CN103454672A - Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration - Google Patents

Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration Download PDF

Info

Publication number
CN103454672A
CN103454672A CN2013101935007A CN201310193500A CN103454672A CN 103454672 A CN103454672 A CN 103454672A CN 2013101935007 A CN2013101935007 A CN 2013101935007A CN 201310193500 A CN201310193500 A CN 201310193500A CN 103454672 A CN103454672 A CN 103454672A
Authority
CN
China
Prior art keywords
array
sub
air gun
source
arrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101935007A
Other languages
Chinese (zh)
Inventor
李绪宣
王建花
顾汉明
杨凯
刘志斌
陈磅
绍玉祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
CNOOC Research Institute Co Ltd
Original Assignee
China University of Geosciences
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
CNOOC Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences, China Oilfield Services Ltd, China National Offshore Oil Corp CNOOC, CNOOC Research Institute Co Ltd filed Critical China University of Geosciences
Priority to CN2013101935007A priority Critical patent/CN103454672A/en
Publication of CN103454672A publication Critical patent/CN103454672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种海上地震勘探气枪阵列震源三维空间组合方法,该方法通过确定气枪阵列震源总容量和子阵列个数,确定每个子阵列的容量和子阵列中各子阵单元的容量,确定大容量气枪与小容量气枪的相对位置,确定各子阵列在枪阵中的位置,确定气枪阵列的最佳沉放深度,选取满足勘探要求的模拟子波所对应的枪阵平面排列参数,以及确定气枪阵列最佳的三维空间立体组合方式和上下源沉放深度相关参数等步骤,得到延迟激发三维空间立体组合气枪阵列震源,即为最终的海上地震勘探气枪阵列震源三维空间组合。通过本发明设计出来的气枪组合排列方式,层次分明,为不同的施工条件和不同的海上勘探环境提供了最适当的气枪组合排列方式,因此能够获得当前环境下最优的远场子波。本发明可以直接用于野外海上地震勘探过程中。

Figure 201310193500

The invention relates to a three-dimensional spatial combination method of air gun array seismic sources for marine seismic exploration. The method determines the total capacity of air gun array seismic sources and the number of sub-arrays, determines the capacity of each sub-array and the capacity of each sub-array unit in the sub-array, and determines the large-capacity air gun The relative position of the small-capacity air gun, determine the position of each sub-array in the gun array, determine the optimal depth of the air gun array, select the plane arrangement parameters of the gun array corresponding to the simulated wavelet that meets the exploration requirements, and determine the air gun array The optimal three-dimensional space combination method and the steps related to the depth of the upper and lower sources are obtained to obtain the delayed excitation three-dimensional space combination air gun array source, which is the final three-dimensional space combination of the air gun array source for marine seismic exploration. The combination and arrangement of air guns designed by the present invention has clear layers and provides the most suitable combination and arrangement of air guns for different construction conditions and different offshore exploration environments, so that the optimal far-field wavelet in the current environment can be obtained. The invention can be directly used in the field marine seismic exploration process.

Figure 201310193500

Description

一种海上地震勘探气枪阵列震源三维空间组合方法A three-dimensional space combination method of air gun array source for offshore seismic exploration

技术领域technical field

本发明涉及一种能源开发勘探方法,特别是关于一种海上地震勘探气枪阵列震源三维空间组合方法。The invention relates to an exploration method for energy development, in particular to a three-dimensional spatial combination method of an air gun array seismic source for marine seismic exploration.

背景技术Background technique

深水勘探是海上地震勘探的重要方向之一。在深水复杂地质构造条件下,提高地震资料的分辨率非常重要。除了在地震资料处理中采用特定的技术提高分辨率以外,在地震资料采集中获得高分辨率的原始地震数据更加重要。因此,海上地震勘探高分辨率震源组合的研究十分迫切。Deep water exploration is one of the important directions of offshore seismic exploration. Under the condition of complex geological structure in deep water, it is very important to improve the resolution of seismic data. In addition to using specific techniques to improve resolution in seismic data processing, it is more important to obtain high-resolution raw seismic data in seismic data acquisition. Therefore, the research on high-resolution source combination in marine seismic exploration is very urgent.

气枪震源是海上地震勘探中应用最广泛的震源,它具有成本低、清洁环保、性能稳定、高度可控性、可重复等优点。震源远场子波是衡量气枪震源好坏的极为重要的参数,也是地震数据处理解释必不可少的因素。理想的震源远场子波要求具备较高的脉冲输出、初泡比、低频能量,以及较宽的频带宽度、频谱相对平滑、较好的抑制陷波作用等特点。单支气枪激发的震源远场子波远远达不到要求,往往采用气枪阵列组合的方式来增强震源能量,压制气泡脉冲,提高震源远场子波的品质。The airgun source is the most widely used source in marine seismic exploration. It has the advantages of low cost, clean and environmentally friendly, stable performance, high controllability, and repeatability. The far-field wavelet of the source is an extremely important parameter to measure the quality of the airgun source, and it is also an essential factor for seismic data processing and interpretation. The ideal source far-field wavelet requires high pulse output, initial bubble ratio, low-frequency energy, wide frequency bandwidth, relatively smooth spectrum, and good suppression of notch effects. The source far-field wavelet excited by a single air gun is far from meeting the requirements, and the combination of air gun arrays is often used to enhance the source energy, suppress the bubble pulse, and improve the quality of the source far-field wavelet.

传统的气枪阵列组合采用平面组合方式,所有的气枪沉放在同一深度,同时激发。其存在两方面的问题,一方面,针对海上复杂地质条件,某一种组合方式往往只能在某一方面或几方面优化震源子波,而另外一些方面效果较差,得不到全面高质量的理想远场子波。另一方面,传统平面组合的气枪震源在水中激发,由于海面虚反射(即鬼波)的作用,使得震源子波的频谱存在陷波,在陷波点上能量低,严重影响了震源子波的频带宽度,限制了海上地震勘探的分辨率,对后续地震资料的处理和解释极为不利。The traditional air gun array combination adopts a plane combination method, and all air guns are placed at the same depth and fired at the same time. There are two problems. On the one hand, according to the complex geological conditions at sea, a certain combination method can only optimize the source wavelet in one or several aspects, while other aspects are less effective and cannot obtain comprehensive high-quality The ideal far-field wavelet of . On the other hand, the airgun seismic source of the traditional planar combination is excited in water. Due to the ghost reflection of the sea surface (that is, ghost waves), there is a notch in the frequency spectrum of the source wavelet, and the energy at the notch point is low, which seriously affects the source wavelet. The frequency band width limits the resolution of marine seismic exploration, which is extremely unfavorable to the processing and interpretation of subsequent seismic data.

发明内容Contents of the invention

针对上述问题,本发明的目的是提供一种针对不同海上勘探环境,能够获取最理想远场子波的海上地震勘探气枪阵列震源的三维空间组合方法。In view of the above problems, the object of the present invention is to provide a three-dimensional spatial combination method for marine seismic exploration air gun array sources that can obtain the most ideal far-field wavelet for different offshore exploration environments.

为实现上述目的,本发明采取以下技术方案:一种海上地震勘探气枪阵列震源三维空间组合方法,包括以下步骤:1)根据勘探要求、地质条件和施工要求,确定气枪阵列震源总容量和子阵列个数;2)分析气枪阵列震源子波模拟结果中的各项性能参数,根据是否达到勘探要求来判断其是否是合适的气枪阵列震源;3)确定枪阵中每个子阵列气枪类型,整个阵列使用一种以上气枪类型;4)根据气枪阵列震源总容量和施工要求,确定每个子阵列的容量和子阵列中各子阵单元的容量;5)对每个子阵列中的子阵单元进行排列组合,确定大容量气枪与小容量气枪的相对位置;6)确定各子阵列在枪阵中的位置,并且通过改变子阵列在水平面上的组合间距,对比分析不同间距情况下震源子波模拟结果,优选出最佳组合间距;7)根据勘探要求和目的层地质条件,对比分析枪阵不同沉放深度情况下震源子波模拟结果,确定气枪阵列的最佳沉放深度;8)返回步骤5),重复步骤5)~8)的过程,在沉放深度的变化范围内,模拟并优选每一种沉放深度下的最佳枪阵平面排列方式和子阵间距,对比分析不同沉放深度时的模拟子波和频谱,选取满足勘探要求的模拟子波所对应的枪阵平面排列参数;9)对上述平面排列的气枪阵列进行三维空间立体组合,在保持同一个子阵列中各子阵单元的沉放深度H都相同的情况下,通过改变各子阵列在三维立体空间中的相对位置,对比分析不同情况下的震源子波,确定气枪阵列最佳的三维空间立体组合方式和上下源沉放深度相关参数;10)对步骤9)得到的气枪阵列三维空间立体组合方式和上、下源沉放深度,进行测试并选取最佳的上源与下源之间的激发延迟时间;11)经步骤10)得到的延迟激发三维空间立体组合气枪阵列震源,即为最终的海上地震勘探气枪阵列震源三维空间组合。In order to achieve the above object, the present invention adopts the following technical solutions: a three-dimensional spatial combination method of air gun array seismic sources for marine seismic exploration, including the following steps: 1) Determine the total capacity of air gun array seismic sources and the number of sub-arrays according to exploration requirements, geological conditions and construction requirements; 2) Analyze the various performance parameters in the wavelet simulation results of the air gun array source, and judge whether it is a suitable air gun array source according to whether it meets the exploration requirements; 3) Determine the type of each sub-array air gun in the gun array, and the entire array uses More than one type of air gun; 4) Determine the capacity of each sub-array and the capacity of each sub-array unit in the sub-array according to the total capacity of the air gun array source and construction requirements; 5) Arrange and combine the sub-array units in each sub-array to determine The relative position of the large-capacity air gun and the small-capacity air gun; 6) Determine the position of each sub-array in the gun array, and by changing the combined spacing of the sub-arrays on the horizontal plane, compare and analyze the source wavelet simulation results under different spacing conditions, and optimize the Optimum combination spacing; 7) According to the exploration requirements and the geological conditions of the target layer, compare and analyze the source wavelet simulation results at different gun array sinking depths, and determine the optimal sinking depth of the air gun array; 8) Return to step 5) and repeat In the process of steps 5) to 8), simulate and optimize the best gun array plane arrangement and sub-array spacing for each deposition depth within the variation range of the deposition depth, and compare and analyze the simulated sub-arrays at different deposition depths. Wavelet and spectrum, select the plane arrangement parameters of the gun array corresponding to the simulated wavelet that meets the exploration requirements; 9) Perform three-dimensional combination of the above-mentioned air gun array arranged in the plane, and maintain the submerged depth of each subarray unit in the same subarray In the case of the same H, by changing the relative position of each sub-array in the three-dimensional space, comparing and analyzing the source wavelets in different situations, and determining the best three-dimensional combination of the airgun array and the parameters related to the depth of the upper and lower sources ; 10) Test the three-dimensional combination of the air gun array and the sinking depth of the upper and lower sources obtained in step 9) and select the best excitation delay time between the upper source and the lower source; 11) After step 10) The obtained delayed excitation three-dimensional combined air gun array source is the final three-dimensional combined air gun array source for marine seismic exploration.

所述步骤2)中,是否是合适的气枪阵列震源的判定标准包括震源子波模拟结果和性能参数,所述震源子波模拟结果包括远场子波图和频谱图,所述性能参数包括远场子波图中的主脉冲、峰峰值、初泡比、气泡周期和频谱图中的低频能量、带宽、稳定性、抑制陷波作用。In the step 2), the criterion for judging whether it is a suitable air gun array source includes the source wavelet simulation results and performance parameters. The source wavelet simulation results include far-field wavelet diagrams and spectrograms. The performance parameters include far-field The main pulse, peak-to-peak value, initial bubble ratio, bubble period in the wave diagram and low-frequency energy, bandwidth, stability, and suppression notch in the spectrum diagram.

所述步骤3)中,整个枪阵中每个子阵列气枪类型采用Bolt枪和Sleeve枪中的一种或一种以上。In the step 3), one or more types of air guns in each sub-array in the entire gun array adopt Bolt guns and Sleeve guns.

所述步骤6)中,组合间距的变化范围为4m~12m,枪阵整体呈对称分布。In the step 6), the variation range of the combined spacing is 4m-12m, and the gun array is distributed symmetrically as a whole.

所述步骤7)中,沉放深度的变化范围为4m~12m。In the step 7), the variation range of the sinking depth is 4m-12m.

所述步骤1)中,子阵列个数的选择范围为三子阵、四子阵和六子阵。In the step 1), the selection range of the number of sub-arrays is three sub-arrays, four sub-arrays and six sub-arrays.

本发明由于采取以上技术方案,其具有以下优点:1、本发明由于提供了一种较优的三维空间立体阵列组合排列方式,通过设置合理的延迟激发时间,在保证激发脉冲的有效叠加的基础上更加有效地压制了气泡脉冲,提高了远场子波的初泡比。2、本发明与传统的平面排列方式相比,能够更加有效的抑制陷波作用,提高陷波点能量,改善子波的低频和高频成分,拓展频带宽度,从而提高了地震资料的分辨率。3、本发明将不同种类的气枪在三维空间内进行立体组合排列,弥补了不同类型气枪本身的设计缺陷,能够提供更加优质的震源远场子波。4、本发明将三维空间立体组合排列方式优选为各种呈对称的几何排列,既保证了远场能量分布均匀,又便于海上地震勘探野外操作,更加方便实用。5、本发明设计出来的气枪组合排列方式,层次分明,为不同的施工条件和不同的海上勘探环境提供了最适当的气枪组合排列方式,因此能够获得当前环境下最优的远场子波。本发明可以直接用于野外海上地震勘探过程中。Because the present invention adopts the above technical scheme, it has the following advantages: 1. Since the present invention provides a better combined arrangement of three-dimensional space arrays, by setting a reasonable delayed excitation time, on the basis of ensuring the effective superposition of excitation pulses The bubble pulse is more effectively suppressed, and the initial bubble ratio of the far-field wavelet is improved. 2. Compared with the traditional planar arrangement, the present invention can more effectively suppress the notch effect, increase the energy of notch points, improve the low-frequency and high-frequency components of wavelets, and expand the frequency bandwidth, thereby improving the resolution of seismic data . 3. The present invention combines and arranges different types of air guns three-dimensionally in three-dimensional space, which makes up for the design defects of different types of air guns, and can provide more high-quality source far-field wavelets. 4. In the present invention, the three-dimensional three-dimensional combination arrangement is preferably various symmetrical geometric arrangements, which not only ensures the uniform distribution of far-field energy, but also facilitates field operations in marine seismic exploration, which is more convenient and practical. 5. The arrangement of air guns designed by the present invention has distinct levels, and provides the most appropriate combination and arrangement of air guns for different construction conditions and different offshore exploration environments, so the optimal far-field wavelet in the current environment can be obtained. The invention can be directly used in the field marine seismic exploration process.

附图说明Description of drawings

图1是本发明方法流程示意图Fig. 1 is a schematic flow sheet of the method of the present invention

图2是气枪阵列震源水平面上的排列方式示意图Figure 2 is a schematic diagram of the arrangement of the air gun array on the horizontal plane of the source

图3是气枪阵列震源的模拟远场子波图Figure 3 is the simulated far-field wavelet diagram of the airgun array source

图4是气枪阵列震源的模拟子波频谱图Figure 4 is the simulated wavelet spectrum of the airgun array source

图5是平行四边形排列的三维空间立体组合气枪震源截面示意图Figure 5 is a schematic cross-sectional view of a three-dimensional combined airgun source arranged in a parallelogram

图6是平行四边形排列的三维空间立体组合气枪震源示意图Fig. 6 is a schematic diagram of a three-dimensional combined airgun seismic source arranged in a parallelogram

图7是三维空间立体阵列震源的延时激发与同步激发模拟子波对比图Fig. 7 is a comparison diagram of simulated wavelets of time-delayed excitation and synchronous excitation of a three-dimensional stereo array source

图8是三维空间立体阵列震源的延时激发与同步激发模拟子波频谱对比图Figure 8 is a comparison of the simulated wavelet spectrum between the time-delayed excitation and synchronous excitation of the three-dimensional stereo array source

图9是三维空间立体阵列震源与平面阵列震源的模拟子波对比图Figure 9 is a comparison of simulated wavelets between the three-dimensional array source and the planar array source

图10是三维空间立体阵列震源与平面阵列震源的模拟子波频谱对比图Figure 10 is a comparison of the simulated wavelet spectrum between the three-dimensional array source and the planar array source

具体实施方式Detailed ways

如图1所示,本发明海上地震勘探气枪阵列震源三维空间组合方法,包括以下步骤:As shown in Figure 1, the three-dimensional spatial combination method of the marine seismic exploration air gun array seismic source of the present invention comprises the following steps:

1)根据勘探要求、地质条件和施工要求,确定气枪阵列震源总容量和子阵列个数N,子阵列个数的选择范围通常为三子阵、四子阵和六子阵。1) According to the exploration requirements, geological conditions and construction requirements, determine the total capacity of the air gun array source and the number N of sub-arrays. The selection range of the number of sub-arrays is usually three sub-arrays, four sub-arrays and six sub-arrays.

例如:如图2所示,针对南海某深水陡坡海底靶区,合适的气枪阵列震源所提供的远场子波要有足够高的能量和足够强的穿透能力,通过多组模型子波模拟结果对比分析,选取的最佳的气枪阵列震源为六子阵阵列,图中是阵列平面排列方式,枪阵由A-F六个子阵列组成,枪阵总容量为0.115m3For example: as shown in Figure 2, for a deep-water steep slope seabed target area in the South China Sea, the far-field wavelet provided by a suitable air gun array source must have sufficiently high energy and strong enough penetrating ability. Through the simulation results of multiple model wavelets Comparative analysis shows that the best air gun array seismic source selected is a six-subarray array. The figure shows the plane arrangement of the array. The gun array is composed of AF six sub-arrays, and the total capacity of the air gun array is 0.115m 3 .

2)通过分析气枪阵列震源子波模拟结果中的各项性能参数,根据是否达到勘探要求来判断其是否是合适的气枪阵列震源,震源子波模拟结果主要包括远场子波图(如图3所示)和频谱图(如图4所示),性能参数主要包括远场子波图中的主脉冲、峰峰值、初泡比、气泡周期和频谱图中的低频能量、带宽、稳定性、抑制陷波作用等,最佳的气枪阵列震源要求各项性能参数达到综合最优。2) By analyzing various performance parameters in the airgun array source wavelet simulation results, it is judged whether it is a suitable air gun array source according to whether it meets the exploration requirements. The source wavelet simulation results mainly include the far-field wavelet diagram (as shown in Figure 3 ) and spectrogram (as shown in Fig. 4), the performance parameters mainly include the main pulse, peak-to-peak value, initial bubble ratio, bubble period in the far-field wavelet diagram, and low-frequency energy, bandwidth, stability, and suppression trap in the spectrogram. Wave action, etc., the best air gun array source requires all performance parameters to achieve comprehensive optimization.

3)确定枪阵中每个子阵列气枪类型,目前海上勘探应用最多的气枪是Bolt(公司名称)枪和Sleeve(套筒式)枪,根据具体设计要求,整个阵列可以只用一种气枪,也可以各子阵列选取不同类型的气枪,同一子阵列内部用同一种气枪。例如:图4中A-F六个子阵列都选用Sleeve(套筒式)枪。3) Determine the type of air guns in each sub-array in the gun array. At present, the most widely used air guns in offshore exploration are Bolt (company name) guns and Sleeve (sleeve type) guns. According to specific design requirements, only one type of air guns can be used in the entire array, or Different types of air guns can be selected for each sub-array, and the same type of air gun can be used inside the same sub-array. For example: the six sub-arrays of A-F in Figure 4 all use Sleeve (sleeve) guns.

4)根据气枪阵列震源总容量和施工要求,合理安排每个子阵列的容量和子阵列中各子阵单元的容量。为了压制气泡的振荡效应,得到较好的震源子波,在每个子阵列中大容量和小容量的气枪要进行合理组合。4) According to the total capacity of the air gun array source and construction requirements, reasonably arrange the capacity of each sub-array and the capacity of each sub-array unit in the sub-array. In order to suppress the oscillation effect of the bubbles and obtain better source wavelets, the air guns with large capacity and small capacity should be combined reasonably in each sub-array.

例如:如图2所示,其中A、B、E、F子阵列容量均为1.4584*10-2m3,C、D子阵列容量均为2.8348*10-2m3,各子阵列分别由不同容量的单枪或相干枪组成,并且C、D子阵列的第四列和第五列由每支容量为3.441*10-3m3和2.458*10-3m3的大容量相干枪组成。For example: as shown in Figure 2, the capacities of sub-arrays A, B, E, and F are all 1.4584*10 -2 m 3 , and the capacities of sub-arrays C and D are both 2.8348*10 -2 m 3 , and each sub-array is composed of Composed of single guns or coherent guns with different capacities, and the fourth and fifth columns of C and D sub-arrays are composed of large-capacity coherent guns each with a capacity of 3.441*10 -3 m 3 and 2.458*10 -3 m 3 .

5)对每个子阵列中的子阵单元进行排列组合,合理安排大容量气枪(单枪或相干枪)与小容量气枪(单枪或相干枪)的相对位置。各子阵列内部,大容量气枪与小容量气枪、单枪与相干枪尽可能相间排列。5) Arrange and combine the sub-array units in each sub-array, and reasonably arrange the relative positions of large-capacity air guns (single gun or coherent gun) and small-capacity air guns (single gun or coherent gun). Inside each sub-array, large-capacity air guns and small-capacity air guns, single guns and coherent guns are arranged alternately as much as possible.

6)确定各子阵列在枪阵中的位置,并且通过改变子阵列在水平面上的组合间距D,对比分析不同间距情况下震源子波模拟结果,优选出最佳的组合间距。组合间距D的变化范围通常为4m~12m,变化量通常为1m,例如5m、6m或7m,以此类推。枪阵整体呈对称分布,经过大量的模拟实验和对比分析,根据靶区情况,优选的各子阵列之间的最佳组合间距为8m。6) Determine the position of each sub-array in the gun array, and by changing the combination spacing D of the sub-arrays on the horizontal plane, compare and analyze the seismic source wavelet simulation results under different spacing conditions, and optimize the best combination spacing. The variation range of the combination distance D is usually 4m-12m, and the variation is usually 1m, such as 5m, 6m or 7m, and so on. The overall gun array is symmetrically distributed. After a large number of simulation experiments and comparative analysis, according to the target area, the optimal combination distance between each sub-array is 8m.

通过上述步骤获得较优气枪阵列震源在水平面上的排列方式。为了使震源更接近点震源,激发后的能量在各个方向分布均匀,同时考虑野外的施工条件,可以适当调整大容量气枪在整个枪阵中的相对位置,将大容量气枪尽量排列在阵列的中部位置或靠近拖缆的位置。Through the above steps, the optimal arrangement of the air gun array seismic sources on the horizontal plane is obtained. In order to make the source closer to the point source, the excited energy is evenly distributed in all directions, and considering the construction conditions in the field, the relative position of the large-capacity air guns in the entire gun array can be adjusted appropriately, and the large-capacity air guns should be arranged in the middle of the array as much as possible. position at or near the streamer.

7)根据勘探要求和目的层地质条件,对比分析枪阵不同沉放深度H情况下震源子波模拟结果,确定气枪阵列的最佳沉放深度。沉放深度H的变化范围通常为4m~12m,变化量通常为1m,例如5m、6m或7m,以此类推。7) According to the exploration requirements and the geological conditions of the target layer, compare and analyze the source wavelet simulation results at different gun array sinking depths H, and determine the optimal sinking depth of the air gun array. The variation range of the sinking depth H is usually 4m-12m, and the variation is usually 1m, such as 5m, 6m or 7m, and so on.

8)由于沉放深度和组合间距的变化对震源子波影响都很大,执行该步骤后,根据模拟子波的情况,返回步骤5),重复步骤5)~8)的过程,在沉放深度H的变化范围内,模拟并优选每一种沉放深度H下的最佳枪阵平面排列方式和子阵间距D,对比分析不同沉放深度H时的模拟子波和频谱,选取满足勘探要求的模拟子波所对应的枪阵平面排列参数。8) Because the change of depth and combination spacing has a great influence on the source wavelet, after this step, according to the situation of the simulated wavelet, return to step 5) and repeat the process of steps 5) to 8). Within the variation range of the depth H, simulate and optimize the best gun array plane arrangement and sub-array spacing D at each depth H, compare and analyze the simulated wavelets and spectra at different depths H, and select to meet the exploration requirements The plane arrangement parameters of the gun array corresponding to the simulated wavelet of .

9)对上述平面排列的气枪阵列进行三维空间立体组合,在保持同一个子阵列中各子阵单元的沉放深度H都相同的情况下,通过改变各子阵列在三维立体空间中的相对位置,对比分析不同情况下的震源子波,确定气枪阵列最佳的三维空间立体组合方式和上下源沉放深度等相关参数。通常三维空间组合方式以对称性为原则。9) Combining the above-mentioned air gun arrays arranged in a plane in a three-dimensional space, while keeping the depth H of each sub-array unit in the same sub-array the same, by changing the relative position of each sub-array in the three-dimensional space, By comparing and analyzing the source wavelets in different situations, the best three-dimensional combination of the airgun array and the depth of the upper and lower sources are determined. Usually, the combination of three-dimensional space is based on the principle of symmetry.

例如:如图5、图6所示,是优选的平行四边形排列的三维空间立体组合阵列,其中,由A、C、E三个子阵列组成的上源沉放深度为7.5m、由B、D、F三个子阵列组成的下源沉放深度为10.5m,平均沉放深度为9m,子阵列组合间距为8m。For example: as shown in Figure 5 and Figure 6, it is a preferred three-dimensional space combined array of parallelograms, wherein the upper source sinking depth composed of three sub-arrays A, C, and E is 7.5m, and the sub-arrays composed of B, D The sub-arrays composed of three sub-arrays, F and F, have a subsidence depth of 10.5m, an average subsidence depth of 9m, and a combined spacing of sub-arrays of 8m.

10)对步骤9)得到的气枪阵列三维空间立体组合方式和上、下源沉放深度,测试并选取最佳的上源和下源之间的激发延迟时间。10) Test and select the best excitation delay time between the upper source and the lower source for the three-dimensional combination of the air gun array and the sinking depth of the upper and lower sources obtained in step 9).

例如,如图6所示,是平行四边形三维空间立体组合方式,下源B、D、F三个子阵列的激发时间比上源A、C、E三个子阵列延迟2ms。如图7、图8所示,是延时激发(下源延迟2ms)与同步激发的模拟子波和频谱对比图,从图中可以看出延时激发的子波主脉冲更大,虚反射绝对值小,有效地抑制了陷波作用。如图8所示,频谱上,延时激发的陷波点能量大大抬升,低频能量更强,频带拓宽。延迟激发的阵列子波质量明显提高,相对于同步激发方式而言,具有较大的优越性。For example, as shown in Figure 6, it is a three-dimensional parallelogram three-dimensional combination method, and the excitation time of the three sub-arrays of the lower source B, D, and F is delayed by 2 ms than that of the three sub-arrays of the upper source A, C, and E. As shown in Figure 7 and Figure 8, it is a comparison of the simulated wavelet and spectrum of delayed excitation (lower source delay 2ms) and synchronous excitation. It can be seen from the figure that the wavelet main pulse of delayed excitation is larger and ghost reflection The absolute value is small, which effectively suppresses the notch effect. As shown in Figure 8, on the frequency spectrum, the energy of the time-delayed notch point is greatly increased, the low-frequency energy is stronger, and the frequency band is broadened. The array wavelet quality of delayed excitation is obviously improved, and it has great advantages compared with the synchronous excitation method.

11)通过上述步骤优选出最佳的延迟激发三维空间立体组合气枪阵列震源,即为本发明最终要得到的海上地震勘探气枪阵列震源三维空间组合。11) Through the above steps, the best three-dimensional combined airgun array seismic source with delayed excitation is optimized, which is the three-dimensional spatial combination of air gun array seismic source for marine seismic exploration to be finally obtained in the present invention.

本发明相对于传统的平面阵列震源具有很大的优越性,比如:如图9、图10所示,在平面上排列相同的情况下,传统平面阵列震源与本发明延迟激发的三维空间立体组合震源的模拟子波和频谱对比,本发明的主脉冲和初泡比均有提高,频谱上陷波点能量大大抬升,低频能量丰富,频带拓宽,抑制了海面虚反射的陷波作用,激发的子波更优。Compared with the traditional planar array source, the present invention has great advantages. For example, as shown in Fig. 9 and Fig. 10, in the case of the same arrangement on the plane, the three-dimensional combination of the traditional planar source and the delayed excitation of the present invention Compared with the simulated wavelet and frequency spectrum of the seismic source, the main pulse and initial bubble ratio of the present invention are improved, the energy of the notch point on the frequency spectrum is greatly improved, the low-frequency energy is abundant, and the frequency band is widened, which suppresses the notch effect of the ghost reflection on the sea surface, and stimulates Wavelets are better.

根据具体情况,上述某些步骤可能需要进行的多次循环,以最终获取最优的三维空间立体组合气枪阵列震源。According to specific conditions, some of the above steps may need to be repeated multiple times to finally obtain the optimal three-dimensional combined airgun array source.

通过野外采集试验证明:较常规地震勘探,利用本发明优选的延迟激发三维空间立体组合震源采集的地震资料,分辨率提高,成像质量明显改善。The field acquisition test proves that compared with the conventional seismic exploration, the seismic data acquired by using the preferred delayed excitation three-dimensional combined seismic source of the present invention has improved resolution and significantly improved imaging quality.

上述各实施例仅用于说明本发明,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and all equivalent transformations and improvements based on the technical solutions of the present invention should not be excluded from the protection scope of the present invention.

Claims (10)

1.一种海上地震勘探气枪阵列震源三维空间组合方法,包括以下步骤:1. A three-dimensional space combination method for marine seismic exploration air gun array seismic sources, comprising the following steps: 1)根据勘探要求、地质条件和施工要求,确定气枪阵列震源总容量和子阵列个数;1) Determine the total source capacity of the air gun array and the number of sub-arrays according to the exploration requirements, geological conditions and construction requirements; 2)分析气枪阵列震源子波模拟结果中的各项性能参数,根据是否达到勘探要求来判断其是否是合适的气枪阵列震源;2) Analyze various performance parameters in the wavelet simulation results of the air gun array source, and judge whether it is a suitable air gun array source according to whether it meets the exploration requirements; 3)确定枪阵中每个子阵列气枪类型,整个阵列使用一种以上气枪类型;3) Determine the air gun type of each sub-array in the gun array, and use more than one type of air gun in the entire array; 4)根据气枪阵列震源总容量和施工要求,确定每个子阵列的容量和子阵列中各子阵单元的容量;4) Determine the capacity of each sub-array and the capacity of each sub-array unit in the sub-array according to the total capacity of the air gun array source and construction requirements; 5)对每个子阵列中的子阵单元进行排列组合,确定大容量气枪与小容量气枪的相对位置;5) Arrange and combine the sub-array units in each sub-array to determine the relative position of the large-capacity air gun and the small-capacity air gun; 6)确定各子阵列在枪阵中的位置,并且通过改变子阵列在水平面上的组合间距,对比分析不同间距情况下震源子波模拟结果,优选出最佳组合间距;6) Determine the position of each sub-array in the gun array, and by changing the combined spacing of the sub-arrays on the horizontal plane, compare and analyze the seismic source wavelet simulation results under different spacings, and optimize the best combined spacing; 7)根据勘探要求和目的层地质条件,对比分析枪阵不同沉放深度情况下震源子波模拟结果,确定气枪阵列的最佳沉放深度;7) According to the exploration requirements and the geological conditions of the target layer, compare and analyze the source wavelet simulation results under different gun array sinking depths, and determine the optimal sinking depth of the air gun array; 8)返回步骤5),重复步骤5)~8)的过程,在沉放深度的变化范围内,模拟并优选每一种沉放深度下的最佳枪阵平面排列方式和子阵间距,对比分析不同沉放深度时的模拟子波和频谱,选取满足勘探要求的模拟子波所对应的枪阵平面排列参数;8) Return to step 5), repeat the process of steps 5) to 8), simulate and optimize the best gun array plane arrangement and sub-array spacing for each depth of deposition within the variation range of the deposition depth, and compare and analyze Simulated wavelets and spectra at different depths, select gun array plane arrangement parameters corresponding to simulated wavelets that meet the exploration requirements; 9)对上述平面排列的气枪阵列进行三维空间立体组合,在保持同一个子阵列中各子阵单元的沉放深度H都相同的情况下,通过改变各子阵列在三维立体空间中的相对位置,对比分析不同情况下的震源子波,确定气枪阵列最佳的三维空间立体组合方式和上下源沉放深度相关参数;9) Combining the above-mentioned air gun arrays arranged in a plane in a three-dimensional space, while keeping the depth H of each sub-array unit in the same sub-array the same, by changing the relative position of each sub-array in the three-dimensional space, Comparing and analyzing the source wavelets in different situations, and determining the best three-dimensional combination of air gun arrays and the parameters related to the sinking depth of the upper and lower sources; 10)对步骤9)得到的气枪阵列三维空间立体组合方式和上、下源沉放深度,进行测试并选取最佳的上源与下源之间的激发延迟时间;10) Test the three-dimensional combination of the air gun array and the sinking depth of the upper and lower sources obtained in step 9), and select the best excitation delay time between the upper source and the lower source; 11)经步骤10)得到的延迟激发三维空间立体组合气枪阵列震源,即为最终的海上地震勘探气枪阵列震源三维空间组合。11) The delayed excitation three-dimensional combined airgun array source obtained through step 10) is the final three-dimensional combination of the air gun array source for marine seismic exploration. 2.如权利要求1所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤2)中,是否是合适的气枪阵列震源的判定标准包括震源子波模拟结果和性能参数,所述震源子波模拟结果包括远场子波图和频谱图,所述性能参数包括远场子波图中的主脉冲、峰峰值、初泡比、气泡周期和频谱图中的低频能量、带宽、稳定性、抑制陷波作用。2. A method for three-dimensional space combination of air gun array sources for marine seismic exploration as claimed in claim 1, characterized in that: in said step 2), the criteria for judging whether it is a suitable air gun array source includes source wavelet simulation results and Performance parameters, the source wavelet simulation results include far-field wavelet diagrams and spectrograms, the performance parameters include the main pulse in the far-field wavelet diagram, peak-to-peak value, initial bubble ratio, bubble period, and low-frequency energy in the spectrum diagram, Bandwidth, stability, suppression notch effect. 3.如权利要求1所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤3)中,整个枪阵中每个子阵列气枪类型采用Bolt枪和Sleeve枪中的一种或一种以上。3. The three-dimensional space combination method for marine seismic exploration air gun array sources as claimed in claim 1, characterized in that: in the step 3), each sub-array air gun type in the entire gun array adopts the Bolt gun and the Sleeve gun One or more than one. 4.如权利要求2所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤3)中,整个枪阵中每个子阵列气枪类型采用Bolt枪和Sleeve枪中的一种或一种以上。4. The three-dimensional spatial combination method of air gun array seismic source for marine seismic exploration as claimed in claim 2, characterized in that: in the step 3), each sub-array air gun type in the entire gun array adopts the Bolt gun and the Sleeve gun One or more than one. 5.如权利要求1或2或3或4所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤6)中,组合间距的变化范围为4m~12m,枪阵整体呈对称分布。5. A three-dimensional space combination method for marine seismic exploration air gun array sources as claimed in claim 1 or 2 or 3 or 4, characterized in that: in step 6), the range of combination spacing is 4m to 12m, and the gun The array is distributed symmetrically as a whole. 6.如权利要求1或2或3或4所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤7)中,沉放深度的变化范围为4m~12m。6. A three-dimensional space combination method for marine seismic exploration air gun array sources as claimed in claim 1 or 2 or 3 or 4, characterized in that: in the step 7), the variation range of the sinking depth is 4m to 12m. 7.如权利要求5所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤7)中,沉放深度的变化范围为4m~12m。7 . The method for three-dimensional space combination of air gun array sources for marine seismic exploration as claimed in claim 5 , characterized in that: in the step 7), the variation range of the sinking depth is 4m to 12m. 8 . 8.如权利要求1或2或3或4或7所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤1)中,子阵列个数的选择范围为三子阵、四子阵和六子阵。8. A three-dimensional space combination method for marine seismic exploration air gun array sources as claimed in claim 1 or 2 or 3 or 4 or 7, characterized in that: in the step 1), the selection range of the number of sub-arrays is three sub-arrays, four-sub-arrays and six-sub-arrays. 9.如权利要求5所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤1)中,子阵列个数的选择范围为三子阵、四子阵和六子阵。9. A method for three-dimensional space combination of air gun array sources for marine seismic exploration as claimed in claim 5, characterized in that: in step 1), the selection range of the number of sub-arrays is three sub-arrays, four sub-arrays and six sub-arrays Array. 10.如权利要求6所述的一种海上地震勘探气枪阵列震源三维空间组合方法,其特征在于:所述步骤1)中,子阵列个数的选择范围为三子阵、四子阵和六子阵。10. A three-dimensional spatial combination method for marine seismic exploration air gun array sources as claimed in claim 6, characterized in that: in step 1), the selection range of the number of sub-arrays is three sub-arrays, four sub-arrays and six sub-arrays Array.
CN2013101935007A 2013-05-23 2013-05-23 Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration Pending CN103454672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101935007A CN103454672A (en) 2013-05-23 2013-05-23 Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101935007A CN103454672A (en) 2013-05-23 2013-05-23 Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration

Publications (1)

Publication Number Publication Date
CN103454672A true CN103454672A (en) 2013-12-18

Family

ID=49737242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101935007A Pending CN103454672A (en) 2013-05-23 2013-05-23 Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration

Country Status (1)

Country Link
CN (1) CN103454672A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324703A (en) * 2016-08-08 2017-01-11 中国石油天然气集团公司 Air gun fault detection method and system
CN104849747B (en) * 2015-05-19 2017-06-30 中国海洋石油总公司 A kind of method and apparatus for optimizing air-gun array
CN106932815A (en) * 2017-05-06 2017-07-07 中国海洋大学 Ocean high-resolution system vertical array spark source
CN106932814A (en) * 2017-05-06 2017-07-07 中国海洋大学 Ocean high-resolution system vertical time delay spark source
CN108369286A (en) * 2015-10-17 2018-08-03 斯蒂芬·凯尔明斯基 Method and apparatus for tuning the rise time of an initial pulse of an air gun
CN108427139A (en) * 2018-02-07 2018-08-21 中国海洋大学 A method of opening up frequency using the realization of air gun source bubble effect
CN108777582A (en) * 2018-05-04 2018-11-09 中国地震局地球物理研究所 Air gun array coding control method and system
CN106461803B (en) * 2014-03-20 2019-01-18 施蓝姆伯格技术公司 Air-gun array data reconstruction Pulse Source seismic data is ignited from Annual distribution formula
CN109239769A (en) * 2018-11-01 2019-01-18 国家海洋局第二海洋研究所 Utilize the air gun source design method of depth and combined capacity compacting residual bubble
CN110579791A (en) * 2019-09-09 2019-12-17 自然资源部第二海洋研究所 A method to reduce the directionality of air gun source wavelets by optimizing the spatial distribution of air guns
CN110687617A (en) * 2019-08-26 2020-01-14 中国海洋大学 A far-field wavelet simulation method, face evaluation method and device of an air gun array for seismic exploration
CN111443386A (en) * 2019-01-16 2020-07-24 中国石油化工股份有限公司 Broadband acquisition method for three-dimensional seismic source of marine earthquake
CN112114355A (en) * 2019-06-21 2020-12-22 中国石油天然气集团有限公司 Air gun array energy center determination method and device
CN112180432A (en) * 2020-09-01 2021-01-05 中国科学院深圳先进技术研究院 High-efficiency electric spark seismic source system based on corona discharge and setting method
CN112180431A (en) * 2019-07-04 2021-01-05 中石化海洋石油工程有限公司上海物探分公司 Air gun seismic source setting method and device and machine readable storage medium
CN112558181A (en) * 2019-09-26 2021-03-26 中国石油天然气集团有限公司 Sensitivity calibration method and device for near-field detector of marine air gun
CN113655519A (en) * 2021-08-23 2021-11-16 中海石油(中国)有限公司 Method and system for acquiring throttling action coefficient and gas release efficiency parameters of air gun
CN114089412A (en) * 2021-11-05 2022-02-25 青岛海洋地质研究所 Improved quantitative evaluation method for three-dimensional spatial distribution of air gun array sound field
CN114488309A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 Method, device, equipment and medium for determining sinking depth of air gun seismic source-cable combination
CN114895349A (en) * 2022-04-23 2022-08-12 中国海洋大学 Multi-target-oriented observation system and design method thereof
WO2023201866A1 (en) * 2022-04-23 2023-10-26 中国海洋大学 Marine controllable coded air gun seismic source and design method
GB2629463A (en) * 2022-04-23 2024-10-30 Ocean Univ China Multi-target-oriented observation system and design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727956A (en) * 1983-01-19 1988-03-01 Shell Oil Company Method and apparatus for signal improvement in marine seismic exploration
CN1042421A (en) * 1988-10-24 1990-05-23 埃克森生产研究公司 Marine seismic source frame
CN102103214A (en) * 2009-12-22 2011-06-22 Pgs地球物理公司 Directionally and depth steerable seismic source array
US20110299360A1 (en) * 2006-09-22 2011-12-08 Roy Malcolm Lansley Seismic array with spaced sources having variable pressure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727956A (en) * 1983-01-19 1988-03-01 Shell Oil Company Method and apparatus for signal improvement in marine seismic exploration
CN1042421A (en) * 1988-10-24 1990-05-23 埃克森生产研究公司 Marine seismic source frame
US20110299360A1 (en) * 2006-09-22 2011-12-08 Roy Malcolm Lansley Seismic array with spaced sources having variable pressure
CN102103214A (en) * 2009-12-22 2011-06-22 Pgs地球物理公司 Directionally and depth steerable seismic source array

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
何汉漪: "《海上高分辨率地震技术及其应用》", 30 June 2001, article "高分辨率地震采集技术", pages: 52 - 77 *
李绪宣,王建花: "《第四届中国石油地质年会论文集(2011北京)》", 30 November 2012, article "海上气枪阵列震源子波数值模拟研究与应用", pages: 482 - 495 *
李绪宣: "海上气枪阵列震源子波数值模拟研究", 《中国海上油气》, vol. 21, no. 4, 31 August 2009 (2009-08-31) *
杨凯: "深水立体延迟激发气枪震源的设计与应用", 《工程地球物理学报》, vol. 8, no. 6, 31 December 2011 (2011-12-31) *
杨振武: "《海上石油地震勘探 资料采集与处理》", 31 July 2012, article "上下源、上下缆资料采集基本原理" *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461803B (en) * 2014-03-20 2019-01-18 施蓝姆伯格技术公司 Air-gun array data reconstruction Pulse Source seismic data is ignited from Annual distribution formula
US10557955B2 (en) 2014-03-20 2020-02-11 Westerngeco L.L.C. Reconstructing impulsive source seismic data from time distributed firing airgun array data
CN104849747B (en) * 2015-05-19 2017-06-30 中国海洋石油总公司 A kind of method and apparatus for optimizing air-gun array
CN108369286A (en) * 2015-10-17 2018-08-03 斯蒂芬·凯尔明斯基 Method and apparatus for tuning the rise time of an initial pulse of an air gun
CN106324703A (en) * 2016-08-08 2017-01-11 中国石油天然气集团公司 Air gun fault detection method and system
CN106932815B (en) * 2017-05-06 2023-07-21 中国海洋大学 Marine high-resolution three-dimensional vertical array EDM source
CN106932815A (en) * 2017-05-06 2017-07-07 中国海洋大学 Ocean high-resolution system vertical array spark source
CN106932814A (en) * 2017-05-06 2017-07-07 中国海洋大学 Ocean high-resolution system vertical time delay spark source
CN108427139A (en) * 2018-02-07 2018-08-21 中国海洋大学 A method of opening up frequency using the realization of air gun source bubble effect
CN108777582A (en) * 2018-05-04 2018-11-09 中国地震局地球物理研究所 Air gun array coding control method and system
CN108777582B (en) * 2018-05-04 2020-07-24 中国地震局地球物理研究所 Air gun combination coding control method and system
CN109239769A (en) * 2018-11-01 2019-01-18 国家海洋局第二海洋研究所 Utilize the air gun source design method of depth and combined capacity compacting residual bubble
CN111443386A (en) * 2019-01-16 2020-07-24 中国石油化工股份有限公司 Broadband acquisition method for three-dimensional seismic source of marine earthquake
CN112114355B (en) * 2019-06-21 2024-03-01 中国石油天然气集团有限公司 Air gun array energy center determining method and device
CN112114355A (en) * 2019-06-21 2020-12-22 中国石油天然气集团有限公司 Air gun array energy center determination method and device
CN112180431A (en) * 2019-07-04 2021-01-05 中石化海洋石油工程有限公司上海物探分公司 Air gun seismic source setting method and device and machine readable storage medium
CN112180431B (en) * 2019-07-04 2024-10-18 中石化海洋石油工程有限公司上海物探分公司 Air gun focus setting method, device and machine-readable storage medium
CN110687617A (en) * 2019-08-26 2020-01-14 中国海洋大学 A far-field wavelet simulation method, face evaluation method and device of an air gun array for seismic exploration
WO2021046969A1 (en) * 2019-09-09 2021-03-18 自然资源部第二海洋研究所 Method for reducing directivity of source wavelet of air gun by means of optimizing spatial distribution of air gun
US12197826B2 (en) 2019-09-09 2025-01-14 Second Institute of Oceanography, Ministry of Natural Resources Method for reducing inline directivity of air-gun source signature by optimizing spatial distribution of air-guns
CN110579791A (en) * 2019-09-09 2019-12-17 自然资源部第二海洋研究所 A method to reduce the directionality of air gun source wavelets by optimizing the spatial distribution of air guns
CN112558181A (en) * 2019-09-26 2021-03-26 中国石油天然气集团有限公司 Sensitivity calibration method and device for near-field detector of marine air gun
CN112180432B (en) * 2020-09-01 2023-10-20 中国科学院深圳先进技术研究院 High-efficiency electric spark source system based on corona discharge and setting method
CN112180432A (en) * 2020-09-01 2021-01-05 中国科学院深圳先进技术研究院 High-efficiency electric spark seismic source system based on corona discharge and setting method
CN114488309A (en) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 Method, device, equipment and medium for determining sinking depth of air gun seismic source-cable combination
CN113655519B (en) * 2021-08-23 2023-10-13 中海石油(中国)有限公司 Air gun throttling action coefficient and gas release efficiency parameter acquisition method and system
CN113655519A (en) * 2021-08-23 2021-11-16 中海石油(中国)有限公司 Method and system for acquiring throttling action coefficient and gas release efficiency parameters of air gun
CN114089412A (en) * 2021-11-05 2022-02-25 青岛海洋地质研究所 Improved quantitative evaluation method for three-dimensional spatial distribution of air gun array sound field
WO2023201869A1 (en) * 2022-04-23 2023-10-26 中国海洋大学 Multi-object-oriented observation system and design method therefor
WO2023201866A1 (en) * 2022-04-23 2023-10-26 中国海洋大学 Marine controllable coded air gun seismic source and design method
CN114895349A (en) * 2022-04-23 2022-08-12 中国海洋大学 Multi-target-oriented observation system and design method thereof
GB2629463A (en) * 2022-04-23 2024-10-30 Ocean Univ China Multi-target-oriented observation system and design method thereof

Similar Documents

Publication Publication Date Title
CN103454672A (en) Air gun array earthquake source three-dimensional space combination method for offshore earthquake exploration
CN106291709B (en) A kind of marine streamer wideband wide-azimuth method of seismic prospecting
CN104614765B (en) Design method for enhancing seismic waves to stimulate illumination
CN106154276B (en) Deep seafloor parameter inversion method based on bottom reverberation and propagation loss
CN103852782B (en) A kind of method for determining optimal air-gun array
US9678233B2 (en) Seismic source coding, activation, and acquisition
CN110687617B (en) A far-field wavelet simulation method, face evaluation method and device of an air gun array for seismic exploration
Wang et al. Review of underwater acoustic propagation models.
Chakraborty et al. Thunder Horse ocean-bottom nodes acquisition design
CN103984007B (en) Optimal design method of directional seismic wave time-delay parameters
Shen et al. Modeling of multi-depth slanted airgun source for deghosting
Huang et al. Analysis of sound speed profile in the South China Sea based on empirical orthogonal function algorithm
CN103344986B (en) The three-dimensional submatrix of a kind of marine airgun postpones exciting method
Hardwick et al. A 3D illumination study to investigate fault shadow effects over the Hoop Fault Complex
Cogan et al. Normalization strategies for reverse-time migration
WO2016124963A1 (en) Method and seismic source with reduced shooting rate
CN206710620U (en) Ocean high-resolution system vertical array spark source
Elboth et al. The first Broadband Marine 3D vibrator survey
Tao et al. Study on 3D simulation of wave fields in acoustic reflection image logging
CN106932815B (en) Marine high-resolution three-dimensional vertical array EDM source
CN204374436U (en) Many focus many towing cables activation schedule control system
Rollins et al. Calibrating 3D VSP image area with finite difference modeling–A case study in Gulf of Mexico
CN116559290B (en) Small-scale submarine sediment in-situ acoustic measurement experimental device
Li et al. Numerical simulation of the multi-level air-gun array based on over/under source
CN106980138A (en) Ocean high-resolution system vertical energy combination spark source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20131218

RJ01 Rejection of invention patent application after publication