registration number: Y2020990001046

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220424

Granted publication date: 20160810

Pledgee: Shenzhen Longgang sub branch of Agricultural Bank of China Ltd.

Pledgor: SHENZHEN BASDA MEDICAL APPARATUS CO.,LTD.

Registration number: Y2020990001046

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A design method of magnetic focusing nuclear magnetic resonance

Effective date of registration: 20220429

Granted publication date: 20160810

Pledgee: Shenzhen Longgang sub branch of Agricultural Bank of China Ltd.

Pledgor: SHENZHEN BASDA MEDICAL APPARATUS CO.,LTD.

Registration number: Y2022980005037

PE01 Entry into force of the registration of the contract for pledge of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

CF01 Termination of patent right due to non-payment of annual fee