CN103435639A - Axial nucleoside asymmetrically-modified silicon phthalocyanine and preparation method and application thereof - Google Patents

Axial nucleoside asymmetrically-modified silicon phthalocyanine and preparation method and application thereof Download PDF

Info

Publication number
CN103435639A
CN103435639A CN2013103743497A CN201310374349A CN103435639A CN 103435639 A CN103435639 A CN 103435639A CN 2013103743497 A CN2013103743497 A CN 2013103743497A CN 201310374349 A CN201310374349 A CN 201310374349A CN 103435639 A CN103435639 A CN 103435639A
Authority
CN
China
Prior art keywords
axial
phthalocyanine
silicon phthalocyanine
nucleosides
photodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103743497A
Other languages
Chinese (zh)
Other versions
CN103435639B (en
Inventor
黄剑东
石杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201310374349.7A priority Critical patent/CN103435639B/en
Publication of CN103435639A publication Critical patent/CN103435639A/en
Application granted granted Critical
Publication of CN103435639B publication Critical patent/CN103435639B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明公开了一种轴向核苷不对称修饰的硅酞菁及其制备方法和应用,属于光动力药物或光敏剂制备领域。本发明提供的轴向核苷不对称修饰硅酞菁可做为光敏剂用于光动力治疗、光动力诊断或光动力消毒,其具有轴向不对称取代的结构特点,显示了良好的两亲性和极高的光动力活性。The invention discloses a silicon phthalocyanine asymmetrically modified by axial nucleosides, a preparation method and application thereof, and belongs to the field of preparation of photodynamic drugs or photosensitizers. The axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention can be used as a photosensitizer for photodynamic therapy, photodynamic diagnosis or photodynamic disinfection. It has the structural characteristics of axial asymmetric substitution and shows good amphiphile and high photodynamic activity.

Description

一种轴向核苷不对称修饰的硅酞菁及其制备方法和应用A kind of axial nucleoside asymmetrically modified silicon phthalocyanine and its preparation method and application

技术领域 technical field

本发明属于光动力药物或光敏剂制备领域,具体涉及一种轴向核苷不对称修饰的硅酞菁及其制备方法和应用。 The invention belongs to the field of preparation of photodynamic drugs or photosensitizers, and in particular relates to a silicon phthalocyanine asymmetrically modified by axial nucleosides and a preparation method and application thereof.

背景技术 Background technique

酞菁化合物是一类重要的功能材料,通过不同的结构修饰可以发展为不同用途的功能材料。在酞菁环上引入合适取代基和中心离子,便有可能开发为氧化催化剂、脱硫催化剂、非线性光学材料、光敏药物、液晶材料、光记录材料或光导材料,但是如何调控取代基和中心离子来获得目标功能化合物,却是需要创造性的工作。 Phthalocyanine compounds are an important class of functional materials, which can be developed into functional materials for different purposes through different structural modifications. By introducing suitable substituents and central ions on the phthalocyanine ring, it is possible to develop oxidation catalysts, desulfurization catalysts, nonlinear optical materials, photosensitive drugs, liquid crystal materials, optical recording materials or photoconductive materials, but how to regulate substituents and central ions To obtain the target functional compound, it requires creative work.

酞菁化合物作为光敏剂在光动力治疗(Photodynamic Therapy)中的应用前景引人瞩目。所谓的光动力治疗(或称光动力疗法),实质上,是光敏剂(或称光敏药物)的光敏化反应在医学领域的应用。其作用过程是,先将光敏剂注入机体,过一段时间后(这段等待时间是让药物在靶体中相对富集),用特定波长的光照射靶体(对体腔内的目标可借助光纤等介入技术导入光源),富集在靶体中的光敏剂在光激发下,启发了一系列光物理光化学反应,产生活性氧,进而破坏靶体(例如癌细胞和癌组织)。 The application prospect of phthalocyanine compounds as photosensitizers in photodynamic therapy (Photodynamic Therapy) is attracting attention. The so-called photodynamic therapy (or photodynamic therapy), in essence, is the application of the photosensitization reaction of photosensitizers (or photosensitizers) in the medical field. The process of action is to first inject the photosensitizer into the body, and after a period of time (this waiting time is to allow the drug to be relatively enriched in the target body), the target body is irradiated with light of a specific wavelength (for the target in the body cavity, optical fiber can be used to Under the light excitation, the photosensitizer enriched in the target body inspires a series of photophysical and photochemical reactions to generate reactive oxygen species, thereby destroying the target body (such as cancer cells and cancer tissues).

在一些发达国家,光动力治疗已成为治疗癌症的第四种常规方法。与传统的疗法,如外科手术、化疗、放射治疗相比,光动力学治疗最大的优点是可对癌组织进行选择性破坏而不必施行外科手术,且副作用小,因而备受瞩目。 In some developed countries, photodynamic therapy has become the fourth conventional method of treating cancer. Compared with traditional therapies, such as surgery, chemotherapy, and radiation therapy, the biggest advantage of photodynamic therapy is that it can selectively destroy cancer tissue without surgery, and the side effects are small, so it has attracted much attention.

同时,近年来的研究还表明,光动力疗法还可有效地治疗细菌感染、口腔疾病、黄斑变性眼病、动脉硬化、创伤感染以及皮肤病等非癌症疾病。光敏剂还可以用于光动力消毒,最主要的是用于水体、血液和血液衍生物的灭菌消毒。同时,利用光敏剂的荧光性质进行光动力诊断,也是光敏药物的一个重要用途。 At the same time, research in recent years has also shown that photodynamic therapy can also effectively treat non-cancer diseases such as bacterial infection, oral disease, macular degeneration eye disease, arteriosclerosis, trauma infection and skin disease. Photosensitizers can also be used for photodynamic disinfection, most importantly for water, blood and blood derivatives. At the same time, using the fluorescence properties of photosensitizers for photodynamic diagnosis is also an important application of photosensitizers.

光动力治疗的关键在于光敏剂,光动力疗效取决于光敏剂的优劣。基于光动力治疗在治疗肿瘤和其它疾病方面的潜力,科学界普遍认为,光动力治疗将成为21世纪的重要医疗方法,那么,作为光动力治疗核心的光敏剂将成为一个重要而诱人的高新技术产业。 The key to photodynamic therapy is the photosensitizer, and the photodynamic efficacy depends on the quality of the photosensitizer. Based on the potential of photodynamic therapy in the treatment of tumors and other diseases, the scientific community generally believes that photodynamic therapy will become an important medical method in the 21st century. Then, the photosensitizer as the core of photodynamic therapy will become an important and attractive new technology. technology industry.

至今,获准在临床上正式使用的光敏剂主要为血卟啉衍生物。在美国、加拿大、德国、日本等国,使用的是Photofrin(美国FDA于1995年正式批准Photofrin用于临床治疗癌症),它是从母牛血液中提取的并进行化学改性的血卟啉低聚物的混合物。血卟啉衍生物显示了一定的疗效,但也暴露了严重缺点:最大吸收波长(380-420nm)不在对人体组织透过率较佳的红光区(650-800nm),皮肤光毒性大,是混合物、组成不稳定等,因而临床应用受到限制,所以开发新一代光动力药物(光敏剂)是国际上的研究热点。 So far, the photosensitizers approved for clinical use are mainly hematoporphyrin derivatives. In the United States, Canada, Germany, Japan and other countries, Photofrin is used (U.S. FDA officially approved Photofrin for clinical treatment of cancer in 1995), which is extracted from cow blood and chemically modified with low blood porphyrin. Polymer mixture. Hematoporphyrin derivatives have shown certain curative effects, but also exposed serious disadvantages: the maximum absorption wavelength (380-420nm) is not in the red light region (650-800nm) with better transmittance to human tissue, and the skin has high phototoxicity. It is a mixture and its composition is unstable, so its clinical application is limited, so the development of a new generation of photodynamic drugs (photosensitizers) is an international research hotspot.

由于具有最大吸收波长位于易透过人体组织的红光区域和光敏化能力强等特点,酞菁化合物作为光敏剂的应用已引起重视。在各种酞菁化合物中,由于以下原因硅酞菁作为新型光敏剂的应用受到高度重视:(1)硅酞菁可以在轴向引入二个取代基,从而能更有效地阻止酞菁环聚集,保证酞菁光敏化能力的发挥;(2)硅的生物相容性较高、无暗毒性。美国Case Western Reserve 大学研制的轴向取代酞菁硅(Pc4)显示了较高光动力活性,已进入I期临床试验。但是,Pc4的合成路线复杂,制备成本高,稳定性差。因此,迫切需要筛选新的光敏活性高、制备简便、成本低的轴向修饰硅酞菁光敏剂。另外,目前临床试验的光敏剂(包括酞菁类光敏剂)还缺乏对肿瘤组织和癌细胞的选择性,也是当前需要重点克服的问题。 Due to the characteristics that the maximum absorption wavelength is located in the red light region that is easy to pass through human tissues and the photosensitization ability is strong, the application of phthalocyanine compounds as photosensitizers has attracted attention. Among various phthalocyanine compounds, the application of silicon phthalocyanine as a new photosensitizer has been highly valued for the following reasons: (1) Silicon phthalocyanine can introduce two substituents in the axial direction, which can more effectively prevent the aggregation of phthalocyanine rings , to ensure the photosensitization ability of phthalocyanine; (2) Silicon has high biocompatibility and no dark toxicity. The axially substituted phthalocyanine silicon (Pc4) developed by Case Western Reserve University in the United States has shown high photodynamic activity and has entered phase I clinical trials. However, the synthesis route of Pc4 is complicated, the preparation cost is high, and the stability is poor. Therefore, it is urgent to screen new axially modified silicon phthalocyanine photosensitizers with high photosensitizing activity, easy preparation and low cost. In addition, the current photosensitizers (including phthalocyanine photosensitizers) in clinical trials still lack selectivity to tumor tissues and cancer cells, which is also a problem that needs to be overcome at present.

专利号为ZL200410013289.7和ZL200610200598.4的中国发明专利介绍了一系列轴向取代硅酞菁化合物、它的制备及其在光动力治疗中的应用(该发明与本申请为同一发明人)。但是,由于光敏剂和光动力治疗潜在的巨大经济社会价值、极大的应用范围以及治疗病灶的细化,制备出更多具有光敏活性的轴向取代硅酞菁化合物作为候选药物是十分必要的。 Chinese invention patents with patent numbers ZL200410013289.7 and ZL200610200598.4 introduce a series of axially substituted silicon phthalocyanine compounds, their preparation and their application in photodynamic therapy (this invention is the same inventor as this application). However, due to the potential huge economic and social value of photosensitizers and photodynamic therapy, the huge range of applications, and the refinement of treatment lesions, it is necessary to prepare more axially substituted silicon phthalocyanine compounds with photosensitizing activity as drug candidates.

特别值得一提的是,欧美、日本等国纷纷加大对新型光敏剂的投入和知识产权的渗透力度,在这种情况下,只有高度重视拥有自主知识产权药物的开发和加快专利保护步伐,才能保证我国在光动力治疗这一重要医疗领域的自主权和制高点。    It is particularly worth mentioning that Europe, America, Japan and other countries have increased their investment in new photosensitizers and the penetration of intellectual property rights. Under such circumstances, only by attaching great importance to the development of drugs with independent intellectual property rights and accelerating the pace of patent protection, In order to ensure my country's autonomy and commanding heights in the important medical field of photodynamic therapy. the

发明内容 Contents of the invention

本发明的目的在于提供一种轴向核苷不对称修饰的硅酞菁及其制备方法和应用。本发明的酞菁硅具有轴向不对称取代的结构特点,显示了良好的两亲性和极高的光动力活性,作为光敏剂应用具有显著优势。 The object of the present invention is to provide a silicon phthalocyanine asymmetrically modified by axial nucleoside and its preparation method and application. The silicon phthalocyanine of the present invention has structural characteristics of axial asymmetric substitution, shows good amphiphilicity and high photodynamic activity, and has significant advantages in being used as a photosensitizer.

为实现上述目的,本发明采用如下技术方案: To achieve the above object, the present invention adopts the following technical solutions:

一种轴向核苷不对称修饰的硅酞菁,其结构式如下: A silicon phthalocyanine asymmetrically modified by axial nucleosides, its structural formula is as follows:

Figure 2013103743497100002DEST_PATH_IMAGE001
Figure 2013103743497100002DEST_PATH_IMAGE001
,

其中轴向取代基R1,R2分别选自以下基团:  Wherein the axial substituents R 1 and R 2 are respectively selected from the following groups:

R1

Figure 2013103743497100002DEST_PATH_IMAGE003
Figure 801948DEST_PATH_IMAGE004
Figure 2013103743497100002DEST_PATH_IMAGE005
中的一种; R1 is ,
Figure 2013103743497100002DEST_PATH_IMAGE003
,
Figure 801948DEST_PATH_IMAGE004
,
Figure 2013103743497100002DEST_PATH_IMAGE005
one of

R2

Figure 519368DEST_PATH_IMAGE006
Figure 2013103743497100002DEST_PATH_IMAGE007
Figure 288479DEST_PATH_IMAGE008
Figure 2013103743497100002DEST_PATH_IMAGE009
中的一种。 R2 is
Figure 519368DEST_PATH_IMAGE006
,
Figure 2013103743497100002DEST_PATH_IMAGE007
,
Figure 288479DEST_PATH_IMAGE008
,
Figure 2013103743497100002DEST_PATH_IMAGE009
, One of.

所述的轴向核苷不对称修饰的硅酞菁为轴向不对称二取代的硅酞菁,轴向取代基通过氧原子与硅相连;硅酞菁或称酞菁硅,是中心离子为硅的酞菁化合物。酞菁,英文名称phthalocyanine,是四苯并四氮杂卟啉的简称。所述的轴向核苷不对称修饰的硅酞菁的结构特点是:轴向取代基一边是尿苷、胞苷或腺苷衍生物,一边是氨基乙基苯氧基、或三乙二醇或四乙二醇衍生物。 The silicon phthalocyanine asymmetrically modified by the axial nucleoside is an axially asymmetric disubstituted silicon phthalocyanine, and the axial substituent is connected to silicon through an oxygen atom; silicon phthalocyanine, or silicon phthalocyanine, is a central ion of Phthalocyanine compounds of silicon. Phthalocyanine, the English name phthalocyanine, is the abbreviation of tetrabenzotetraazeporphyrin. The structural characteristics of the silicon phthalocyanine asymmetrically modified by the axial nucleoside are: one side of the axial substituent is uridine, cytidine or adenosine derivative, and the other side is aminoethylphenoxy or triethylene glycol or tetraethylene glycol derivatives.

所述的轴向核苷不对称修饰硅酞菁的制备方法,包括以下步骤: The preparation method of the described axial nucleoside asymmetrically modified silicon phthalocyanine comprises the following steps:

(1)以二[4-(2-氨基乙基)苯氧基]酞菁硅和2’,3’-O-异丙基-尿苷、2’,3’-O-异丙基-胞苷、2’,3’-O-异丙基-腺苷、2’,3’-O-异丙基-2-氯腺苷中的一种为反应物,两者的投料摩尔比为1:1~10, 以甲苯、二甲苯或二氧六环为溶剂,在氮气的保护下,100~130℃反应1~20小时,通过溶剂清洗和柱层析分离去除过量的原料和杂质,得到轴向核苷和氨基乙基苯氧基不对称修饰硅酞菁; (1) Bis[4-(2-aminoethyl)phenoxy]phthalocyanine silicon and 2',3'-O-isopropyl-uridine, 2',3'-O-isopropyl- One of cytidine, 2',3'-O-isopropyl-adenosine, and 2',3'-O-isopropyl-2-chloroadenosine is the reactant, and the molar ratio of the two is 1:1~10, use toluene, xylene or dioxane as solvent, under the protection of nitrogen, react at 100~130°C for 1~20 hours, remove excess raw materials and impurities by solvent cleaning and column chromatography, Obtain axial nucleoside and aminoethylphenoxy asymmetrically modified silicon phthalocyanine;

(2)以轴向核苷和氨基乙基苯氧基不对称修饰硅酞菁和三乙二醇、三乙二醇单甲醚、四乙二醇、四乙二醇单甲醚中的一种为反应物,两者的投料摩尔比为1:1~10, 以甲苯、二甲苯或二氧六环为溶剂,在氮气的保护下,100~130℃反应1~20小时,通过溶剂清洗和柱层析分离去除过量的原料和杂质,得到轴向核苷和低聚乙二醇不对称修饰硅酞菁。 (2) Asymmetrically modify silicon phthalocyanine and one of triethylene glycol, triethylene glycol monomethyl ether, tetraethylene glycol, and tetraethylene glycol monomethyl ether with axial nucleosides and aminoethylphenoxy The first is the reactant, the molar ratio of the two is 1:1~10, with toluene, xylene or dioxane as the solvent, under the protection of nitrogen, react at 100~130°C for 1~20 hours, and wash with the solvent and column chromatography to remove excess raw materials and impurities to obtain axial nucleoside and oligoethylene glycol asymmetrically modified silicon phthalocyanine.

如上所述的轴向核苷不对称修饰的硅酞菁应用于制备光动力药物或光敏剂。所述光敏剂,在生物医药领域可称为光敏药剂,或称光敏药物制剂,又称为光动力药剂。所制备的光动力药物或光敏剂可用于光动力治疗、光动力诊断或光动力消毒。所述的光动力治疗可以是恶性肿瘤的光动力治疗,或是良性肿瘤的光动力治疗,或是白血病的骨髓体外光动力净化治疗,或是非癌症疾病的光动力治疗。所述的非癌症疾病,可以是细菌感染,或是口腔疾病,或是黄斑变性眼病,或是动脉硬化,或是创伤感染,或是皮肤病,或是病毒感染。所述的光动力消毒可以是血液或血液衍生物的光动力灭菌净化,或是水的光动力灭菌消毒,或是医用或生活用器的光动力消毒。 The silicon phthalocyanine asymmetrically modified by axial nucleosides as described above is applied to the preparation of photodynamic drugs or photosensitizers. The photosensitizer may be called a photosensitizer in the field of biomedicine, or a photosensitizer pharmaceutical preparation, also called a photodynamic drug. The prepared photodynamic drug or photosensitizer can be used for photodynamic therapy, photodynamic diagnosis or photodynamic disinfection. The photodynamic therapy may be the photodynamic therapy of malignant tumors, or the photodynamic therapy of benign tumors, or the extracorporeal photodynamic purification therapy of leukemia, or the photodynamic therapy of non-cancer diseases. The non-cancer diseases may be bacterial infections, oral diseases, macular degeneration eye diseases, arteriosclerosis, wound infections, skin diseases, or viral infections. The photodynamic disinfection can be photodynamic sterilization and purification of blood or blood derivatives, or photodynamic sterilization of water, or photodynamic disinfection of medical or domestic appliances.

制备光动力药物或光敏剂的方法是:用水,或水和其它物质的混和溶液,其中其它物质的质量分数不高于10%,作为溶剂,溶解轴向核苷不对称修饰的硅酞菁,配制成含一定浓度的光敏药剂,轴向核苷不对称修饰的硅酞菁的浓度不高于其饱和浓度;在制成的溶液中加入抗氧化剂、缓冲剂和等渗剂作为添加剂以保持光敏药剂的化学稳定性和生物相容性;所述的其它物质是蓖麻油衍生物(Cremophor EL)、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000、环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯中的一种或几种的混和物。 The method for preparing photodynamic drugs or photosensitizers is as follows: water, or a mixed solution of water and other substances, wherein the mass fraction of other substances is not higher than 10%, is used as a solvent to dissolve the silicon phthalocyanine asymmetrically modified by axial nucleosides, It is formulated to contain a certain concentration of photosensitizer, and the concentration of silicon phthalocyanine asymmetrically modified by axial nucleosides is not higher than its saturation concentration; antioxidants, buffers and isotonic agents are added to the prepared solution as additives to maintain photosensitivity The chemical stability and biocompatibility of the agent; the other substances mentioned are castor oil derivatives (Cremophor EL), dimethyl sulfoxide, ethanol, glycerin, N,N-dimethylformamide, polyethylene glycol 300 - One or more mixtures of 3000, cyclodextrin, glucose, Tween, and polyethylene glycol monostearate.

本发明的有益效果和突出优势在于: Beneficial effect and outstanding advantage of the present invention are:

(1)本发明提供的轴向核苷不对称修饰硅酞菁为轴向不对称取代硅酞菁,轴向基团分别是核苷与氨基乙基苯氧基(或低聚乙二醇),具有优良的两亲性和独特的不对称取代特点。 (1) The axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention is an axially asymmetrically substituted silicon phthalocyanine, and the axial groups are respectively nucleoside and aminoethylphenoxy (or oligoethylene glycol) , with excellent amphiphilicity and unique asymmetric substitution characteristics.

(2)本发明提供的轴向核苷不对称修饰硅酞菁的轴向基团含有核苷衍生物,核苷是体内生物分子,因而所提供的硅酞菁的生物相容性与生物选择性较高。 (2) The axial group of the axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention contains nucleoside derivatives, and nucleosides are biomolecules in vivo, so the biocompatibility and biological selection of the silicon phthalocyanine provided Sex is higher.

(3)本发明提供的轴向核苷不对称修饰硅酞菁在水溶液中的最大吸收波长位于686-688nm处,且摩尔吸收系数大(达105数量级),其光谱性质不但大大优于第一代光敏剂,而且优于正在进行临床实验的其他酞菁化合物。例如,本发明提供的酞菁硅的最大吸收波长相对于美国的Pc4红移了近10nm,治疗光的组织穿透能力得到进一步提高,这对于光动力治疗和光动力诊断是十分有利的。 (3) The maximum absorption wavelength of the axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention is located at 686-688 nm in aqueous solution, and the molar absorption coefficient is large (up to 10 5 orders of magnitude), and its spectral properties are not only much better than those of the first A first-generation photosensitizer that outperforms other phthalocyanines currently in clinical trials. For example, the maximum absorption wavelength of silicon phthalocyanine provided by the present invention is red-shifted by nearly 10nm compared with Pc4 in the United States, and the tissue penetration ability of therapeutic light is further improved, which is very beneficial for photodynamic therapy and photodynamic diagnosis.

(4)本发明提供的硅酞菁结构明确、不存在位置异构体。本发明对酞菁母体结构的化学修饰,是通过在酞菁环的轴向而不是在酞菁环的周边引入取代基团来实现,因而目标化合物结构明确、不存在异构体。如果在酞菁环的周边引入取代基,由于酞菁环的周边存在16个可能的取代位置,则可能产生多个异构体,导致产物含有异构体或分离成本增大。 (4) The silicon phthalocyanine provided by the present invention has a clear structure and no positional isomers. The chemical modification of the parent structure of the phthalocyanine in the present invention is realized by introducing substituent groups in the axial direction of the phthalocyanine ring instead of the periphery of the phthalocyanine ring, so the structure of the target compound is clear and there is no isomer. If substituents are introduced around the phthalocyanine ring, since there are 16 possible substitution positions around the phthalocyanine ring, multiple isomers may be produced, resulting in products containing isomers or increased separation costs.

(5)本发明选择硅作为酞菁化合物的中心离子,硅的生物安全性和生物相容性要佳于其它常见的离子(锌、铝、镁和镓),并且硅酞菁产生活性氧的量子产率高。 (5) The present invention selects silicon as the central ion of the phthalocyanine compound, the biological safety and biocompatibility of silicon are better than other common ions (zinc, aluminum, magnesium and gallium), and silicon phthalocyanine produces active oxygen High quantum yield.

(6)本发明提供的硅酞菁具有较高的光稳定性,其光稳定性高于其他类似光敏剂,例如美国的Pc4。 (6) The silicon phthalocyanine provided by the present invention has high photostability, which is higher than other similar photosensitizers, such as Pc4 in the United States.

(7)本发明提供的轴向核苷不对称修饰硅酞菁是通过大量的筛选试验获得的,具有极高的光动力活性,例如,在红光照射下,仅15nM的[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁便可100%抑制人胃癌细胞BGC823的生长,IC50值(杀死50%癌细胞所需的药物浓度)可低至4nM。 (7) The axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention is obtained through a large number of screening tests and has extremely high photodynamic activity. For example, only 15nM [5'-( 2',3'-O-isopropyl)-uridineoxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine can 100% inhibit the growth of human gastric cancer cell BGC823 with IC 50 value (the concentration of drug required to kill 50% of cancer cells) can be as low as 4nM.

(8)大量的对比试验表明,本发明提供的轴向核苷不对称修饰硅酞菁本发明提供的酞菁硅的光动力活性显著高于对应的轴向核苷对称修饰硅酞菁。本发明提供的大部分轴向核苷不对称修饰硅酞菁的光动力抗癌活性高于轴向氨基乙基苯氧基对称修饰硅酞菁,即二[4-(2-氨基乙基) 苯氧基]酞菁硅。本发明提供的大部分轴向核苷不对称修饰硅酞菁的光动力抗癌活性也高于轴向低聚乙二醇对称取代硅酞菁,如二[(2-乙氧基)乙氧基]硅酞菁,二[2-(2-甲氧基乙氧基)乙氧基]硅酞菁,二{2-[2-(2-甲氧基乙氧基)乙氧基]乙氧基}硅酞菁,二{2-[2-(2-乙氧基乙氧基)乙氧基]乙氧基}硅酞菁,二{2-{2-[2-(2-甲氧基乙氧基)乙氧基]乙氧基}乙氧基}硅酞菁,二{2-{2-[2-(2-乙氧基乙氧基)乙氧基]乙氧基}乙氧基}硅酞菁等。同时,本发明提供的轴向核苷不对称修饰硅酞菁的光动力抗癌活也显著高于其他酞菁化合物,如轴向二(4-乙酰氨基苯氧基)硅酞菁,二[4-(4-乙酰基哌嗪)苯氧基]硅酞菁,二[4-(3-羧基丙基)苯氧基]硅酞菁,二(4-甲酸苯氧基)硅酞菁,二(3-甲酸苯氧基)硅酞菁,二(3,5-二甲酸苯氧基) 硅酞菁,二(1-金刚烷-甲氧基)硅酞菁,二(2-金刚烷-乙氧基)硅酞菁等;取代锌酞菁,如四-a-[4-(4-乙酰基哌嗪)苯氧基]锌酞菁,四-a-(4-甲酸苯氧基)锌酞菁等。 (8) A large number of comparative experiments show that the photodynamic activity of the silicon phthalocyanine provided by the present invention with asymmetrically modified axial nucleosides is significantly higher than that of the corresponding symmetrically modified silicon phthalocyanine with axial nucleosides. The photodynamic anticancer activity of most axial nucleoside asymmetrically modified silicon phthalocyanines provided by the present invention is higher than that of axial aminoethylphenoxy symmetrically modified silicon phthalocyanines, that is, bis[4-(2-aminoethyl) Phenoxy]phthalocyanine silicon. The photodynamic anticancer activity of most axial nucleoside asymmetrically modified silicon phthalocyanines provided by the present invention is also higher than that of axial oligoethylene glycol symmetrically substituted silicon phthalocyanines, such as bis[(2-ethoxy)ethoxy Base] silicon phthalocyanine, bis [2-(2-methoxyethoxy) ethoxy] silicon phthalocyanine, bis {2- [2- (2-methoxyethoxy) ethoxy] ethyl Oxy}silyl phthalocyanine, bis{2-[2-(2-ethoxyethoxy)ethoxy]ethoxy}silyl phthalocyanine, bis{2-{2-[2-(2-methyl oxyethoxy)ethoxy]ethoxy}ethoxy}silylphthalocyanine, di{2-{2-[2-(2-ethoxyethoxy)ethoxy]ethoxy} Ethoxy}silicone phthalocyanine, etc. At the same time, the photodynamic anticancer activity of the axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention is also significantly higher than that of other phthalocyanine compounds, such as axial bis(4-acetamidophenoxy) silicon phthalocyanine, di[ 4-(4-acetylpiperazine)phenoxy]silicon phthalocyanine, bis[4-(3-carboxypropyl)phenoxy]silicon phthalocyanine, bis(4-formylphenoxy)silicon phthalocyanine, Bis(3-phenoxyformyl)silyl phthalocyanine, bis(3,5-phenoxydicarboxylate)silyl phthalocyanine, bis(1-adamantane-methoxy)silyl phthalocyanine, bis(2-adamantane -ethoxy) silicon phthalocyanine, etc.; substituted zinc phthalocyanine, such as tetra-a-[4-(4-acetylpiperazine)phenoxy]zinc phthalocyanine, tetra-a-(4-formyl phenoxy ) Zinc phthalocyanine, etc.

(9)不对称取代硅酞菁的合成与分离难度较大,并非所有预想的轴向不对称取代硅酞菁都能有效获得。经过大量实验研究表明,可以有效地获得本发明所述的轴向不对称取代硅酞菁,且它们的合成路线较简便,具有产业化前景。 (9) The synthesis and separation of asymmetrically substituted silicon phthalocyanines is difficult, and not all expected axially asymmetrically substituted silicon phthalocyanines can be obtained effectively. A large number of experimental studies have shown that the axially asymmetrically substituted silicon phthalocyanines described in the present invention can be effectively obtained, and their synthesis routes are relatively simple and have industrialization prospects.

具体实施方式 Detailed ways

本发明轴向核苷不对称修饰的硅酞菁的制备方法是:(1)以二[4-(2-氨基乙基)苯氧基]酞菁硅和2’, 3’-O-异丙基-尿苷(或2’, 3’-O-异丙基-胞苷,或2’, 3’-O-异丙基-腺苷, 或2’, 3’-O-异丙基-2-氯腺苷)为反应物,两者的投料摩尔比为1:1~10, 以甲苯、二甲苯或二氧六环为溶剂,在氮气的保护下,100~130℃下反应1~20小时,通过溶剂清洗和柱层析分离去除过量的原料和杂质,得到的轴向核苷和氨基乙基苯氧基不对称修饰硅酞菁。(2)以轴向核苷和氨基乙基苯氧基不对称修饰硅酞菁和三乙二醇(或三乙二醇单甲醚,或四乙二醇,或四乙二醇单甲醚)为反应物,两者的投料摩尔比为1:1~10, 以甲苯、二甲苯或二氧六环为溶剂,在氮气的保护下,100~130℃下反应1~20小时,通过溶剂洗和柱层析分离去除过量的原料和杂质,得到轴向核苷和低聚乙二醇不对称修饰硅酞菁。 The preparation method of silicon phthalocyanine asymmetrically modified by axial nucleoside of the present invention is: (1) with bis[4-(2-aminoethyl)phenoxy]phthalocyanine silicon and 2', 3'-O-iso Propyl-uridine (or 2', 3'-O-isopropyl-cytidine, or 2', 3'-O-isopropyl-adenosine, or 2', 3'-O-isopropyl -2-chloroadenosine) as the reactant, the molar ratio of the two is 1:1~10, with toluene, xylene or dioxane as the solvent, under the protection of nitrogen, react at 100~130°C for 1 After ~20 hours, excess raw materials and impurities were removed by solvent washing and column chromatography to obtain axial nucleosides and aminoethylphenoxy asymmetrically modified silicon phthalocyanines. (2) Asymmetric modification of silicon phthalocyanine and triethylene glycol (or triethylene glycol monomethyl ether, or tetraethylene glycol, or tetraethylene glycol monomethyl ether) with axial nucleosides and aminoethylphenoxy ) as the reactant, the molar ratio of the two is 1:1~10, with toluene, xylene or dioxane as the solvent, under the protection of nitrogen, react at 100~130°C for 1~20 hours, pass through the solvent Excess raw materials and impurities are removed by washing and column chromatography to obtain axial nucleoside and oligoethylene glycol asymmetrically modified silicon phthalocyanine.

本发明提供的轴向核苷不对称修饰的硅酞菁可用于制备光动力药物或光敏(药)剂,应用于光动力治疗或光动力诊断中,本发明所述的光动力治疗可以是恶性肿瘤的光动力治疗,或是良性肿瘤的光动力治疗,或是白血病的骨髓体外光动力净化治疗,或是非癌症疾病的光动力治疗。本发明所述的非癌症疾病,可以是细菌感染,或是口腔疾病,或是黄斑变性眼病,或是动脉硬化,或是创伤感染,或是皮肤病,或是病毒感染。 The axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention can be used to prepare photodynamic drugs or photosensitizers (drugs), and can be used in photodynamic therapy or photodynamic diagnosis. The photodynamic therapy described in the present invention can be malignant Photodynamic therapy of tumors, or photodynamic therapy of benign tumors, or extracorporeal photodynamic purification therapy of leukemia bone marrow, or photodynamic therapy of non-cancer diseases. The non-cancer diseases mentioned in the present invention can be bacterial infection, or oral cavity disease, or macular degeneration eye disease, or arteriosclerosis, or wound infection, or skin disease, or virus infection.

本发明提供的轴向核苷不对称修饰的硅酞菁可用于制备光敏(药)剂,用于光动力消毒,所述的光动力消毒可以是血液或血液衍生物的光动力灭菌净化,或是水的光动力灭菌消毒,或是医用或生活用器的光动力消毒。 The silicon phthalocyanine with axial nucleoside asymmetric modification provided by the present invention can be used to prepare photosensitizer (drug) agent for photodynamic disinfection. The photodynamic disinfection can be photodynamic sterilization and purification of blood or blood derivatives, Or photodynamic sterilization of water, or photodynamic disinfection of medical or domestic appliances.

本发明提供的轴向核苷不对称修饰的硅酞菁在光动力治疗、光动力诊断和光动力消毒中的应用,需配套适宜的光源,所述的适宜的光源可以由普通光源连接合适的滤光片来提供或由特定波长的激光来提供,光源的波长范围为600~800nm,优选686-688nm。 The application of silicon phthalocyanine with axial nucleoside asymmetric modification provided by the present invention in photodynamic therapy, photodynamic diagnosis and photodynamic disinfection needs to be equipped with a suitable light source, and the suitable light source can be connected with a suitable filter by a common light source. Provided by a light sheet or by a laser with a specific wavelength, the wavelength range of the light source is 600-800nm, preferably 686-688nm.

利用本发明提供的轴向核苷不对称修饰的硅酞菁制备光动力药物(或光敏剂)的基本方法是:使用水,或水和其它物质的混和溶液(其它物质的含量不高于10%(wt%))作为溶剂,溶解本发明所述酞菁硅,配制成含一定浓度的光敏药剂,酞菁硅的浓度不高于其饱和浓度。所述的其它物质可以是以下一种或几种的混和:蓖麻油衍生物(Cremophor EL)、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000,环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯。也可先用盐酸或硫酸或等酸性物质将本发明所述的酞菁硅转化为盐的形式,然后用上述溶剂溶解。在制成的溶液中可加入抗氧化剂、缓冲剂和等渗剂作为添加剂以保持光敏药剂的化学稳定性和生物相容性。 The basic method for preparing photodynamic drugs (or photosensitizers) using the silicon phthalocyanine asymmetrically modified by axial nucleosides provided by the present invention is: use water, or a mixed solution of water and other substances (the content of other substances is not higher than 10 % (wt%)) as a solvent to dissolve the silicon phthalocyanine of the present invention, and prepare it to contain a certain concentration of photosensitizer, and the concentration of silicon phthalocyanine is not higher than its saturation concentration. The other substances mentioned can be one or a combination of the following: castor oil derivatives (Cremophor EL), dimethyl sulfoxide, ethanol, glycerin, N,N-dimethylformamide, polyethylene glycol 300- 3000, Cyclodextrin, Dextrose, Tween, Macrogol Monostearate. It is also possible to convert the silicon phthalocyanine described in the present invention into a salt form with hydrochloric acid or sulfuric acid or other acidic substances, and then dissolve it with the above-mentioned solvent. In the prepared solution, antioxidants, buffers and isotonic agents can be added as additives to maintain the chemical stability and biocompatibility of the photosensitizer.

对于局部给药用的制剂,可以将本发明所述的酞菁硅溶解在渗透性溶剂中,或将注入到软膏、洗液或凝胶中。所述渗透性溶剂优选5-35%(wt%)二甲亚砜的水溶液。 For topical formulations, the silicon phthalocyanines of the present invention can be dissolved in penetrating solvents, or injected into ointments, lotions or gels. The penetrating solvent is preferably an aqueous solution of 5-35% (wt%) dimethyl sulfoxide.

以下采用非限制性实施例对本发明作进一步说明。 The following non-limiting examples are used to further illustrate the present invention.

实施例1 Example 1

二[5’-(2’, 3’-O-异丙基)-尿苷氧基]硅酞菁的合成 Synthesis of Bis[5'-(2', 3'-O-isopropyl)-uridineoxy]silicone phthalocyanine

(1)2’, 3’-O-异丙基-尿苷的合成 (1) Synthesis of 2’, 3’-O-isopropyl-uridine

将尿苷245mg(1mmol)溶于10~30ml(优选20 ml)丙酮中,将对甲苯磺酸8~12mmol(优选10 mmol)溶于10~30ml(优选20 ml)丙酮中。冰水浴下将对甲苯磺酸丙酮溶液缓慢滴加到尿苷丙酮溶液中,常温搅拌2~10 h(优选6h)。将反应混合物加到含4%的碳酸氢钠冰水溶液中,用二氯甲烷(或三氯甲烷)多次萃取,收集有机层,加硫酸镁干燥,过滤后浓缩,干燥得黄色粉末状产物,产率85%。 Dissolve 245 mg (1 mmol) of uridine in 10-30 ml (preferably 20 ml) of acetone, and dissolve 8-12 mmol (preferably 10 mmol) of p-toluenesulfonic acid in 10-30 ml (preferably 20 ml) of acetone. Slowly add p-toluenesulfonic acid acetone solution to uridine acetone solution dropwise under ice-water bath, and stir at room temperature for 2-10 h (preferably 6 h). The reaction mixture was added to 4% sodium bicarbonate ice solution, extracted several times with dichloromethane (or trichloromethane), the organic layer was collected, dried over magnesium sulfate, filtered, concentrated, and dried to obtain a yellow powder product. Yield 85%.

产物的表征数据如下:MS(EI-60)m/z :283.4 [M-H]-The characterization data of the product are as follows: MS (EI-60) m/z: 283.4 [MH] .

IR(KBr,cm-1):1467,2935(CH3);1703(C=O);1671(C=C);1467,2935(CH2); 3245(NH,OH); 1121(-O-)。 IR (KBr, cm -1 ): 1467, 2935 (CH 3 ); 1703 (C=O); 1671 (C=C); 1467, 2935 (CH 2 ); 3245 (NH,OH); -).

1H NMR (DMSO-d6,400MHz,ppm):δ11.39(s,1H,pyrimidine-NH), 7.80(d,J =8.0Hz,1H, pyrimidine-NCH),5.84(s,1H,1′-H), 5.64(d,J =8.0Hz,1H, pyrimidine-COCH), 5.09(s,1H, OH), 4.90(t,J =5.6Hz,1H,2′-H), 4.75(s,1H,3′-H), 4.07(s,1H,4′-H), 3.56-3.59(m,2H,5′-H), 1.49(s,3H,Me), 1.29(s,3H,Me)。 1 H NMR (DMSO-d6, 400MHz, ppm): δ11.39 (s, 1H, pyrimidine-NH), 7.80 (d, J =8.0Hz, 1H, pyrimidine-NCH), 5.84 (s, 1H, 1′ -H), 5.64(d, J =8.0Hz, 1H, pyrimidine-COCH), 5.09(s, 1H, OH), 4.90(t, J =5.6Hz, 1H, 2′-H), 4.75(s, 1H, 3′-H), 4.07(s, 1H, 4′-H), 3.56-3.59(m, 2H, 5′-H), 1.49(s, 3H, Me), 1.29(s, 3H, Me ).

(2)二[5’-(2’, 3’-O-异丙基)-尿苷氧基]硅酞菁的合成 (2) Synthesis of bis[5'-(2', 3'-O-isopropyl)-uridineoxy]silicone phthalocyanine

在氮气保护下,将二氯硅酞菁(40 mg, 0.065mmol)、上述获得尿苷的异丙叉保护产物(0.260~0.650mmol,优选 0.52mmol)和NaH(0.48~0.60mmol ,优选 0.42mmol)加入到甲苯10~40ml(优选20ml)中,回流12~48小时(优选24小时)。真空旋转蒸发去除溶剂,水洗,得蓝色粗产物。粗产物通过硅胶柱纯化,使用乙酸乙酯为洗脱剂,收集第二组分浓缩后通过凝胶色谱(S-X3型)进一步纯化(四氢呋喃为洗脱剂),收集目标组分,浓缩干燥后得蓝色产物,产率66%。产物在DMF 中的最大吸收峰位于 678 nm处,在1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中的最大吸收波长位于681nm处。 Under nitrogen protection, dichlorosilicon phthalocyanine (40 mg, 0.065mmol), the above-mentioned isopropylidene protection product of uridine (0.260~0.650mmol, preferably 0.52mmol) and NaH (0.48~0.60mmol, preferably 0.42mmol ) into 10-40ml (preferably 20ml) of toluene, and reflux for 12-48 hours (preferably 24 hours). The solvent was removed by vacuum rotary evaporation, and washed with water to obtain a blue crude product. The crude product was purified by silica gel column, using ethyl acetate as the eluent, the second fraction was collected and concentrated, and then further purified by gel chromatography (S-X3 type) (tetrahydrofuran as the eluent), the target fraction was collected, concentrated and dried Afterwards, a blue product was obtained with a yield of 66%. The maximum absorption peak of the product in DMF is located at 678 nm, and the maximum absorption wavelength in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution is located at 681 nm.

产物的结构如下式所示,表征数据如下:  The structure of the product is shown in the following formula, and the characterization data are as follows:

Figure 2013103743497100002DEST_PATH_IMAGE011
Figure 2013103743497100002DEST_PATH_IMAGE011
.

HRMS(ESI)m/z: 1129.2948 [M+Na]+HRMS (ESI) m/z: 1129.2948 [M+Na] + .

IR(KBr,cm-1):734,760,911,1081,1291,1336,1429,1522(Pc环);1695,1718(C=O);1374(CH3);3444(NH);1081(Si-O)。 IR (KBr, cm -1 ): 734, 760, 911, 1081, 1291, 1336, 1429, 1522 (Pc ring); 1695, 1718 (C=O); 1374 (CH3); 3444 (NH); 1081 ( Si-O).

1H NMR (CDCl3,400MHz,ppm):δ9.66-9.68(m,8H,Pc-Hα), 8.44-8.46(m,8H,Pc-Hβ), 7.44(s,2H,pyrimidine-NH),4.86(d,J =8.0 Hz,2H,pyrimidine-NCH),4.43(d,J =4.0 Hz,2H,pyrimidine-COCH),4.06(d,J =8.0Hz,2H,1′-H),1.89-1.91(m,2H,2′-H),1.36-1.39(m,2H,3′-H),0.88(s,6H,Me),0.65(s,6H,Me),0.41 (d,J =5.6Hz,2H,4′-H), -1.24(d,J =11.6Hz,2H,5′-H),-2.41(d,J =9.6Hz,2H,5′-H)。 1 H NMR (CDCl 3 , 400MHz, ppm): δ9.66-9.68(m, 8H, Pc-H α ), 8.44-8.46(m, 8H, Pc-H β ), 7.44(s, 2H, pyrimidine- NH), 4.86 (d, J = 8.0 Hz, 2H, pyrimidine-NCH), 4.43 (d, J = 4.0 Hz, 2H, pyrimidine-COCH), 4.06 (d, J = 8.0 Hz, 2H, 1′-H ), 1.89-1.91(m, 2H, 2′-H), 1.36-1.39(m, 2H, 3′-H), 0.88(s, 6H, Me), 0.65(s, 6H, Me), 0.41 ( d, J =5.6Hz, 2H, 4'-H), -1.24(d, J =11.6Hz, 2H, 5'-H), -2.41(d, J =9.6Hz, 2H, 5'-H) .

实施例2 Example 2

二[5’-(2’, 3’-O-异丙基)-胞苷氧基]硅酞菁的合成 Synthesis of Bis[5'-(2', 3'-O-isopropyl)-cytidineoxy]silyl phthalocyanine

(1)2’, 3’-O-异丙基-胞苷的合成 (1) Synthesis of 2’, 3’-O-isopropyl-cytidine

将胞苷250mg(1mmol)溶于10~30ml(优选20 ml)丙酮中,将对甲苯磺酸8~12mmol(优选10 mmol)溶于10~30ml(优选20 ml)丙酮中。冰水浴下将对甲苯磺酸丙酮溶液缓慢滴加到胞苷丙酮溶液中,常温搅拌4~10 h(优选6h),离心,收集白色沉淀,沉淀用丙酮洗涤三到四次,用少量DMF溶解,加乙酸乙酯析出,膜过滤,真空干燥,得白色粉状产物,产率95%。 Dissolve 250 mg (1 mmol) of cytidine in 10-30 ml (preferably 20 ml) of acetone, and dissolve 8-12 mmol (preferably 10 mmol) of p-toluenesulfonic acid in 10-30 ml (preferably 20 ml) of acetone. Add p-toluenesulfonic acid acetone solution slowly dropwise to cytidine acetone solution under ice-water bath, stir at room temperature for 4~10 hours (preferably 6 hours), centrifuge, collect white precipitate, wash the precipitate with acetone three to four times, and dissolve with a small amount of DMF , add ethyl acetate to precipitate, membrane filtration, vacuum drying to obtain a white powder product with a yield of 95%.

产物的表征数据如下: IR(KBr,cm-1): 1383(CH3);1123(-O-);1727(C=O);3067,1204,1650(NH2);1693(C=C);3067,1204(-OH)。 The characterization data of the product are as follows: IR (KBr, cm -1 ): 1383 (CH 3 ); 1123 (-O-); 1727 (C=O); 3067, 1204, 1650 (NH 2 ); 1693 (C=C ); 3067, 1204(-OH).

1H NMR (DMSO-d6,400MHz,ppm):δ9.49(s,1H,pyrimidine-H),8.41(s,1H, NH2),8.09(d,J =7.6Hz, 1H, NH2),6.05(d,J =7.6Hz, 1H, pyrimidine-H),5.76(d,J =1.2Hz, 1H, 1′-H),4.86(t,J =3.0Hz, 1H, 2′-H),4.70-4.72(m,1H,3′-H),4.21(d,J =2.8Hz, 1H, 4′-H),3.51-3.61(m,2H,5′-H),1.45(s,3H, Me),1.25(s,3H, Me)。 1 H NMR (DMSO-d6, 400MHz, ppm): δ9.49 (s, 1H, pyrimidine-H), 8.41 (s, 1H, NH 2 ), 8.09 (d, J =7.6Hz, 1H, NH 2 ) , 6.05(d, J =7.6Hz, 1H, pyrimidine-H), 5.76(d, J =1.2Hz, 1H, 1′-H), 4.86(t, J =3.0Hz, 1H, 2′-H) , 4.70-4.72(m, 1H, 3′-H), 4.21(d, J =2.8Hz, 1H, 4′-H), 3.51-3.61(m, 2H, 5′-H), 1.45(s, 3H, Me), 1.25(s, 3H, Me).

(2)二[5’-(2’, 3’-O-异丙基)-胞苷氧基]硅酞菁的合成 (2) Synthesis of bis[5'-(2', 3'-O-isopropyl)-cytidineoxy]silicone phthalocyanine

在氮气保护下,将二氯硅酞菁(40 mg, 0.065mmol)、上述获得胞苷的异丙叉保护产物(0.260~0.650mmol,优选 0.52mmol)和NaH(0.48~0.60mmol ,优选 0.42mmol)加入到甲苯10~40ml(优选20ml)中,回流12~48小时(优选24小时)。真空旋转蒸发去除溶剂,水洗,得蓝色粗产物。粗产物通过硅胶柱纯化,使用乙酸乙酯/DMF(体积比20:1)混合溶剂为洗脱剂,去除淡绿色杂质,而后以DMF为洗脱剂,收集目标产物。浓缩后通过凝胶色谱(S-X3型)进一步纯化,真空干燥后得到蓝色产物,产率52%。产物在DMF 中的最大吸收峰位于 677 nm处,在1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中的最大吸收波长位于681nm处。 Under nitrogen protection, dichlorosilicon phthalocyanine (40 mg, 0.065mmol), the above-mentioned isopropylidene protection product of cytidine (0.260~0.650mmol, preferably 0.52mmol) and NaH (0.48~0.60mmol, preferably 0.42mmol ) into 10-40ml (preferably 20ml) of toluene, and reflux for 12-48 hours (preferably 24 hours). The solvent was removed by vacuum rotary evaporation, and washed with water to obtain a blue crude product. The crude product was purified by silica gel column, using ethyl acetate/DMF (volume ratio 20:1) mixed solvent as the eluent to remove the light green impurities, and then using DMF as the eluent to collect the target product. After concentration, it was further purified by gel chromatography (S-X3 type), and the blue product was obtained after vacuum drying with a yield of 52%. The maximum absorption peak of the product in DMF is located at 677 nm, and the maximum absorption wavelength in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution is located at 681 nm.

产物的结构如下式所示,表征数据如下:  The structure of the product is shown in the following formula, and the characterization data are as follows:

Figure 236898DEST_PATH_IMAGE012
Figure 236898DEST_PATH_IMAGE012

HRMS(ESI)m/z: 1127.3377 [M+Na]+。IR(KBr,cm-1):742,760,910,1081,1123,1291,1335,1428,1519(Pc环);3370(NH2);1081(Si-O)。 HRMS (ESI) m/z: 1127.3377 [M+Na] + . IR (KBr, cm -1 ): 742, 760, 910, 1081, 1123, 1291, 1335, 1428, 1519 (Pc ring); 3370 (NH 2 ); 1081 (Si-O).

1H NMR (DMSO-d6,400MHz,ppm):δ9.70-9.76(m,8H,Pc-Hα),8.53-8.58(m,8H,Pc-Hβ),7.25(s(br),2H,NH2),7.06(s(br),2H,NH2),5.38(d,J =6.8 Hz,2H,pyrimidine-H), 4.51(d,J =3.6 Hz,2H,pyrimidine-H),4.33(d,J =7.6Hz,2H,1′-H),1.85-1.88(m,2H,2′-H), 1.24-1.31(m,2H,3′-H),0.76(s,6H,Me),0.68(d,J =6.0Hz,2H,4′-H),0.57(s,6H,Me),-1.45(d,J =9.2Hz,2H,5′-H),-2.31(d,J =10.4Hz,2H,5′-H)。 1 H NMR (DMSO-d6, 400MHz, ppm): δ9.70-9.76(m, 8H, Pc-H α ), 8.53-8.58(m, 8H, Pc-H β ), 7.25(s(br), 2H, NH 2 ), 7.06 (s(br), 2H, NH 2 ), 5.38 (d, J = 6.8 Hz, 2H, pyrimidine-H), 4.51 (d, J = 3.6 Hz, 2H, pyrimidine-H) , 4.33(d, J =7.6Hz, 2H, 1′-H), 1.85-1.88(m, 2H, 2′-H), 1.24-1.31(m, 2H, 3′-H), 0.76(s, 6H, Me), 0.68(d, J =6.0Hz, 2H, 4'-H), 0.57(s, 6H, Me), -1.45(d, J =9.2Hz, 2H, 5'-H), - 2.31 (d, J = 10.4 Hz, 2H, 5'-H).

实施例3 Example 3

二[5’-(2’, 3’-O-异丙基)-腺苷氧基]硅酞菁的合成 Synthesis of Bis[5'-(2', 3'-O-isopropyl)-adenosyloxy]silyl phthalocyanine

(1)2’, 3’-O-异丙基-腺苷的合成 (1) Synthesis of 2’, 3’-O-isopropyl-adenosine

将腺苷(1mmol)溶于10~30ml(优选20 ml)丙酮中,将对甲苯磺酸8~12mmol(优选10 mmol)溶于10~30ml(优选20 ml)丙酮中。冰水浴下将对甲苯磺酸丙酮溶液缓慢滴加到2-氨基腺苷丙酮溶液中,常温搅拌24~72 h(优选6h),倒入到4%碳酸氢钠冰水溶液中,析出白色沉淀,抽滤,干燥。用三氯甲烷进行索氏提取纯化,干燥后得白色粉末产物。产率85%。 Dissolve adenosine (1 mmol) in 10-30 ml (preferably 20 ml) of acetone, and 8-12 mmol (preferably 10 mmol) of p-toluenesulfonic acid in 10-30 ml (preferably 20 ml) of acetone. Add p-toluenesulfonic acid acetone solution slowly dropwise to 2-aminoadenosine acetone solution under ice-water bath, stir at room temperature for 24~72 h (preferably 6 h), pour into 4% sodium bicarbonate ice water solution, and precipitate white precipitate, Suction filter and dry. Purified by Soxhlet extraction with chloroform, and dried to obtain a white powder product. Yield 85%.

(2)二[5’-(2’,3’-O-异丙基)-腺苷氧基]硅酞菁的合成 (2) Synthesis of bis[5'-(2',3'-O-isopropyl)-adenosyloxy]silicone phthalocyanine

在氮气保护下,将二氯硅酞菁(40 mg, 0.065mmol)、2’,3’-O-异丙基-腺苷(0.260~0.650mmol,优选 0.52mmol)和NaH(0.48~0.60mmol ,优选 0.42mmol)加入到甲苯10~40ml(优选20ml)中,回流12~48小时(优选36小时)。真空旋转蒸发去除溶剂,水洗,得蓝色粗产物。粗产物通过硅胶柱纯化,使用丙酮为洗脱剂,浓缩目标组分,干燥后得蓝色产物,产率60%。产物在DMF 中的最大吸收峰位于 677 nm处,在1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中的最大吸收波长位于681nm处。 Under nitrogen protection, dichlorosilicon phthalocyanine (40 mg, 0.065mmol), 2', 3'-O-isopropyl-adenosine (0.260~0.650mmol, preferably 0.52mmol) and NaH (0.48~0.60mmol , preferably 0.42mmol) into toluene 10 ~ 40ml (preferably 20ml), reflux for 12 ~ 48 hours (preferably 36 hours). The solvent was removed by vacuum rotary evaporation, and washed with water to obtain a blue crude product. The crude product was purified by a silica gel column, using acetone as the eluent, the target component was concentrated, and the blue product was obtained after drying, with a yield of 60%. The maximum absorption peak of the product in DMF is located at 677 nm, and the maximum absorption wavelength in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution is located at 681 nm.

产物的结构如下式所示,表征数据如下:  The structure of the product is shown in the following formula, and the characterization data are as follows:

.

MS(EI)m/z: 1152.7 [M]+MS (EI) m/z: 1152.7 [M] + .

IR(KBr,cm-1):1618, 1426,1256,802,692(Pc环);1715,1250(C=O,O-C-O); 2922,2862,1435,(CH32996,1445(CH2)1324(C-N);1010(Si-O)。 IR (KBr, cm -1 ): 1618, 1426, 1256, 802, 692 (Pc ring); 1715, 1250 (C=O, O-C-O); 2922, 2862, 1435, (CH 3 ) ; 2996 , 1445 (CH 2 ) ; 1324 (CN); 1010 (Si—O).

1H NMR (CDCl3,400MHz,ppm):δ9.53-9.58 (m,8H,Pc-Hα),8.34-8.40 (m,8H,Pc-Hβ),8.02 (s,2H,pyrimidine-H),5.65(s,4H,NH2),5.36 (s,2H,imidazole-H),4.51(d,J =5.4Hz, 2H, 1′-H), 2.11-2.14(m,2H,2′-H),1.10(s,6H,Me),0.91(s,6H,Me),0.70(d,J =6.0Hz,2H,3′-H),-1.38 to -1.33 (m,2H,4′-H), -2.38 to -2.33(m,2H,5′-H)。 1 H NMR (CDCl 3 , 400MHz, ppm): δ9.53-9.58 (m, 8H, Pc-H α ), 8.34-8.40 (m, 8H, Pc-H β ), 8.02 (s, 2H, pyrimidine- H), 5.65(s, 4H, NH 2 ), 5.36 (s, 2H, imidazole-H), 4.51(d, J =5.4Hz, 2H, 1′-H), 2.11-2.14(m, 2H, 2 ′-H), 1.10(s, 6H, Me), 0.91(s, 6H, Me), 0.70(d, J =6.0Hz, 2H, 3′-H), -1.38 to -1.33 (m, 2H, 4'-H), -2.38 to -2.33 (m, 2H, 5'-H).

元素分析: 计算值C (60.41%), N (21.86%), H (4.20%) (以C58H48N18O8Si计算);实测值C (60.16%), N (21.25%), H (4.90%)。 Elemental Analysis: Calculated C (60.41%), N (21.86%), H (4.20%) (calculated as C 58 H 48 N 18 O 8 Si); found C (60.16%), N (21.25%), H (4.90%).

实施例4 Example 4

二[5’-(2’, 3’-O-异丙基)-2-氯腺苷氧基]硅酞菁的合成 Synthesis of Bis[5'-(2', 3'-O-isopropyl)-2-chloroadenosyloxy]silyl phthalocyanine

(1)2’, 3’-O-异丙基-2-氯腺苷的合成 (1) Synthesis of 2’, 3’-O-isopropyl-2-chloroadenosine

将2-氯腺苷309mg(1mmol)溶于10~30ml(优选20 ml)丙酮中,将对甲苯磺酸8~12mmol(优选10 mmol)溶于10~30ml(优选20 ml)丙酮中。冰水浴下将对甲苯磺酸丙酮溶液缓慢滴加到2-氯腺苷的丙酮溶液中,常温搅拌12~36 h(优选22h)。将反应混合物倒入到4%碳酸氢钠冰水溶液中,用二氯甲烷萃取,收集有机层,加硫酸镁干燥,过滤后浓缩,干燥后得白色粉末状产物,产率83%。 Dissolve 309 mg (1 mmol) of 2-chloroadenosine in 10-30 ml (preferably 20 ml) of acetone, and dissolve 8-12 mmol (preferably 10 mmol) of p-toluenesulfonic acid in 10-30 ml (preferably 20 ml) of acetone. Slowly add the acetone solution of p-toluenesulfonate into the acetone solution of 2-chloroadenosine in an ice-water bath, and stir at room temperature for 12-36 h (preferably 22 h). The reaction mixture was poured into 4% sodium bicarbonate ice solution, extracted with dichloromethane, the organic layer was collected, dried over magnesium sulfate, filtered, concentrated, and dried to obtain a white powdery product with a yield of 83%.

产物的表征数据如下:产物的表征数据如下:HRMS(ESI):342.0968 [M+H]+The characterization data of the product are as follows: The characterization data of the product are as follows: HRMS (ESI): 342.0968 [M+H] + .

IR(KBr,cm-1):3475,3409,3154(-OH,-NH2);1656(N-C);1598(-NH2);1472(-CH2-),1313(-CCH3-);1098(C-O-C)。 IR (KBr, cm -1 ): 3475, 3409, 3154 (-OH, -NH 2 ); 1656 (NC); 1598 (-NH 2 ); 1472 (-CH 2 -), 1313 (-CCH 3 -) ;1098(COC).

1H NMR (DMSO-d6,400MHz,ppm):δ8.37(s,1H,imidazole-H),  7.89(s(br),2H,NH2), 6.06(d,J =2.4Hz,1H,1′-H),5.28-5.30(m,1H,2′-H),5.10-5.12(m,1H,OH), 4.93-4.95(m,1H,3′-H),4.21-4.23(m,1H,4′-H),3.54-3.57(m,2H,5′-H),1.55(s,3H,Me), 1.33(s,3H,Me)。 1 H NMR (DMSO-d6, 400MHz, ppm): δ8.37 (s, 1H, imidazole-H), 7.89 (s (br), 2H, NH 2 ), 6.06 (d, J =2.4Hz, 1H, 1′-H), 5.28-5.30 (m, 1H, 2′-H), 5.10-5.12 (m, 1H, OH), 4.93-4.95 (m, 1H, 3′-H), 4.21-4.23 (m , 1H, 4′-H), 3.54-3.57 (m, 2H, 5′-H), 1.55 (s, 3H, Me), 1.33 (s, 3H, Me).

(2)二[5’-(2’, 3’-O-异丙基)-2-氯腺苷氧基]硅酞菁的合成 (2) Synthesis of bis[5'-(2', 3'-O-isopropyl)-2-chloroadenosyloxy]silicone phthalocyanine

在氮气保护下,将二氯硅酞菁(40 mg, 0.065mmol)、上述获得2-氯腺苷的异丙叉保护产物(0.260~0.650mmol,优选 0.52mmol)和NaH(0.48~0.60mmol ,优选 0.42mmol)加入到甲苯10~40ml(优选20ml)中,回流12~48小时(优选24小时)。真空旋转蒸发去除溶剂,二氯甲烷溶解,水洗,收集有机层,MgSO4干燥,过滤,浓缩滤液得粗产物。粗产物通过硅胶柱纯化,使用乙酸乙酯为洗脱剂,去除淡蓝色组分,而后以四氢呋喃为洗脱剂,收集目标产物,浓缩后通过凝胶柱进一步纯化,浓缩、真空干燥后得到得蓝色产物,产率60%。 Under nitrogen protection, dichlorosilicon phthalocyanine (40 mg, 0.065 mmol), the above-mentioned isopropylidene protection product of 2-chloroadenosine (0.260~0.650 mmol, preferably 0.52 mmol) and NaH (0.48~0.60 mmol, Preferably 0.42mmol) is added to toluene 10~40ml (preferably 20ml), and refluxed for 12~48 hours (preferably 24 hours). The solvent was removed by rotary evaporation in vacuo, dissolved in dichloromethane, washed with water, the organic layer was collected, dried over MgSO 4 , filtered, and the filtrate was concentrated to obtain a crude product. The crude product was purified through a silica gel column, using ethyl acetate as the eluent to remove the light blue component, and then using tetrahydrofuran as the eluent to collect the target product, concentrated and further purified through a gel column, concentrated and dried in vacuo to obtain A blue product was obtained with a yield of 60%.

产物在DMF 中的最大吸收峰位于 677 nm处,在1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中的最大吸收波长位于680nm处。 The maximum absorption peak of the product in DMF is located at 677 nm, and the maximum absorption wavelength in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution is located at 680 nm.

产物的结构如下式所示,表征数据如下:  The structure of the product is shown in the following formula, and the characterization data are as follows:

Figure 441615DEST_PATH_IMAGE014
Figure 441615DEST_PATH_IMAGE014
.

HRMS(ESI): m/z 1243.2866 [M+Na]+ 。 HRMS (ESI): m/z 1243.2866 [M+Na] + .

1H NMR (CDCl3,400MHz,ppm):δ9.62-9.63 (m,8H,Pc-Hα), 8.39-8.41 (m,8H,Pc-Hβ), 6.43 (s,4H,NH2),5.39(s,2H,imidazole-H),4.58(d,J =3.0Hz,2H,1′-H), 2.19(d,J =9.0Hz,2H,2′-H),1.79-1.81(m,2H,3′-H), 0.92(s,6H,Me),0.89-0.91(m,2H,4′-H),0.76(s,6H,Me), -1.28 (d, J =14.0 Hz,2H,5′-H),-2.29(d,J =15.5Hz,2H,5′-H)。 1 H NMR (CDCl 3 , 400MHz, ppm): δ9.62-9.63 (m, 8H, Pc-H α ), 8.39-8.41 (m, 8H, Pc-H β ), 6.43 (s, 4H, NH 2 ), 5.39 (s, 2H, imidazole-H), 4.58 (d, J =3.0Hz, 2H, 1′-H), 2.19 (d, J =9.0Hz, 2H, 2′-H), 1.79-1.81 (m, 2H, 3′-H), 0.92(s, 6H, Me), 0.89-0.91(m, 2H, 4′-H), 0.76(s, 6H, Me), -1.28 (d, J = 14.0 Hz, 2H, 5'-H), -2.29 (d, J =15.5Hz, 2H, 5'-H).

实施例5 Example 5

二[4-(2-氨基乙基)苯氧基]酞菁硅(结构如下式所示)的合成和理化性质:  Synthesis and physical and chemical properties of bis[4-(2-aminoethyl)phenoxy]phthalocyanine silicon (structure shown in the following formula):

Figure 2013103743497100002DEST_PATH_IMAGE015
Figure 2013103743497100002DEST_PATH_IMAGE015

在氮气保护下,将二氯硅酞菁(244.7mg, 0.4mmol),4-(2-氨基乙基)苯酚1.2~2 mmol (优选 1.6mmol)和NaH加入到甲苯或二甲苯或二氧六环20~50ml(优选甲苯,30ml)中,回流12~24小时(优选18小时)。真空旋转蒸发除去溶剂,使用100ml二氯甲烷溶解,离心除去不溶物,二氯甲烷溶液用水萃取(3×100ml),收集有机层,然后用稀盐酸(0.1~0.5 mmol)萃取,收集水层。用1M氢氧化钠中和水层,析出蓝色沉淀,离心,水洗,真空干燥,得蓝色产物,产率45%。产物在DMSO 中的最大吸收峰位于 684 nm 处,在水溶液中的最大吸收波长位于689nm处。 Under nitrogen protection, add dichlorosilyl phthalocyanine (244.7mg, 0.4mmol), 4-(2-aminoethyl)phenol 1.2~2 mmol (preferably 1.6mmol) and NaH to toluene or xylene or dioxane In 20~50ml (preferably toluene, 30ml), reflux for 12~24 hours (preferably 18 hours). Remove the solvent by rotary evaporation in vacuo, dissolve in 100ml of dichloromethane, centrifuge to remove insoluble matter, extract the dichloromethane solution with water (3×100ml), collect the organic layer, then extract with dilute hydrochloric acid (0.1~0.5 mmol), and collect the aqueous layer. The aqueous layer was neutralized with 1M sodium hydroxide, and a blue precipitate was precipitated, centrifuged, washed with water, and dried in vacuum to obtain a blue product with a yield of 45%. The maximum absorption peak of the product in DMSO is at 684 nm, and the maximum absorption wavelength in aqueous solution is at 689 nm.

产物的结构表征数据如下:MS(ESI)m/z: 813.0 [M]-; 1H NMR (DMSO-d6,ppm):δ 9.68 (m, 8H, Pc-Hα), 8.54 (m, 8H, Pc-Hβ), 5.40 (d, J = 8.4 Hz, 4H, CHAr), 2.21 (d, J = 8.3 Hz, 4H, CHAr), 1.97 (t, J = 7.0 Hz, 4H, CH2), 1.70 (t, J = 6.8 Hz, 4H, CH;IR(KBr,cm-1):1607.9,1524,1429.3,1335.8,1290.8,1166.1,1122.9,1080.9,912.2,760.5,735.6,3054,3020,1504,2922.8,2851.5,1472,3434,3358.6,1252.3。 The structural characterization data of the product are as follows: MS (ESI) m/z: 813.0 [M] - ; 1 H NMR (DMSO-d6, ppm): δ 9.68 (m, 8H, Pc-Hα), 8.54 (m, 8H, Pc-Hβ), 5.40 (d, J = 8.4 Hz, 4H, CHAr), 2.21 (d, J = 8.3 Hz, 4H, CHAr), 1.97 (t, J = 7.0 Hz, 4H, CH2), 1.70 (t , J = 6.8 Hz, 4H, CH; IR (KBr, cm -1 ): 1607.9, 1524, 1429.3, 1335.8, 1290.8, 1166.1, 1122.9, 1080.9, 912.2, 760.5, 735.6, 3054, 3020, 1505, 2921.8, 285 , 1472, 3434, 3358.6, 1252.3.

实施例6 Example 6

结构如下式所示轴向尿苷/氨基乙基苯氧基不对称修饰硅酞菁的合成和理化性质: Synthesis and physicochemical properties of axial uridine/aminoethylphenoxy asymmetrically modified silicon phthalocyanine with the structure shown in the following formula:

该化合物可命名为:[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁。 The compound can be named as: [5'-(2',3'-O-isopropyl)-uridineoxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine.

在1mmol的二[4-(2-氨基乙基)苯氧基]酞菁硅(实施例5所述化合物)的甲苯(或二甲苯或二氧六环)溶液中加入1~10mmol(优选2.5 mmol)2’, 3’-O-异丙基-尿苷,加入催化量的NaH后在110~130℃下继续反应1~20小时,通过TLC监控反应终点,将反应混合物旋蒸至少量,加入少量DMF溶解,进而加入大量的水后析出沉淀,膜过滤除去溶剂和反应原料及副产物,干燥。通过硅胶柱纯化粗产物,首先利用四氢呋喃为洗脱溶剂,待第一带完全洗脱后,以DMF为洗脱溶剂,收集目标洗脱组分,旋蒸至少量溶剂后,微孔膜过滤,旋蒸,干燥得到蓝绿色产物,产率约20%。产物在DMF中的最大吸收峰位于679nm处,在水中位于688nm处。 Add 1 ~ 10mmol (preferably 2.5 mmol) 2', 3'-O-isopropyl-uridine, after adding a catalytic amount of NaH, continue the reaction at 110~130°C for 1~20 hours, monitor the reaction end point by TLC, and rotate the reaction mixture to a small amount, A small amount of DMF was added to dissolve, and then a large amount of water was added to precipitate a precipitate. The solvent, reaction raw materials and by-products were removed by membrane filtration, and dried. Purify the crude product through a silica gel column. First, use tetrahydrofuran as the elution solvent. After the first band is completely eluted, use DMF as the elution solvent to collect the target elution components. After rotary evaporation to a small amount of solvent, filter through a microporous membrane. Rotary evaporation and drying gave a blue-green product with a yield of about 20%. The maximum absorption peak of the product is located at 679nm in DMF and 688nm in water.

产物在DMF中的最大吸收峰位于679nm处,在水中位于688nm处。 产物的HR-MS (ESI) : m/z 906.3038[M+H]+。IR(KBr,cm-1):3427.3, 3223.4, 3054.2, 2932.8, 1686.5, 1610.8, 1524.3, 1502.7, 1336.3, 1124.3, 1083.2, 737.3。1H-NMR (DMSO-d6,ppm) : δ 9.55~9.85 (m, 8H, Pc~Hα),8.40~8.70 (m, 8H, Pc~Hβ),7.92~8.01 (s, 1H),5.42~5.49 (d, 2H),4.56~4.62 (d, 1H),4.31~4.38 (t, 2H) ,2.89~2.90  (s, 1H), 2.73~2.74 (s, 2H),2.17~2.24 (d, 2H),2.03~2.12 (t, 2H),1.82~1.92 (t, 2H),1.69~1.74 (t, 1H),1.52~1.59 (t, 1H),0.70~0.82 (s, 3H),0.55~0.66 (s, 3H),-1.35~ -1.25(m, 1H),-2.35~ -2.25(m, 1H)。 The maximum absorption peak of the product is located at 679nm in DMF and 688nm in water. HR-MS (ESI) of the product: m/z 906.3038[M+H] + . IR (KBr, cm-1): 3427.3, 3223.4, 3054.2, 2932.8, 1686.5, 1610.8, 1524.3, 1502.7, 1336.3, 1124.3, 1083.2, 737.3. 1H-NMR (DMSO-d5m, ppm): 55~9.9 , 8H, Pc~Hα), 8.40~8.70 (m, 8H, Pc~Hβ), 7.92~8.01 (s, 1H), 5.42~5.49 (d, 2H), 4.56~4.62 (d, 1H), 4.31~ 4.38 (t, 2H), 2.89~2.90 (s, 1H), 2.73~2.74 (s, 2H), 2.17~2.24 (d, 2H), 2.03~2.12 (t, 2H), 1.82~1.92 (t, 2H ), 1.69~1.74 (t, 1H), 1.52~1.59 (t, 1H), 0.70~0.82 (s, 3H), 0.55~0.66 (s, 3H), -1.35~ -1.25(m, 1H), - 2.35~ -2.25(m, 1H).

实施例7 Example 7

以2’, 3’-O-异丙基-胞苷替代实施例6中的2’, 3’-O-异丙基-尿苷,可以获得结构如下式所示轴向胞苷/氨基乙基苯氧基不对称修饰硅酞菁(即[5’-(2’,3’-O-异丙基)-胞苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁)。该化合物在DMF中的最大吸收峰位于678nm处,在水中位于688nm处,质谱 (ESI) : m/z 959.2[M+H]+Substituting 2', 3'-O-isopropyl-cytidine for 2', 3'-O-isopropyl-uridine in Example 6, the axial cytidine/aminoethyl Asymmetrically modified silicon phthalocyanines (ie [5'-(2',3'-O-isopropyl)-cytidineoxy][4-(2-aminoethyl)phenoxy]silicon Phthalocyanine). The maximum absorption peak of this compound is located at 678nm in DMF and 688nm in water, mass spectrum (ESI): m/z 959.2[M+H] + .

Figure 2013103743497100002DEST_PATH_IMAGE017
Figure 2013103743497100002DEST_PATH_IMAGE017

实施例8 Example 8

结构如下式所示的轴向2-氯腺苷/氨基乙基苯氧基不对称修饰硅酞菁的合成和理化性质: Synthesis and physicochemical properties of the axial 2-chloroadenosine/aminoethylphenoxy asymmetrically modified silicon phthalocyanine whose structure is shown in the following formula:

该化合物可命名为:[5’-(2’,3’-O-异丙基)- 2-氯腺苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁 The compound can be named as: [5'-(2',3'-O-isopropyl)-2-chloroadenosyloxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine

Figure 184760DEST_PATH_IMAGE018
Figure 184760DEST_PATH_IMAGE018

在1mmol的二[4-(2-氨基乙基)苯氧基]酞菁硅(实施例5所述化合物)的甲苯(或二甲苯或二氧六环)溶液中加入1~10mmol(优选3 mmol)2’, 3’-O-异丙基-2-氯腺苷,加入催化量的NaH后在110~130℃下继续反应1~10小时,通过TLC监控反应终点,将反应混合物旋蒸至少量,加入少量DMF溶解,进而加入大量的水后析出沉淀,膜过滤除去溶剂和反应原料及副产物,干燥。通过硅胶柱纯化粗产物,利用四氢呋喃为洗脱溶剂,待第一带完全洗脱后,改用DMF为洗脱溶剂,收集目标洗脱组分,旋蒸至少量溶剂后,微孔膜过滤,旋蒸,干燥得到蓝产物,产率约21%。 Add 1 ~ 10mmol (preferably 3 mmol) 2', 3'-O-isopropyl-2-chloroadenosine, after adding a catalytic amount of NaH, continue the reaction at 110~130°C for 1~10 hours, monitor the reaction end point by TLC, and rotate the reaction mixture Add a small amount of DMF to dissolve, and then add a large amount of water to precipitate a precipitate. Remove the solvent, reaction raw materials and by-products by membrane filtration, and dry. Purify the crude product through a silica gel column, using tetrahydrofuran as the elution solvent, after the first band is completely eluted, use DMF as the elution solvent, collect the target elution components, spin evaporate to a small amount of solvent, and filter through a microporous membrane. Rotary evaporation, drying to obtain the blue product, the yield is about 21%.

产物在DMF中的最大吸收峰位于677nm处,在水中位于688nm处。产物的其他表征数据:HR-MS (ESI) : m/z 1016.2842[M]-。IR(KBr,cm-1):3408.5, 3208.5, 2927.7, 1635.3, 1522.9, 1506.0, 1334.2, 1124.3, 1079.8, 914.4, 738.4。1H-NMR(DMSO-d6,ppm) : δ 9.55~9.85 (m, 8H, Pc~Hα),8.40~8.70 (m, 8H, Pc~Hβ),7.90~7.96 (s, 1H),6.00~6.29 (s, 2H),5.28~5.42 (d, 2H),2.87~2.88 (s, 1H), 2.70~2.73 (s, 1H),2.08~2.20 (d, 2H),1.96~2.06 (t, 2H),1.78~1.91 (t, 2H),1.28~1.35 (t, 1H),1.18~1.25 (t, 1H),1.02~1.06 (t, 1H),0. 63~0.85 (s, 3H),0.44~0.62 (s, 3H),-1.45~ -1.30(m,1H),-2.25~ -2.05 (m, 1H)。 The maximum absorption peak of the product is located at 677nm in DMF and 688nm in water. Other characterization data of the product: HR-MS (ESI): m/z 1016.2842[M] . IR (KBr, cm -1 ): 3408.5, 3208.5, 2927.7, 1635.3, 1522.9, 1506.0, 1334.2, 1124.3, 1079.8, 914.4, 738.4. 1 H-NMR (DMSO-d 6 , ppm): δ 9.55~9.85 (m, 8H, Pc~H α ), 8.40~8.70 (m, 8H, Pc~H β ), 7.90~7.96 (s, 1H) ( t, 2H), 1.78~1.91 (t, 2H), 1.28~1.35 (t, 1H), 1.18~1.25 (t, 1H), 1.02~1.06 (t, 1H), 0. 63~0.85 (s, 3H ), 0.44~0.62 (s, 3H), -1.45~ -1.30(m,1H), -2.25~ -2.05 (m, 1H).

实施例9 Example 9

以2’, 3’-O-异丙基-腺苷替代实施例8中的2’, 3’-O-异丙基-2-氯腺苷,可以获得结构如下式所示的轴向腺苷/氨基乙基苯氧基不对称修饰硅酞菁(即[5’-(2’,3’-O-异丙基)腺苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁)。该化合物在DMF中的最大吸收峰位于677nm处,在水中位于688nm处,其质谱MS (ESI) : m/z 982.3[M]-Substituting 2', 3'-O-isopropyl-adenosine for 2', 3'-O-isopropyl-2-chloroadenosine in Example 8, the axial adenosine structure shown in the following formula can be obtained: Glycoside/aminoethylphenoxy asymmetrically modified silicon phthalocyanine (ie [5'-(2',3'-O-isopropyl)adenosyloxy][4-(2-aminoethyl)phenoxy base] silicon phthalocyanine). The maximum absorption peak of this compound is located at 677nm in DMF and 688nm in water, and its mass spectrum MS (ESI) : m/z 982.3[M] - .

实施例10 Example 10

结构如下式所示的轴向尿苷/三乙二醇不对称修饰硅酞菁的合成和理化性质: Synthesis and physicochemical properties of axial uridine/triethylene glycol asymmetrically modified silicon phthalocyanine with the following structure:

该化合物可命名为:[5’-(2’,3’-O-异丙基)-尿苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁。 The compound can be named as: [5'-(2',3'-O-isopropyl)-uridineoxy][(2-(2-(2-methoxyethoxy)ethoxy) ethoxy)] silicon phthalocyanine.

Figure 552025DEST_PATH_IMAGE020
Figure 552025DEST_PATH_IMAGE020

在1mmol的[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁(实施例6所述化合物)的甲苯(或二甲苯或二氧六环)溶液中加入1~10mmol(优选1.5 mmol)三乙二醇单甲醚,加入催化量的NaH后在110~130℃下反应1~20小时,通过TLC监控反应终点,将反应混合物旋蒸至少量,加入少量DMF溶解,进而加入大量的水后析出沉淀,膜过滤除去溶剂和反应原料及副产物,干燥。通过硅胶柱纯化粗产物,利用乙酸乙酯为洗脱溶剂,收集目标洗脱组分,旋蒸至少量溶剂后,过滤,旋蒸,干燥得到蓝产物,产率约15%。产物在DMF中的最大吸收峰位于677nm处,在水中位于688nm处,其HR-MS (ESI) : m/z 1009.3066 [M+Na]+In 1mmol of [5'-(2',3'-O-isopropyl)-uridine oxy][4-(2-aminoethyl)phenoxy]silyl phthalocyanine (the compound described in Example 6 ) in toluene (or xylene or dioxane) solution, add 1~10mmol (preferably 1.5 mmol) triethylene glycol monomethyl ether, add a catalytic amount of NaH and react at 110~130°C for 1~20 hours, The end point of the reaction was monitored by TLC, the reaction mixture was rotary evaporated to a small amount, a small amount of DMF was added to dissolve, and a large amount of water was added to precipitate a precipitate, and the solvent, reaction raw materials and by-products were removed by membrane filtration, and dried. Purify the crude product through a silica gel column, use ethyl acetate as the elution solvent, collect the target eluted fraction, spin evaporate to a small amount of solvent, filter, spin evaporate, and dry to obtain the blue product with a yield of about 15%. The maximum absorption peak of the product is located at 677nm in DMF and 688nm in water. Its HR-MS (ESI) : m/z 1009.3066 [M+Na] + .

实施例11 Example 11

分别以三乙二醇、四乙二醇、四乙二醇单甲醚替代实施例10中的三乙二醇单甲醚,可以获得结构如下式所示的轴向尿苷/乙二醇衍生物不对称修饰硅酞菁,产率为10-20%。这些化合物在DMF中的最大吸收峰位于677-680nm处,在水中位于688-690nm处。 Substituting triethylene glycol, tetraethylene glycol, and tetraethylene glycol monomethyl ether for triethylene glycol monomethyl ether in Example 10, respectively, can obtain the axial uridine/ethylene glycol derivatized structure shown in the following formula: Asymmetrically modified silicon phthalocyanine with a yield of 10-20%. These compounds have maximum absorption peaks at 677-680 nm in DMF and 688-690 nm in water.

实施例12 Example 12

结构如下式所示的轴向胞苷/三乙二醇不对称修饰硅酞菁的合成和理化性质: Synthesis and physicochemical properties of axial cytidine/triethylene glycol asymmetrically modified silicon phthalocyanine with the following structure:

该化合物可命名为:[5’-(2’,3’-O-异丙基)-胞苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁。 The compound can be named as: [5'-(2',3'-O-isopropyl)-cytidineoxy][(2-(2-(2-methoxyethoxy)ethoxy) ethoxy)] silicon phthalocyanine.

  the

以[5’-(2’,3’-O-异丙基)-胞苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁(实施例7所述化合物)替代实施例10中的[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁,可以获得 [5’-(2’,3’-O-异丙基)-胞苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁,该化合物在DMF中的最大吸收峰位于678nm处,在水中位于689nm处,其MS (ESI) : m/z 1002.4 [M]+Replace with [5'-(2',3'-O-isopropyl)-cytidineoxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine (the compound described in Example 7) [5'-(2',3'-O-isopropyl)-uridine oxy][4-(2-aminoethyl)phenoxy]silicon phthalocyanine in Example 10 can obtain [5 '-(2',3'-O-isopropyl)-cytidineoxy][(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]silicone phthalocyanine , the maximum absorption peak of this compound is located at 678nm in DMF and 689nm in water, its MS (ESI) : m/z 1002.4 [M] + .

实施例13 Example 13

分别以三乙二醇、四乙二醇、四乙二醇单甲醚替代实施例12中的三乙二醇单甲醚,可以获得结构如下式所示的轴向胞苷/乙二醇衍生物不对称修饰硅酞菁,产率为13-22%。这些化合物在DMF中的最大吸收峰位于678-680nm处,在水中位于688-690nm处。 By substituting triethylene glycol, tetraethylene glycol, and tetraethylene glycol monomethyl ether for triethylene glycol monomethyl ether in Example 12, the axial cytidine/ethylene glycol derivatized structure shown in the following formula can be obtained: asymmetrically modified silicon phthalocyanine with a yield of 13-22%. These compounds have maximum absorption peaks at 678-680 nm in DMF and 688-690 nm in water.

Figure 2013103743497100002DEST_PATH_IMAGE023
Figure 2013103743497100002DEST_PATH_IMAGE023

实施例14 Example 14

结构如下式所示的轴向2-氯腺苷/三乙二醇不对称修饰硅酞菁的合成和理化性质: The synthesis and physicochemical properties of the axial 2-chloroadenosine/triethylene glycol asymmetrically modified silicon phthalocyanine shown in the following structure:

该化合物可命名为:[5’-(2’,3’-O-异丙基)-2-氯腺苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁。 The compound can be named as: [5'-(2',3'-O-isopropyl)-2-chloroadenosyloxy][(2-(2-(2-methoxyethoxy)ethyl oxy)ethoxy)] silicon phthalocyanine.

Figure 918732DEST_PATH_IMAGE024
Figure 918732DEST_PATH_IMAGE024

以[5’-(2’,3’-O-异丙基) -2-氯腺苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁(实施例8所述化合物)替代实施例10中的[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁,可以获得 [5’-(2’,3’-O-异丙基)-2-氯腺苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁,该化合物在DMF中的最大吸收峰位于679nm处,在水中位于689nm处,其MS (ESI) : m/z 1058.3 [M]+[5'-(2',3'-O-isopropyl)-2-chloroadenosyloxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine (described in Example 8 Compound) to replace [5'-(2',3'-O-isopropyl)-uridine oxy][4-(2-aminoethyl)phenoxy]silicon phthalocyanine in Example 10, can [5'-(2',3'-O-isopropyl)-2-chloroadenosyloxy][(2-(2-(2-methoxyethoxy)ethoxy)ethoxy base)] silicon phthalocyanine, the maximum absorption peak of this compound is located at 679nm in DMF and 689nm in water, its MS (ESI): m/z 1058.3 [M] + .

实施例15 Example 15

分别以三乙二醇、四乙二醇、四乙二醇单甲醚替代实施例14中的三乙二醇单甲醚,可以获得结构如下式所示的轴向2-氯腺苷/乙二醇衍生物不对称修饰硅酞菁,产率为13-22%。这些化合物在DMF中的最大吸收峰位于679-681nm处,在水中位于688-690nm处。 Substitute triethylene glycol monomethyl ether in Example 14 with triethylene glycol, tetraethylene glycol, and tetraethylene glycol monomethyl ether respectively to obtain axial 2-chloroadenosine/ethyl ether as shown in the following formula: Diol derivatives asymmetrically modify silicon phthalocyanine with a yield of 13-22%. These compounds have maximum absorption peaks at 679-681 nm in DMF and 688-690 nm in water.

Figure 2013103743497100002DEST_PATH_IMAGE025
Figure 2013103743497100002DEST_PATH_IMAGE025

  the

实施例16 Example 16

结构如下式所示的轴向腺苷/三乙二醇不对称修饰硅酞菁的合成和理化性质: Synthesis and physicochemical properties of axial adenosine/triethylene glycol asymmetrically modified silicon phthalocyanine with the following structure:

该化合物可命名为:[5’-(2’,3’-O-异丙基)-腺苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁。 The compound can be named as: [5'-(2',3'-O-isopropyl)-adenosyloxy][(2-(2-(2-methoxyethoxy)ethoxy) ethoxy)] silicon phthalocyanine.

Figure 878336DEST_PATH_IMAGE026
Figure 878336DEST_PATH_IMAGE026

以[5’-(2’,3’-O-异丙基) -腺苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁(实施例9所述化合物)替代实施例10中的[5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁,可以获得 [5’-(2’,3’-O-异丙基)-腺苷氧基][(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)]硅酞菁,该化合物在DMF中的最大吸收峰位于679nm处,在水中位于689nm处,其MS (ESI) : m/z 1025.6 [M]+Replace with [5'-(2',3'-O-isopropyl)-adenosyloxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine (the compound described in Example 9) [5'-(2',3'-O-isopropyl)-uridine oxy][4-(2-aminoethyl)phenoxy]silicon phthalocyanine in Example 10 can obtain [5 '-(2',3'-O-isopropyl)-adenosyloxy][(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]silicone phthalocyanine , the maximum absorption peak of this compound is located at 679nm in DMF and 689nm in water, its MS (ESI) : m/z 1025.6 [M] + .

实施例17 Example 17

分别以三乙二醇、四乙二醇、四乙二醇单甲醚替代实施例16中的三乙二醇单甲醚,可以获得结构如下式所示的轴向腺苷/乙二醇衍生物不对称修饰硅酞菁,产率为15-25%。这些化合物在DMF中的最大吸收峰位于678-680nm处,在水中位于688-690nm处。 By substituting triethylene glycol, tetraethylene glycol, and tetraethylene glycol monomethyl ether for triethylene glycol monomethyl ether in Example 16, the axial adenosine/ethylene glycol derivatized structure shown in the following formula can be obtained: asymmetrically modified silicon phthalocyanine with a yield of 15-25%. These compounds have maximum absorption peaks at 678-680 nm in DMF and 688-690 nm in water.

Figure 2013103743497100002DEST_PATH_IMAGE027
Figure 2013103743497100002DEST_PATH_IMAGE027

实施例 18 Example 18

利用本发明所述的轴向核苷不对称修饰硅酞菁制备光动力药物(即光敏(药)剂)的方法是:用水,或水和其它物质的混和溶液(其中其它物质的质量分数不高于10%)作为溶剂,溶解轴向核苷不对称修饰的硅酞菁,配制成含一定浓度的光敏药剂,轴向核苷不对称修饰的硅酞菁的浓度不高于其饱和浓度(优选1~0.01 mM)。所述的其它物质可以是以下一种或几种的混和:蓖麻油衍生物(Cremophor EL)、二甲亚砜、乙醇、甘油、N,N-二甲基甲酰胺、聚乙二醇300-3000,环糊精、葡萄糖、吐温、聚乙二醇单硬脂酸酯。在制成的溶液中可加入抗氧化剂、缓冲剂和等渗剂作为添加剂以保持光敏药剂的化学稳定性和生物相容性。 The method for preparing photodynamic drugs (i.e. photosensitive (drug) agents) using the axial nucleoside asymmetrically modified silicon phthalocyanine described in the present invention is: water, or a mixed solution of water and other substances (wherein the mass fraction of other substances is not higher than 10%) as a solvent to dissolve the silicon phthalocyanine asymmetrically modified by the axial nucleoside, and prepare a photosensitizer containing a certain concentration. The concentration of the silicon phthalocyanine asymmetrically modified by the axial nucleoside is not higher than its saturation concentration ( Preferably 1~0.01 mM). The other substances mentioned can be one or a combination of the following: castor oil derivatives (Cremophor EL), dimethyl sulfoxide, ethanol, glycerin, N,N-dimethylformamide, polyethylene glycol 300- 3000, Cyclodextrin, Dextrose, Tween, Macrogol Monostearate. In the prepared solution, antioxidants, buffers and isotonic agents can be added as additives to maintain the chemical stability and biocompatibility of the photosensitizer.

将本发明所述的核苷不对称修饰硅酞菁溶解在5~35%(wt%)二甲亚砜的水溶液,可作为局部给药用的制剂。 Dissolving the nucleoside asymmetrically modified silicon phthalocyanine in the present invention in an aqueous solution of 5-35% (wt%) dimethyl sulfoxide can be used as a preparation for topical administration.

实施例19 Example 19

本发明所制备的光动力药物、光敏(药)剂,在光动力治疗,或光动力诊断,或光动力消毒中的使用方法与已有技术中运用非本发明所述的酞菁或卟啉化合物制备的光敏药剂或光敏剂的使用方法相同,但需配套适宜的光源,所述的适宜的光源可以由普通光源连接合适的滤光片来提供或由特定波长的激光来提供,光源的波长范围为300-800nm,优选675-690nm。 The photodynamic drug and photosensitizer (drug) agent prepared by the present invention are used in photodynamic therapy, photodynamic diagnosis, or photodynamic disinfection, and the use of phthalocyanine or porphyrin not described in the present invention in the prior art The photosensitizer or photosensitizer prepared by the compound is used in the same way, but it needs to be equipped with a suitable light source. The suitable light source can be provided by a common light source connected with a suitable filter or provided by a laser with a specific wavelength. The wavelength of the light source is The range is 300-800 nm, preferably 675-690 nm.

实施例20 Example 20

将本发明本发明所述的轴向核苷不对称修饰硅酞菁溶于1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中,制成0.08mM的光敏药剂。测试它们对人胃癌BGC823细胞的暗毒性和光动力活性。 The axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention is dissolved in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution to prepare 0.08mM photosensitizer. Their dark toxicity and photodynamic activity were tested against human gastric cancer BGC823 cells.

将0.08mM的光敏药剂稀释到细胞培养液中,制成含不同浓度光敏剂的细胞培养液。将测试细胞分别在含有不同浓度光敏剂的培养液中培养2小时,尔后弃培养液,用PBS清洗细胞后,加入新的培养液(不含光敏剂)。光照实验组,对细胞进行红光照射(所用激发光光源为波长大于610nm的红光,照射30分钟,照射光的功率为15mw×cm-2);不照光组,将细胞置于暗处20分钟。光照或不光照后,细胞的存活率采用MTT法考察。具体实验步骤参见《Bioorganic & Medicinal Chemistry Letters》, 2006, 16,2450-2453。 Dilute 0.08mM photosensitizer into cell culture fluid to prepare cell culture fluid with different concentrations of photosensitizer. The test cells were cultured in the culture solution containing different concentrations of photosensitizer for 2 hours, then the culture solution was discarded, and after the cells were washed with PBS, new culture solution (without photosensitizer) was added. In the light experiment group, the cells were irradiated with red light (the excitation light source used was red light with a wavelength greater than 610nm, irradiated for 30 minutes, and the power of the irradiated light was 15mw×cm -2 ); in the no light group, the cells were placed in the dark for 20 minute. After light or no light, the survival rate of cells was examined by MTT method. For specific experimental procedures, see " Bioorganic & Medicinal Chemistry Letters" , 2006, 16, 2450-2453.

上述波长大于610nm的红光是通过500W的卤素灯连接隔热水槽加大于610nm的滤光片来提供的。 The above-mentioned red light with a wavelength greater than 610nm is provided through a 500W halogen lamp connected to an insulated water tank and a filter greater than 610nm.

结果表明,本发明所述的轴向核苷不对称修饰酞菁硅,在红光照射下,可杀伤癌细胞,当本发明所述的轴向核苷不对称修饰硅酞菁的浓度为0.003mM(即3×10-6 mol/L)时,可100%杀伤癌细胞。同样浓度下,若不进行光照,本发明的轴向核苷不对称修饰酞菁硅对癌细胞没有杀伤和生长抑制作用,表明它们没有暗毒性。通过浓度和细胞存活率的量效关系,发现本发明所述的轴向核苷不对称修饰酞菁硅在红光照射下的半致死浓度(IC50,即杀死50%癌细胞所需的药物浓度)分别为: The results show that the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention can kill cancer cells under red light irradiation. When the concentration of the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention is 0.003 At mM (ie 3×10 -6 mol/L), it can kill 100% of cancer cells. At the same concentration, if no light is applied, the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention has no killing and growth inhibiting effect on cancer cells, indicating that they have no dark toxicity. Through the dose-effect relationship between concentration and cell viability, it was found that the semi-lethal concentration (IC 50 , which is required to kill 50% of cancer cells) of the axial nucleoside asymmetrically modified silicon phthalocyanine described in the present invention was irradiated by red light. drug concentration) are:

4 nM ([5’-(2’,3’-O-异丙基)-尿苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁,即实施例6所述化合物); 4 nM ([5'-(2',3'-O-isopropyl)-uridineoxy][4-(2-aminoethyl)phenoxy]silicone phthalocyanine as described in Example 6 compound);

150 nM ([5’-(2’,3’-O-异丙基)-胞苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁, 即实施例7所述化合物); 150 nM ([5'-(2',3'-O-isopropyl)-cytidineoxy][4-(2-aminoethyl)phenoxy]silyl phthalocyanine, as described in Example 7 compound);

7 nM ([5’-(2’,3’-O-异丙基)- 2-氯腺苷氧基][4-(2-氨基乙基)苯氧基]硅酞菁, 即实施例8所述化合物); 7 nM ([5'-(2',3'-O-isopropyl)-2-chloroadenosyloxy][4-(2-aminoethyl)phenoxy]silyl phthalocyanine, Example 8 said compound);

5 nM ([5’-(2’,3’-O-异丙基)-腺苷氧基] [4-(2-氨基乙基)苯氧基]硅酞菁, 即实施例9所述化合物); 5 nM ([5'-(2',3'-O-isopropyl)-adenosyloxy][4-(2-aminoethyl)phenoxy]silyl phthalocyanine, as described in Example 9 compound);

6-20 nM(轴向尿苷/低聚乙二醇不对称修饰硅酞菁,即实施例10-11所述化合物); 6-20 nM (axial uridine/oligoethylene glycol asymmetrically modified silicon phthalocyanine, the compound described in Examples 10-11);

200-310 nM(轴向胞苷/低聚乙二醇不对称修饰硅酞菁,即实施例12-13所述化合物); 200-310 nM (axial cytidine/oligoethylene glycol asymmetrically modified silicon phthalocyanine, the compound described in Examples 12-13);

7-15 nM(轴向2-氯腺苷/低聚乙二醇不对称修饰硅酞菁,即实施例14-15所述化合物); 7-15 nM (axial 2-chloroadenosine/oligoethylene glycol asymmetrically modified silicon phthalocyanine, the compound described in Examples 14-15);

5-18 nM(轴向腺苷/低聚乙二醇不对称修饰硅酞菁,即实施例16-17所述化合物)。 5-18 nM (axial adenosine/oligoethylene glycol asymmetrically modified silicon phthalocyanine, namely the compound described in Examples 16-17).

可见,轴向核苷不对称修饰酞菁硅IC50值较低,部分化合物甚至低至4-7nM(即4-7×10-8 mol/L)。极低的IC50值,说明本发明所提供的轴向核苷不对称修饰酞菁硅具有极高的光动力活性。 It can be seen that the axial nucleoside asymmetrically modified silicon phthalocyanine has a low IC 50 value, and some compounds are even as low as 4-7nM (ie 4-7×10 -8 mol/L). The extremely low IC 50 value indicates that the axial nucleoside asymmetrically modified silicon phthalocyanine provided by the present invention has extremely high photodynamic activity.

将上述1%蓖麻油衍生物(Cremophor EL,wt%)水溶液换成1%蓖麻油衍生物(Cremophor EL,wt%)磷酸盐缓冲溶液(PBS),也可得到同样的实验结果。 The same experimental results can also be obtained by replacing the above 1% castor oil derivative (Cremophor EL, wt%) aqueous solution with 1% castor oil derivative (Cremophor EL, wt%) phosphate buffered saline solution (PBS).

实施例21 Example 21

按照实施例20所述的方法,测定了轴向核苷对称修饰硅酞菁、轴向氨基乙基苯氧基对称修饰硅酞菁、轴向低聚乙二醇对称修饰硅酞菁对人胃癌BGC823细胞的光动力活性。 According to the method described in Example 20, the effects of axial nucleoside symmetrically modified silicon phthalocyanine, axial aminoethylphenoxy symmetrically modified silicon phthalocyanine, and axial low polyethylene glycol symmetrically modified silicon phthalocyanine on human gastric cancer were determined. Photodynamic activity of BGC823 cells.

结果表明,轴向核苷对称修饰硅酞菁,二[5’-(2’, 3’-O-异丙基)-尿苷氧基]硅酞菁、二[5’-(2’, 3’-O-异丙基)-胞苷氧基]硅酞菁、二[5’-(2’, 3’-O-异丙基)-2-氯腺苷氧基]硅酞菁和二[5’-(2’, 3’-O-异丙基)-腺苷氧基]硅酞菁光动力抑制人胃癌BGC823细胞的IC50值分别为31nM、410nM、10nM和9nM。 The results showed that axial nucleoside symmetrically modified silicon phthalocyanine, bis[5'-(2', 3'-O-isopropyl)-uridine oxy] silicon phthalocyanine, bis[5'-(2', 3'-O-isopropyl)-cytidineoxy]silyl phthalocyanine, bis[5'-(2', 3'-O-isopropyl)-2-chloroadenosyloxy]silyl phthalocyanine and The IC 50 values of bis[5'-(2', 3'-O-isopropyl)-adenosyloxy]silicon phthalocyanine photodynamic inhibition of human gastric cancer BGC823 cells were 31nM, 410nM, 10nM and 9nM, respectively.

轴向氨基乙基苯氧基对称修饰硅酞菁,即即二[4-(2-氨基乙基)苯氧基]酞菁硅光动力抑制人胃癌BGC823细胞的IC50值为20nM。 The IC 50 value of axial aminoethylphenoxy symmetrically modified silicon phthalocyanine, that is, bis[4-(2-aminoethyl)phenoxy]phthalocyanine silicon photodynamic inhibition of human gastric cancer BGC823 cells was 20nM.

轴向三乙二醇对称取代硅酞菁、轴向四乙二醇对称取代硅酞菁光动力抑制人胃癌BGC823细胞的IC50值为50-30nM。 The IC 50 values of axial triethylene glycol symmetrically substituted silicon phthalocyanine and axial tetraethylene glycol symmetrically substituted silicon phthalocyanine photodynamically inhibit human gastric cancer BGC823 cells are 50-30nM.

比较实施例20和实施例21的结果,可以发现本发明所述的轴向核苷不对称修饰硅酞菁的光动力抗癌活性显著高于对应的轴向核苷对称修饰硅酞菁,且大部分轴向核苷不对称修饰硅酞菁的光动力抗癌活性显著高于轴向氨基乙基苯氧基对称修饰硅酞菁和轴向低聚乙二醇对称取代硅酞菁。 Comparing the results of Example 20 and Example 21, it can be found that the photodynamic anticancer activity of the axial nucleoside asymmetrically modified silicon phthalocyanine described in the present invention is significantly higher than that of the corresponding axial nucleoside symmetrically modified silicon phthalocyanine, and The photodynamic anticancer activity of most axial nucleoside asymmetrically modified silicon phthalocyanines was significantly higher than that of axial aminoethylphenoxy symmetrically modified silicon phthalocyanines and axial oligoethylene glycol symmetrically substituted silicon phthalocyanines.

实施例22 Example 22

按照实施例18所述的方法,比较本发明所述的轴向核苷不对称修饰与下列其他酞菁化合物对人胃癌BGC823细胞的光动力活性。 According to the method described in Example 18, the photodynamic activity of the axial nucleoside asymmetric modification described in the present invention and the following other phthalocyanine compounds on human gastric cancer BGC823 cells was compared.

所述下列其他酞菁化合物是以下配合物的一种:轴向二(4-乙酰氨基苯氧基)硅酞菁,二[4-(4-乙酰基哌嗪)苯氧基]硅酞菁,二[4-(3-羧基丙基)苯氧基]硅酞菁,二(4-甲酸苯氧基)硅酞菁,二(3-甲酸苯氧基)硅酞菁,二(3,5-二甲酸苯氧基) 硅酞菁,二(1-金刚烷-甲氧基)硅酞菁,二(2-金刚烷-乙氧基)硅酞菁,四-a-[4-(4-乙酰基哌嗪)苯氧基]锌酞菁,四-a-(4-甲酸苯氧基)锌酞菁。 The following other phthalocyanine compounds are one of the following complexes: axial bis(4-acetylaminophenoxy)silyl phthalocyanine, bis[4-(4-acetylpiperazine)phenoxy]silyl phthalocyanine , bis[4-(3-carboxypropyl)phenoxy]silicon phthalocyanine, bis(4-formylphenoxy)silicon phthalocyanine, bis(3-formylphenoxy)silicon phthalocyanine, bis(3, 5-dicarboxyphenoxy) silicon phthalocyanine, bis(1-adamantane-methoxy) silicon phthalocyanine, bis(2-adamantane-ethoxy) silicon phthalocyanine, tetra-a-[4-( 4-acetylpiperazine)phenoxy]zinc phthalocyanine, tetra-a-(4-carboxyphenoxy)zinc phthalocyanine.

结果表明,本发明所述的轴向核苷不对称修饰的硅酞菁的光动力活性均显著高于其他类似化合物。在同样浓度(1.0×10-6 mol/L)下,本发明所述的轴向核苷不对称修饰的硅酞菁对胃癌BGC823细胞的光动力抑制作用至少是上述其他酞菁化合物的3倍以上。 The results show that the photodynamic activity of the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention is significantly higher than that of other similar compounds. At the same concentration (1.0×10 -6 mol/L), the silicon phthalocyanine with axial nucleoside asymmetric modification described in the present invention has at least 3 times the photodynamic inhibition effect on gastric cancer BGC823 cells than other phthalocyanine compounds mentioned above above.

实施例23 Example 23

将本发明的轴向核苷不对称修饰的硅酞菁溶于1%蓖麻油衍生物(Cremophor EL,wt%)PBS缓冲液中,制成0.3mM的光敏药剂,测试它们对真菌的光动力抑制活性。所用真菌为白色念珠菌CMCC(F)C1a(Candida albicans,C. albicans),菌悬液浓度为2×10cells/ml。在红光照射下(所用激发光光源为波长大于610nm的红光,照射30分钟,照射光的功率为15mw×cm-2),本发明的轴向核苷不对称修饰的硅酞菁可杀灭60%白色念珠菌,而溶剂对照组、只给药不照光组、只照光不给药组均不影响白色念珠菌的生长。 The axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention was dissolved in 1% castor oil derivative (Cremophor EL, wt%) PBS buffer to make 0.3mM photosensitizer, and tested their photodynamic activity on fungi inhibitory activity. The fungus used is Candida albicans CMCC(F)C1a (Candida albicans, C. albicans), and the concentration of the bacterial suspension is 2×10 6 cells/ml. Under the irradiation of red light (the excitation light source used is red light with a wavelength greater than 610nm, the irradiation is 30 minutes, and the power of the irradiation light is 15mw×cm -2 ), the silicon phthalocyanine with axial nucleoside asymmetric modification of the present invention can kill 60% of Candida albicans can be killed, while the solvent control group, the only administration without light group, and the light without administration group do not affect the growth of Candida albicans.

实施例24 Example 24

测试了本发明的轴向核苷不对称修饰的硅酞菁作为光敏剂用于光动力消毒的效果。 The effect of the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention as a photosensitizer for photodynamic disinfection was tested.

首先,将所述轴向核苷不对称修饰的硅酞菁溶于1%蓖麻油衍生物(Cremophor EL,wt%)水溶液中,制成0.3mM的光敏药剂。然后将其加入到含有大肠杆菌的水中,使硅酞菁的含量为0.03mM,2小时后用红光照射含有大肠杆菌的水。检查照光前后大肠杆菌的存活情况,结果表明在红光照射下,本发明的轴向核苷不对称修饰的硅酞菁能杀灭70%以上的大肠杆菌。 First, the axial nucleoside asymmetrically modified silicon phthalocyanine was dissolved in 1% castor oil derivative (Cremophor EL, wt%) aqueous solution to prepare 0.3mM photosensitizer. Then it was added to the water containing Escherichia coli so that the content of silicon phthalocyanine was 0.03 mM, and after 2 hours, the water containing Escherichia coli was irradiated with red light. The survival of Escherichia coli before and after irradiation was checked, and the results showed that the axial nucleoside asymmetrically modified silicon phthalocyanine of the present invention could kill more than 70% of Escherichia coli under the irradiation of red light.

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

Claims (4)

1. the silicon phthalocyanine of the asymmetric modification of an axial nucleosides, it is characterized in that: its structural formula is as follows:
Figure 2013103743497100001DEST_PATH_IMAGE002
Axial substituent R wherein 1, R 2be selected from respectively following group:
R 1for
Figure 2013103743497100001DEST_PATH_IMAGE004
,
Figure 2013103743497100001DEST_PATH_IMAGE006
,
Figure 2013103743497100001DEST_PATH_IMAGE008
,
Figure 2013103743497100001DEST_PATH_IMAGE010
in a kind of;
R 2for
Figure 2013103743497100001DEST_PATH_IMAGE012
,
Figure 2013103743497100001DEST_PATH_IMAGE014
,
Figure 2013103743497100001DEST_PATH_IMAGE016
,
Figure 2013103743497100001DEST_PATH_IMAGE018
,
Figure 2013103743497100001DEST_PATH_IMAGE020
in a kind of.
2. a method for preparing the silicon phthalocyanine of the asymmetric modification of axial nucleosides as claimed in claim 1 is characterized in that: comprise the following steps:
(1) with two [4-(2-amino-ethyl) phenoxy group] silicon phthalocyanine and 2 ', 3 '-O-sec.-propyl-uridine, 2 ', 3 '-O-sec.-propyl-cytidine, 2 ', 3 '-O-sec.-propyl-adenosine, 2 ', a kind of in 3 '-O-sec.-propyl-2-chlorine adenosine is reactant, both molar ratios are 1:1 ~ 10, take toluene, dimethylbenzene or dioxane as solvent, under the protection of nitrogen, 100 ~ 130 ℃ are reacted 1 ~ 20 hour, remove excessive raw material and impurity by solvent cleaning and column chromatography for separation, obtain the asymmetric modification silicon phthalocyanine of axial nucleosides and amino-ethyl phenoxy group;
(2) take a kind of in the asymmetric modification silicon phthalocyanine of axial nucleosides and amino-ethyl phenoxy group and triethylene glycol, triethylene glycol monomethyl ether, TEG, TEG monomethyl ether is reactant; both molar ratios are 1:1 ~ 10; take toluene, dimethylbenzene or dioxane as solvent; under the protection of nitrogen; 100 ~ 130 ℃ are reacted 1 ~ 20 hour; remove excessive raw material and impurity by solvent cleaning and column chromatography for separation, obtain the asymmetric modification silicon phthalocyanine of axial nucleosides and low polyoxyethylene glycol.
3. the application of the silicon phthalocyanine of the asymmetric modification of an axial nucleosides as claimed in claim 1 is characterized in that: the silicon phthalocyanine of the asymmetric modification of described axial nucleosides is for the preparation of photo-dynamical medicine or photosensitizers.
4. the application of the silicon phthalocyanine of the asymmetric modification of axial nucleosides according to claim 3, it is characterized in that: the method for preparing photo-dynamical medicine or photosensitizers is: the mixed solution of water or water and other material, wherein the massfraction of other material is not higher than 10%, as solvent, dissolve the silicon phthalocyanine of the asymmetric modification of axial nucleosides, be mixed with containing certain density photosensitive medicament, axially the concentration of the silicon phthalocyanine of the asymmetric modification of nucleosides is not higher than its saturation concentration; In the solution of making, add antioxidant, buffer reagent and isotonic agent as additive chemical stability and the biocompatibility to keep photosensitive medicament;
Described other material is one or more the miscellany in castor oil derivative, methyl-sulphoxide, ethanol, glycerine, DMF, Liquid Macrogol-3000, cyclodextrin, glucose, tween, polyethylene glycol mono stearate.
CN201310374349.7A 2013-08-26 2013-08-26 Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application Active CN103435639B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310374349.7A CN103435639B (en) 2013-08-26 2013-08-26 Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310374349.7A CN103435639B (en) 2013-08-26 2013-08-26 Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application

Publications (2)

Publication Number Publication Date
CN103435639A true CN103435639A (en) 2013-12-11
CN103435639B CN103435639B (en) 2016-01-27

Family

ID=49689376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310374349.7A Active CN103435639B (en) 2013-08-26 2013-08-26 Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application

Country Status (1)

Country Link
CN (1) CN103435639B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243114A (en) * 2016-07-28 2016-12-21 福州大学 Molecular targeted azepine aromatic rings axial substituted phthalocyanine coordination compound and preparation method
WO2018086242A1 (en) * 2016-11-11 2018-05-17 深圳市声光动力生物医药科技有限公司 Ph-sensitive axially-substituted silicon phthalocyanine complex, preparation method therefor, and medical application thereof
CN108456298A (en) * 2018-05-15 2018-08-28 长春理工大学 A kind of amphipathic nature polyalcohol and synthetic method of the modification of solubility unsymmetrical phthalocyanine
JPWO2021157655A1 (en) * 2020-02-05 2021-08-12
CN114249785A (en) * 2020-09-23 2022-03-29 常州方圆制药有限公司 Preparation method of 2-adenosine N-pyrazole derivative regadenoson
CN116284095A (en) * 2023-01-18 2023-06-23 福州大学 Cyclonucleophilic adducts of silicon phthalocyanine with strong absorption in the near-infrared region and their preparation and application
US12115223B2 (en) 2021-04-22 2024-10-15 The University Of Tokyo Conjugate of biotin-modified dimer and phthalocyanine dye

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643280A (en) * 2012-05-18 2012-08-22 福州大学 Folic-acid-modified phthalocyanino-silicon, and preparation method and application thereof
CN102827227A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by adenosine derivative and preparation method and application thereof
CN102827226A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
CN102827228A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by cytidine derivative and preparation method and application thereof
CN103254223A (en) * 2013-05-30 2013-08-21 福州大学 Silicon phthalocyanine axially modified by aminoethyl phenoxyl and polyethylene glycol oligomer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643280A (en) * 2012-05-18 2012-08-22 福州大学 Folic-acid-modified phthalocyanino-silicon, and preparation method and application thereof
CN102827227A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by adenosine derivative and preparation method and application thereof
CN102827226A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
CN102827228A (en) * 2012-08-28 2012-12-19 福州大学 Silicon phthalocyanine modified by cytidine derivative and preparation method and application thereof
CN103254223A (en) * 2013-05-30 2013-08-21 福州大学 Silicon phthalocyanine axially modified by aminoethyl phenoxyl and polyethylene glycol oligomer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋雄杰: "酞菁硅配合物的轴向修饰、表征及在光动力治疗中的应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243114A (en) * 2016-07-28 2016-12-21 福州大学 Molecular targeted azepine aromatic rings axial substituted phthalocyanine coordination compound and preparation method
CN106243114B (en) * 2016-07-28 2018-08-17 福州大学 Molecular targeted azepine aromatic rings axial substituted phthalocyanine complex and preparation method
WO2018086242A1 (en) * 2016-11-11 2018-05-17 深圳市声光动力生物医药科技有限公司 Ph-sensitive axially-substituted silicon phthalocyanine complex, preparation method therefor, and medical application thereof
CN108456298A (en) * 2018-05-15 2018-08-28 长春理工大学 A kind of amphipathic nature polyalcohol and synthetic method of the modification of solubility unsymmetrical phthalocyanine
JPWO2021157655A1 (en) * 2020-02-05 2021-08-12
WO2021157655A1 (en) * 2020-02-05 2021-08-12 国立大学法人 東京大学 Conjugate between antibody or peptide and phthalocyanine dye
CN115003679A (en) * 2020-02-05 2022-09-02 国立大学法人东京大学 Conjugates of phthalocyanine dyes and antibodies or peptides
CN114249785A (en) * 2020-09-23 2022-03-29 常州方圆制药有限公司 Preparation method of 2-adenosine N-pyrazole derivative regadenoson
CN114249785B (en) * 2020-09-23 2024-04-05 常州方圆制药有限公司 Preparation method of 2-adenosine N-pyrazole derivative regadenoson
US12115223B2 (en) 2021-04-22 2024-10-15 The University Of Tokyo Conjugate of biotin-modified dimer and phthalocyanine dye
CN116284095A (en) * 2023-01-18 2023-06-23 福州大学 Cyclonucleophilic adducts of silicon phthalocyanine with strong absorption in the near-infrared region and their preparation and application

Also Published As

Publication number Publication date
CN103435639B (en) 2016-01-27

Similar Documents

Publication Publication Date Title
CN103435639B (en) Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application
CN100381444C (en) Phthalocyanine silicon complexes and their complexes as well as their preparation and application
CN105343878B (en) Restore responsive type water-soluble molecular target photosensitizer and its preparation method and application
CN105585571B (en) A kind of mono-substituted phthalocyanine Zn complex in periphery and its adriamycin conjugate
CN105669735B (en) The silicon phthalocyanine compound and its adriamycin conjugate of a kind of axial substituted
CN104262350B (en) Phthalocyanine metal complex as well as preparation method and application thereof
CN103755713B (en) A kind of eight sulfonic phthalocyanin and its preparation method and application
CN103864833B (en) A kind of axial end hydroxyl replaces silicon phthalocyanine and self-assembly thereof
CN104650129B (en) A kind of silicon phthalocyanine of axial ester bond connection piperidines or morpholine derivative
CN104844645B (en) A kind of silicon phthalocyanine of axial ALA modifications and its preparation method and application
CN105622682B (en) A kind of carboxyl zinc phthalocyanine-adriamycin conjugate and its preparation and application
CN102659793B (en) Phthalocyanine silicon modified by amino ethyl groups and phenoxy groups as well as preparation method and application thereof
CN102827228B (en) Silicon phthalocyanine modified by cytidine derivative and preparation method and application thereof
CN102827227B (en) Silicon phthalocyanine modified by adenosine derivative and preparation method and application thereof
CN102827226B (en) Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine
CN107789623A (en) Piperazine substitutes silicon phthalocyanine and its application in photo-thermal therapy
CN103254223B (en) Silicon phthalocyanine axially modified by aminoethyl phenoxyl and polyethylene glycol oligomer
CN103861104A (en) Phycocyanin-phthalocyanine compound and preparation method and application thereof
CN103304579B (en) Bridging Azacrown ether containing in ortho position modifies phthalocyanine and its preparation method and application
CN115947745B (en) Albumin-based photothermal conversion nano material and preparation method and application thereof
CN102643280A (en) Folic-acid-modified phthalocyanino-silicon, and preparation method and application thereof
AU2021362841B2 (en) Hexadecylammonium group-modified phthalocyanine, and preparation method therefor and application thereof as photodynamic drug
CN111393465A (en) A kind of axial galactose/lactose modified silicon phthalocyanine and preparation method and application thereof
CN105198934B (en) The platinum-like compounds of Photodynamic activity near infrared absorption, preparation method and applications
CN109456334B (en) Pericyclic monosubstituted amphiphilic phthalocyanine photosensitizer and its preparation and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant