CN103472092A - 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法 - Google Patents

基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法 Download PDF

Info

Publication number
CN103472092A
CN103472092A CN2013104223663A CN201310422366A CN103472092A CN 103472092 A CN103472092 A CN 103472092A CN 2013104223663 A CN2013104223663 A CN 2013104223663A CN 201310422366 A CN201310422366 A CN 201310422366A CN 103472092 A CN103472092 A CN 103472092A
Authority
CN
China
Prior art keywords
partial
effect
squares regression
drive coil
electric magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104223663A
Other languages
English (en)
Other versions
CN103472092B (zh
Inventor
周建民
李鹏
蔡莉
符正晴
胡林海
尹洪妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN201310422366.3A priority Critical patent/CN103472092B/zh
Publication of CN103472092A publication Critical patent/CN103472092A/zh
Application granted granted Critical
Publication of CN103472092B publication Critical patent/CN103472092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法。利用平板型电磁线圈对金属材料表面进行电磁激励,采用红外热像仪获取激励前后金属材料表面平均温度差信息,并将该温度差作为表征电磁激励效果的指标。选择影响电磁激励效果的参数,通过改变参数的值改变电磁激励效果。将激励前后材料表面平均温度差作为偏最小二乘回归建模方法的因变量,将影响电磁激励效果的参数作为自变量,利用偏最小二乘回归算法建立电磁激励数学模型表征电磁激励效果指标与影响电磁激励效果各参数之间的关系。本发明对金属电磁激励作用效果的研究及金属缺陷的红外无损检测激励源的研究有指导作用。

Description

基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法
技术领域
本发明涉及一种基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法,属于金属材料电磁激励领域。
背景技术
大型电力、交通、航空航天和管道等设备的一些复杂零部件、焊件、模锻构件的生产、加工和服役过程中需要进行全面无损探伤以保证其安全可靠性。常规的无损检测技术(如X射线检测、超声检测、磁粉检测、渗透检测等)在复杂金属零件的检测时,其检测效果、快速便捷性和可靠性等方面均存在一定的局限性。目前复杂金属零件的检测多以涡流检测技术为主,然而对于微小裂纹,涡流检测提离效应明显,实际检测效果也不理想。因此,开展对复杂零件的隐性缺陷的无损检测理论与技术研究已成为国内外研究的热点,快速、高效的无损检测手段已成为一个迫切需要解决的问题。
电磁激励红外热成像技术,是近几年来快速兴起的新型无损检测手段。电磁激励红外无损检测技术的检测原理框图如图1所示。它结合了传统的涡流探伤及红外热成像技术的优点,应用电磁感应原理对被检零件施加热激励,零件在电磁脉冲激励作用下因涡流效应而生热,当被检零件表面或亚表面存在缺陷时,被检零件中涡流场分布将发生改变,引起局部温度异常,从而影响零件表面的温度场。用红外热成像设备获取该表面温度场,即可实现对被检零件的非接触温度测量和热状态成像,从而推断零件(近)表面或内部是否存在缺陷。
激励源和激励方式的研究在主动式红外热成像检测中始终处于非常重要的地位。常见的激励方式有光热激励、脉冲激励、超声激励以及振动激励等,实际检测中,受限于主动红外热成像技术中对加热的均匀性及快速响应性等苛刻的要求,这些激励方式下的红外无损检测效果一直不是很理想。为了充分发挥红外热成像技术检测结果直观、检测速度快等优势,进一步拓展其应用领域,研究激励源的激励规律和开发新的激励方式很有必要。
电磁脉冲激励是一种新型的激励方式。电磁脉冲激励是一种通过在感应线圈内通交变电流使其周围产生交变磁场,该交变磁场使零件内部产生涡流。由于涡流具有热效应,可使零件加热至特定的温度。这种激励方式克服了上述几种激励方式的缺点,能满足加热均匀性及快速响应性的要求,是红外热成像无损检测的一种理想的激励方式。 
市面上的电磁激励加热器通过控制激励频率和激励时间控制激励效果,虽然能基本满足工业感应加热的要求,但对却不能直接应用与电磁脉冲激励红外检测。工业用电磁激励加热器在使用时主要靠经验调节激励频率和激励时间以达到要求的激励效果,但电磁脉冲激励红外检测中关于激励功率、激励线圈总长、激励线圈等效直径、提离距离、激励时间等参数的设置暂时没有经验可循,激励温度、激励时间等参数的选取对检测效果有较大的影响。
发明内容
本发明提供一种基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法。利用平板型电磁线圈对金属材料表面进行电磁激励,采用红外热像仪获取金属材料表面的红外辐射信息,经过数据处理后获得金属材料表面平均温度,并将该温度作为表征电磁激励效果的指标。将金属材料表面平均温度作为偏最小二乘回归建模方法的因变量,将影响电磁激励效果的各参数作为自变量,利用偏最小二乘回归算法建立电磁激励数学模型表征电磁激励效果指标与影响电磁激励效果各参数之间的关系。
本发明采用的技术方案是:
电磁激励系统由金属试件、感应线圈、感应加热器、红外热像仪组成。电磁感应加热器由电磁感应加热主机与继电器等组装而成,感应加热器的内部电路模块由整流器、滤波器、逆变器、负载组成;交流电经过整流器,再经过滤波器,变成脉动直流电,进而得到平滑的直流电(DC),逆变器将直流电转化为感应加热负载所需频率的高频交流电(AC)。实验时感应加热器产生交变电流通入感应线圈中,由于电磁感应效应线圈周围产生交变磁场,在金属试件内部产生涡流,涡流将金属试件表面加热至一定温度。电磁激励结束后,通过红外摄像仪对金属试件表面拍摄,得到红外热图,利用红外热像图分析软件获取金属试件表面平均温度信息。
红外热像仪选用的是加拿大CANTRONIC公司生产的IR970型红外热像仪。该热像仪的分辨率为320×240,测温范围为-20℃-1200℃。
电磁感应加热器由电磁感应加热主机与继电器等组装而成,电磁感应加热主机选用厦门飞如电子公司生产的2.5kW电磁感应加热控制板,该主机可提供的最大激励功率为599W,继电器控制激励时间最大为6000s。
依据正交实验设计准则,设计材料在横向单面激励方式下的多组电磁激励正交实验。将激励前后材料表面平均温度差T作为评价激励效果的效果指标。依据正交实验准则选取不同的影响参数水平值,进行电磁脉冲激励实验,实验可得不同影响参数组合下,材料激励效果指标的值。
实验考虑的电磁脉冲激励影响参数即偏最小二乘法的中的自变量,激励效果指标即因变量,将实验结果数据表转换为偏最小二乘法的原始数据矩阵,运用偏最小二乘算法构建因变量与自变量之间的偏最小二乘关系,建立影响参数与激励效果指标之间的数学模型。
建模方法的实施过程: 
1)选取激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t等影响激励效果的参数,激励功率W与激励时间t由电磁感应加热主机控制,激励线圈采用高温线绕制成圆形平板型线圈,激励线圈总长L1为圆形平板型线圈的总长,激励线圈等效直径d1为该平板型线圈等效成圆柱型线圈后的直径;
2)激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t各设置3个水平,选取三水平四因素正交表L9(34)设计9组电磁激励实验,激励线圈总长L1和激励线圈等效直径d1的水平值是对应关系,因此视为一个因素设计正交实验,进行激励实验;
3)将电磁激励后的红外热图与背景红外图相减,即作去背景处理,经过红外热像仪数据处理获得激励前后金属试件表面平均温度差T,将T作为激励效果指标;
4)将影响电磁激励效果的5个参数作为偏最小二乘回归分析的自变量,金属试件表面平均温度差T为因变量,则因变量组和自变量组的标准化观测矩阵分别为:
Figure 2013104223663100002DEST_PATH_IMAGE001
Figure 2013104223663100002DEST_PATH_IMAGE002
a、从两组变量分别提出第一对成分t1和u1,t1是自变量集X=(x1,…x5)T的线性组合:t1=w11x1+…+w15x5=w1 TX,u1是因变量集Y=y的线性组合:u1=v1 Ty,由两组变量集的标准化观测数据阵E0和F0,可以计算第一对成分的得分向量,记为
Figure 2013104223663100002DEST_PATH_IMAGE004
b、建立y对t1的回归及x1,…,x5对t1的回归,假定回归模型为
  
Figure 2013104223663100002DEST_PATH_IMAGE005
其中
Figure 2013104223663100002DEST_PATH_IMAGE006
Figure 2013104223663100002DEST_PATH_IMAGE007
分别是多对一的回归模型中的参数向量,E1和F1是残差阵,
c、用残差阵E1和F1代替E0和F0重复以上步骤,记,则残差阵
Figure 2013104223663100002DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
,残差阵F1中元素的绝对值达到精度需要的数值时,停止抽取成分,否则用残差阵E1和F1代替E0和F0重复以上步骤,最终可提取r个成分使得
Figure 2013104223663100002DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
,代入
Figure 2013104223663100002DEST_PATH_IMAGE014
即得因变量的偏最小二乘回归方程式
Figure DEST_PATH_IMAGE015
这里满足
5)对于偏最小二乘回归建模所需提取的成分数,通过交叉有效性检验来确定。定义交叉有效性为
Figure DEST_PATH_IMAGE019
                         
在建模的每一步计算结束前,均进行交叉有效性检验,在第h 步时
Figure 2013104223663100002DEST_PATH_IMAGE020
达到精度要求的数值时,停止提取成分。
通过以上5步,建立金属材料影响电磁激励效果的5个参数和电磁激励效果之间的偏最小二乘数学模型。偏最小二乘回归模型的准确性可由观测值或预测值图表征,数据点均匀分布在观测值或预测值图中对角线两侧说明该模型的准确性高。
本发明的有益结果是:通过红外热像仪获取电磁激励后金属试件表面的温度信息,建立影响激励效果的参数与金属材料表面温度信息的偏最小二乘回归模型,对金属电磁激励作用效果的研究及金属的无损检测激励源的研究有指导作用。
附图说明
图1为电磁激励红外无损检测技术的检测原理框图。
图2为电磁激励系统示意图。
附图标记:红外热像仪1、金属材料2、感应线圈3、感应加热器4。
图3为感应加热器的内部电路模块。
图4为偏最小二乘回归建模步骤。
具体实施方式
实施例1:
本发明对金属材料的电磁激励具有通用性,现以45号钢板的电磁激励为例说明建模方法的实施过程: 
电磁激励系统由金属材料2、感应线圈3、感应加热器4、红外热像仪1组成,电磁感应加热器由电磁感应加热主机与继电器组装而成。
1)选取激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t等影响激励效果的参数,激励功率W与激励时间t由电磁感应加热主机控制,激励线圈采用4mm2高温线绕制成圆形平板型线圈,激励线圈总长L1为圆形平板型线圈的总长,激励线圈等效直径d1为该平板型线圈等效成圆柱型线圈后的直径;
2)激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t各设置3个水平,选取三水平四因素正交表L9(34)设计9组电磁激励实验,激励线圈总长L1和激励线圈等效直径d1的水平值是对应关系,因此视为一个因素设计正交实验,进行激励实验;
3)将电磁激励后的红外热图与背景红外图相减,即作去背景处理,经过红外热像仪数据处理获得激励前后钢板表面平均温度差T,将T作为激励效果指标;
4)将影响电磁激励效果的5个参数作为偏最小二乘回归分析的自变量,钢板表面平均温度差T为因变量,则因变量组和自变量组的标准化观测矩阵分别为:
Figure 175106DEST_PATH_IMAGE001
a、从两组变量分别提出第一对成分t1和u1,t1是自变量集X=(x1,…x5)T的线性组合:t1=w11x1+…+w15x5=w1 TX,u1是因变量集Y=y的线性组合:u1=v1 Ty,由两组变量集的标准化观测数据阵E0和F0,可以计算第一对成分的得分向量,记为
Figure 809667DEST_PATH_IMAGE003
b、建立y对t1的回归及x1,…,x5对t1的回归,假定回归模型为
  
Figure 19248DEST_PATH_IMAGE005
其中
Figure 841711DEST_PATH_IMAGE006
Figure 108744DEST_PATH_IMAGE007
分别是多对一的回归模型中的参数向量,E1和F1是残差阵,
c、用残差阵E1和F1代替E0和F0重复以上步骤,记
Figure 245327DEST_PATH_IMAGE008
Figure 914206DEST_PATH_IMAGE009
,则残差阵
Figure 907570DEST_PATH_IMAGE010
Figure 661899DEST_PATH_IMAGE011
,残差阵F1中元素的绝对值达到精度需要的数值时,停止抽取成分,否则用残差阵E1和F1代替E0和F0重复以上步骤,最终可提取r个成分使得
Figure 398911DEST_PATH_IMAGE012
Figure 922296DEST_PATH_IMAGE013
,代入
Figure 289824DEST_PATH_IMAGE014
即得因变量的偏最小二乘回归方程式
Figure 531449DEST_PATH_IMAGE015
这里
Figure 806573DEST_PATH_IMAGE016
满足
Figure 450044DEST_PATH_IMAGE017
5)一般情况下,偏最小二乘法并不需要选用存在的r 个成分t1,t2,…,tr来建立回归式,对于偏最小二乘回归建模所需提取的成分数,可以通过交叉有效性检验来确定。定义交叉有效性为
                         
在建模的每一步计算结束前,均进行交叉有效性检验,如果在第h 步有
Figure DEST_PATH_IMAGE021
则模型达到精度要求,停止提取成分。
通过以上5步,可建立45号钢板影响电磁激励效果的5个参数和电磁激励效果之间的偏最小二乘数学模型。偏最小二乘回归模型的准确性可由观测值/预测值图表征,数据点均匀分布在观测值/预测值图中对角线两侧说明该模型的准确性高。为验证模型的准确性,选取15组验证样本对已建立的偏最小二乘回归模型进行模型验证, 15组验证实验的平均验证误差为9.79%。

Claims (2)

1.一种基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法,其特征在于:将激励前后材料表面平均温度差作为偏最小二乘回归建模方法的因变量,将影响电磁激励效果的参数作为自变量,将自变量和因变量组合成原始数据表,利用偏最小二乘回归算法建立电磁激励数学模型表征电磁激励效果指标与影响电磁激励效果各参数之间的关系。
2.一种基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法,其特征在于:电磁激励系统由金属材料(2)、感应线圈(3)、感应加热器(4)、红外热像仪(1)组成,电磁感应加热器由电磁感应加热主机与继电器组装而成;
建模方法的实施过程为: 
1)选取激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t等影响激励效果的参数,激励功率W与激励时间t由电磁感应加热主机控制,激励线圈采用高温线绕制成圆形平板型线圈,激励线圈总长L1为圆形平板型线圈的总长,激励线圈等效直径d1为该平板型线圈等效成圆柱型线圈后的直径;
2)激励功率W、激励线圈总长L1、激励线圈等效直径d1、提离距离d2、激励时间t各设置3个水平,选取三水平四因素正交表L9(34)设计9组电磁激励实验,激励线圈总长L1和激励线圈等效直径d1的水平值是对应关系,视为一个因素设计正交实验,进行激励实验;
3)将电磁激励后的红外热图与背景红外图相减,即作去背景处理,经过红外热像仪数据处理获得激励前后金属试件表面平均温度差T,将T作为激励效果指标;
4)将影响电磁激励效果的5个参数作为偏最小二乘回归分析的自变量,金属试件表面平均温度差T为因变量,则因变量组和自变量组的标准化观测矩阵分别为:
Figure 488142DEST_PATH_IMAGE001
a、从两组变量分别提出第一对成分t1和u1,t1是自变量集X=(x1,…x5)T的线性组合:t1=w11x1+…+w15x5=w1 TX,u1是因变量集Y=y的线性组合:u1=v1 Ty,由两组变量集的标准化观测数据阵E0和F0,可以计算第一对成分的得分向量,记为
Figure 707082DEST_PATH_IMAGE003
b、建立y对t1的回归及x1,…,x5对t1的回归,假定回归模型为
  
Figure 766622DEST_PATH_IMAGE005
其中
Figure 101788DEST_PATH_IMAGE006
分别是多对一的回归模型中的参数向量,E1和F1是残差阵,
c、用残差阵E1和F1代替E0和F0重复以上步骤,记
Figure 784890DEST_PATH_IMAGE008
,则残差阵
Figure 939907DEST_PATH_IMAGE011
,残差阵F1中元素的绝对值达到精度需要的数值时,停止抽取成分,否则用残差阵E1和F1代替E0和F0重复以上步骤,最终可提取r个成分使得
Figure 635461DEST_PATH_IMAGE012
Figure 987945DEST_PATH_IMAGE013
,代入
Figure 805860DEST_PATH_IMAGE014
即得因变量的偏最小二乘回归方程式
Figure 243794DEST_PATH_IMAGE015
这里
Figure 726728DEST_PATH_IMAGE016
满足
Figure 199298DEST_PATH_IMAGE017
Figure 860217DEST_PATH_IMAGE018
5)对于偏最小二乘回归建模所需提取的成分数,通过交叉有效性检验来确定,定义交叉有效性为
Figure 847765DEST_PATH_IMAGE019
                         
在建模的每一步计算结束前,均进行交叉有效性检验,在第h 步时
Figure 72073DEST_PATH_IMAGE020
达到精度要求的数值时,停止提取成分;
通过以上5步,建立金属材料影响电磁激励效果的5个参数和电磁激励效果之间的偏最小二乘数学模型。
CN201310422366.3A 2013-09-17 2013-09-17 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法 Expired - Fee Related CN103472092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310422366.3A CN103472092B (zh) 2013-09-17 2013-09-17 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310422366.3A CN103472092B (zh) 2013-09-17 2013-09-17 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法

Publications (2)

Publication Number Publication Date
CN103472092A true CN103472092A (zh) 2013-12-25
CN103472092B CN103472092B (zh) 2016-01-20

Family

ID=49797031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310422366.3A Expired - Fee Related CN103472092B (zh) 2013-09-17 2013-09-17 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法

Country Status (1)

Country Link
CN (1) CN103472092B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181192A (zh) * 2014-08-18 2014-12-03 太仓派欧技术咨询服务有限公司 一种涡流法判定真空绝热板绝热性能的装置
CN105928979A (zh) * 2016-07-05 2016-09-07 南京中车浦镇城轨车辆有限责任公司 一种搅拌摩擦焊孔洞测量方法及设备
CN108982585A (zh) * 2018-07-17 2018-12-11 南京航空航天大学 一种面内方向导温系数测量方法
CN111309065A (zh) * 2020-02-12 2020-06-19 广东韶钢松山股份有限公司 压力模型建立方法、压力调节方法以及装置
CN112305408A (zh) * 2020-10-23 2021-02-02 Tcl华星光电技术有限公司 一种发光芯片贴片检测系统及其检测方法
CN112991260A (zh) * 2021-02-03 2021-06-18 南昌航空大学 光和超声复合激励的红外无损检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612999A2 (de) * 1993-01-25 1994-08-31 Sölter, Nicolai Apparat und Verfahren zur Bestimmung der spezifischen Wärmekapazität mittels Wärmepuls und gleichzeitige Ermittlung der Temperaturleitfähigkeit
CN101080630A (zh) * 2004-12-16 2007-11-28 吉莱特公司 剃刀片中的裂纹检测
CN102809611A (zh) * 2011-06-02 2012-12-05 中国人民解放军装甲兵工程学院 金属构件损伤无损检测系统及检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612999A2 (de) * 1993-01-25 1994-08-31 Sölter, Nicolai Apparat und Verfahren zur Bestimmung der spezifischen Wärmekapazität mittels Wärmepuls und gleichzeitige Ermittlung der Temperaturleitfähigkeit
CN101080630A (zh) * 2004-12-16 2007-11-28 吉莱特公司 剃刀片中的裂纹检测
CN102809611A (zh) * 2011-06-02 2012-12-05 中国人民解放军装甲兵工程学院 金属构件损伤无损检测系统及检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SIAKAVELLAS, N.J. ET AL.: "Performance of circular and square coils in electromagnetic-thermal non-destructive inspection", 《NDT&E INTERNATIONAL》 *
周建民 等: "PLS的红外无损检测电磁激励的数学模型", 《红外与激光工程》 *
方俊雅 等: "铸钢管道的电磁激励红外热像无损检测数值模拟研究", 《矿山机械》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181192A (zh) * 2014-08-18 2014-12-03 太仓派欧技术咨询服务有限公司 一种涡流法判定真空绝热板绝热性能的装置
CN105928979A (zh) * 2016-07-05 2016-09-07 南京中车浦镇城轨车辆有限责任公司 一种搅拌摩擦焊孔洞测量方法及设备
CN108982585A (zh) * 2018-07-17 2018-12-11 南京航空航天大学 一种面内方向导温系数测量方法
CN111309065A (zh) * 2020-02-12 2020-06-19 广东韶钢松山股份有限公司 压力模型建立方法、压力调节方法以及装置
CN111309065B (zh) * 2020-02-12 2023-08-01 广东韶钢松山股份有限公司 压力模型建立方法、压力调节方法以及装置
CN112305408A (zh) * 2020-10-23 2021-02-02 Tcl华星光电技术有限公司 一种发光芯片贴片检测系统及其检测方法
CN112991260A (zh) * 2021-02-03 2021-06-18 南昌航空大学 光和超声复合激励的红外无损检测系统

Also Published As

Publication number Publication date
CN103472092B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103472092B (zh) 基于偏最小二乘回归的红外无损检测电磁激励数学模型建模方法
Fan et al. Thickness measurement using liftoff point of intersection in pulsed eddy current responses for elimination of liftoff effect
CN105004758B (zh) 一种涡流线扫描热成像检测系统及方法
CN103487443B (zh) 一种基于电磁感应热激励方法的管道缺陷红外检测系统
Wang et al. Features extraction of sensor array based PMFL technology for detection of rail cracks
He et al. Crack detection based on a moving mode of eddy current thermography method
CN104764770A (zh) 一种钢轨裂纹的脉冲涡流红外热成像检测系统及其方法
CN104007007A (zh) 一种基于镁合金试件表面温度特征的疲劳分析方法
CN110187000B (zh) 一种电磁无损检测双相钢微观组织的方法
CN103399037A (zh) 基于电磁感应加热的主动式红外管材缺陷检测方法
CN105586476A (zh) 基于数值模拟技术的高强钢淬火工艺优化方法
CN209589902U (zh) 一种基于电磁感应加热的红外热像法混凝土裂缝检测仪
Li et al. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography
CN105188173A (zh) 一种基于感应加热的结构热环境模拟方法及装置
CN102879420B (zh) 高电阻率铁磁材料缺陷检测方法
Choi et al. Prediction of high-frequency induction hardening depth of an AISI 1045 specimen by finite element analysis and experiments
CN108627540A (zh) 一种涡流热成像面检测容器腐蚀壁厚系统及检测方法
Noethen et al. Simulation of the surface crack detection using inductive heated thermography
CN109636755A (zh) 一种通过加权估计实现红外热图像增强的方法
CN104515790A (zh) 一种热波无损检测装置
CN109632865A (zh) 板状试样的热疲劳试验方法及其系统
CN111982967A (zh) 一种基于永磁铁的磁饱和脉冲涡流红外无损评价方法
CN203502361U (zh) 一种基于电磁感应热激励方法的管道缺陷红外检测装置
Zhang et al. Research on eddy current pulsed thermography for rolling contact fatigue crack detection and quantification in wheel tread
CN106770625A (zh) 一种交变磁场磁光成像检测装置及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20160917