CN103435221B - 高浓度陶瓷印花废水处理的组合工艺 - Google Patents

高浓度陶瓷印花废水处理的组合工艺 Download PDF

Info

Publication number
CN103435221B
CN103435221B CN201310355825.0A CN201310355825A CN103435221B CN 103435221 B CN103435221 B CN 103435221B CN 201310355825 A CN201310355825 A CN 201310355825A CN 103435221 B CN103435221 B CN 103435221B
Authority
CN
China
Prior art keywords
waste water
active sludge
add
biochemistry pool
ceramic printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310355825.0A
Other languages
English (en)
Other versions
CN103435221A (zh
Inventor
张永利
王庆雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSHAN SIKETE ENVIRONMENTAL PROTECTION ENGINEERING CO.,LTD.
Foshan University
Original Assignee
Hanshan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshan Normal University filed Critical Hanshan Normal University
Priority to CN201310355825.0A priority Critical patent/CN103435221B/zh
Publication of CN103435221A publication Critical patent/CN103435221A/zh
Application granted granted Critical
Publication of CN103435221B publication Critical patent/CN103435221B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种高浓度陶瓷印花废水处理的组合工艺,包括以下步骤:(1)活性污泥的驯化培养;(2)混凝沉降处理;(3)SBR法处理;(4)后混凝/氧化反应处理。本发明的组合工艺能使陶瓷印花废水经过处理后,可以达到《(污水综合排放标准)》(GB8978-1996)的一级标准。

Description

高浓度陶瓷印花废水处理的组合工艺
技术领域
本发明涉及污水处理领域,具体地说是一种高浓度陶瓷印花废水处理的组合工艺。
背景技术
中国的科技发展史上,除了“四大发明”,最引入注目的莫过于陶瓷,“中国”的英文名称“China”就由此而来。我国是世界上陶瓷生产量最大的国家,国内很多城市的支柱产业为“陶瓷生产”,例如粤东潮州市号称“瓷都”,佛山市号称“中国陶瓷城”,景德镇陶瓷更是驰名中外。我国拥有丰富的矿产资源和廉价的劳动力成本,使陶瓷产品在国际市场竞争中具有一定的优势。陶瓷行业在带来巨大经济效益的同时,也带来了严重的环境污染问题。其中,陶瓷印花企业生产各种色彩的花纸,将成型的瓷器上釉印花,再经过窑炉烧制而成,其中多彩的花纹由大量的各种重金属化合物、釉料、黏合剂、增稠剂等组成。陶瓷印花废水包括花纸生产过程中的废水、印花台板冲洗水、地面冲洗水和混合污水,其CODCr(重铬酸盐指数)为500~20,000mg/L,BOD5(五日生化需氧量)约为100~3,000mg/L,色度500~10,000倍,pH值约7.0;废水的可生化性指标B/C约为0.15,小于废水的可生化性指标临界值0.3;陶瓷花纸色彩的多样性显示的是不同金属氧化物的颜色,金属氧化物的大量使用使废水中重金属元素含量非常高,其中Cu元素含量有时高达500mg/L。陶瓷印花废水具有“水量大、浓度高、水质波动大、有机物污染严重、处理难度大、部分废水含有毒有害物质、金属含量高”等特点,尤其是废水中的重金属离子,使得陶瓷印花废水的危害性明显增大。
发明内容
本发明的目的是提供一种具有“设备简单、反应条件温和、操作简便、效率高”等优点的高浓度陶瓷印花废水处理的组合工艺,可以使高浓度难生化的陶瓷印花废水经过处理后达标排放。
本发明的高浓度陶瓷印花废水处理的组合工艺,包括以下步骤:
(1)活性污泥的驯化培养:采用接种培养法,选用污水处理厂的装置二沉池出口处所取的浓缩活性污泥作为活性污泥微生物培养用的菌种,将“陶瓷印花废水∶生活污水∶浓缩活性污泥”按体积比x∶1∶1混合培养6天,x由0.5增加到0.75再增加到1.0(即是按照体积比补充添加陶瓷印花废水,生活污水和浓缩活性污泥不变);其中第1至第2天的x为0.5,第3至第4天的x为0.75,第5至第6天的x为1.0;在混和培养的过程中,添加营养物葡萄糖为碳(C)源、谷氨酸钠为氮(N)源、磷酸二氢钠为磷(P)源,其中C元素的需要量以BOD5表示,BOD5指的是“陶瓷印花废水、生活污水、浓缩活性污泥”所形成混合液的BOD5,营养元素C、N、P投加的质量比即为BOD5∶N∶P=100∶5∶1,每当陶瓷印花废水的加入量(x)变化时,就根据新的混合液的BOD5数值添加营养物以提供营养元素C、N、P(即是在第1天x为0.5时首次添加营养物,在第3天x增加为0.75时补充添加营养物,在第5天x增加为1.0时再次补充添加营养物);培养过程中通过鼓风机,采用间歇曝气方式,曝气和间歇的时间分别为0.5h且互为轮换直至培养结束,最终得到驯化后的活性污泥备用;
例如“陶瓷印花废水、生活污水、浓缩活性污泥”所形成混合液的BOD5为100mg/L,根据元素C、N、P在分子葡萄糖、谷氨酸钠、磷酸二氢钠中的质量百分含量,计算得到所需营养物葡萄糖、谷氨酸钠、磷酸二氢钠的质量浓度分别为250mg/L、60mg/L、3.9mg/L;
步骤(1)中,由陶瓷印花废水、生活污水、污水处理厂的活性污泥,培养驯化获得的活性污泥,其微生物菌种更适合在混合液中生长;
(2)混凝沉降处理:将需要处理的陶瓷印花废水和生活污水以体积比1∶1的比例混和,经过格栅输入到调节池;再由调节池进行调节后,输入到中和混凝池;首先采用氢氧化钠溶液调节废水的pH值至8.5,中和反应时间控制在25~35min,其次向pH调整后的废水中以300mg/L的量加入PAC(聚合氯化铝)进行混凝反应,混凝反应时间控制在25~35min,然后静态沉降澄清2h,最后将中和混凝后的废水排放到SBR生化池,中和混凝池底部的污泥通过重力排放至污泥干化池;
该步骤(2)作用如下——pH调整至8.5是综合考虑了达到生成重金属氢氧化物的必要条件和尽量减少轻金属氢氧化物的产生量两方面后确定的,废水经pH调整后一方面将酸根中和为相应的无机盐,另一方面将使重金属离子反应生成氢氧化物以便沉淀析出;同时废水中和后的弱碱性氛围,有利于提高其后混凝反应的效果;
——pH调整后投加混凝剂PAC,通过混凝剂作用破坏细小悬浮物颗粒的等电点,促进小颗粒物的聚集;
(3)SBR法处理:所述SBR生化池中由驯化后的活性污泥和悬挂的惰性填料(可为SDF型阿科蔓生态基)组成固定和悬浮态双组合微生物生态体系,废水在SBR生化池中完成以下“厌氧生化——缺氧生化——好氧生化——沉淀”的一系列生化反应过程:
①废水首先在搅拌无曝气状态下由厌氧细菌进行污染物厌氧水解反应,反应时间2-4天;②继而在停搅拌间歇曝气状态下进行12h缺氧生化反应;③再次在持续曝气下通过好氧菌群完成污染物的充分好氧分解,反应时间2-4天;④最后停止曝气,静态沉淀2h,废水排放至后混凝/氧化反应池,SBR生化池活性污泥清除75%至污泥干化池;
在SBR生化池的初次使用中,按照“陶瓷印花废水∶生活污水∶驯化后的活性污泥”=1∶1∶1的体积比,添加步骤(1)中驯化后的活性污泥;初次运行后在每一个运行周期的SBR生化池污泥清除至污泥干化池阶段,保留25%的活性污泥以备下一个运行周期的使用,不再另外添加驯化后的活性污泥;
上述污泥干化池用于承接中和混凝池和SBR生化池产生的污泥,污泥干化池分设三格,分别间歇进泥、轮换阴干、池底设垫层过滤,处理后的滤液再流回调节池;
(4)后混凝/氧化反应处理:将排放至后混凝/氧化反应池的废水,分为两种情况处理:
一是当SBR生化池排出的废水的CODCr>150mg/L时采用芬顿试剂,按照每立方米废水加入30~300mL H2O2和10~100g FeSO4的量加入H2O2和FeSO4,反应时间为25~35min,然后废水中再加入PAC进行后混凝反应,PAC用量为50~300mg/L,反应时间25~35min;
——此种处理方式,能将SBR生化池排出的废水中存在的难降解污染物,通过双氧水分解产生的高氧化性的氧自由基彻底降解;
二是当SBR生化池排出的废水的CODCr≤150mg/L时,直接加入PAC进行后混凝反应,PAC用量为50~300mg/L,反应时间25~35min;
最后静态沉降澄清2h,废水处理完毕。
本发明的组合工艺能使陶瓷印花废水经过处理后,可以达到《污水综合排放标准》(GB8978-1996)的一级标准。
附图说明
图1为本发明的工艺流程图。
具体实施方式
下面通过实施例对本发明做进一步具体描述,但本发明的实施方式不限于此。
实施例:本实施例采用的陶瓷印花废水的水质:CODCr为4200mg/L,色度为1200倍,pH值7.0,重金属Cu含量:90mg/L;生活污水的CODCr约为300mg/L;
如图1所示,本实施例的高浓度陶瓷印花废水处理的组合工艺,包括以下步骤:
(1)活性污泥的驯化培养:采用接种培养法,选用污水处理厂的装置二沉池出口处所取的浓缩活性污泥作为活性污泥微生物培养用的菌种,将陶瓷印花废水∶生活污水∶浓缩活性污泥按体积比x∶1∶1混合培养6天,x由0.5增加到0.75再增加到1.0(即是按照体积比补充添加陶瓷印花废水,生活污水和浓缩活性污泥不变);其中第1至第2天的x为0.5,第3至第4天的x为0.75,第5至第6天的x为1;在混和培养的过程中,添加营养物葡萄糖为碳(C)源、谷氨酸钠为氮(N)源、磷酸二氢钠为磷(P)源,其中C元素的需要量以BOD5表示,BOD5指的是“陶瓷印花废水、生活污水、浓缩活性污泥”所形成混合液的BOD5,营养元素C、N、P投加的质量比即为BOD5∶N∶P=100∶5∶1,每当陶瓷印花废水的加入量(x)变化时,就根据新的混合液的BOD5数值添加营养物以提供营养元素C、N、P(即是在第1天x为0.5时首次添加营养物,在第3天x增加为0.75时补充添加营养物,在第5天x增加为1.0时再次补充添加营养物);培养过程中通过鼓风机,采用间歇曝气方式,曝气和间歇的时间分别为0.5h且互为轮换直至培养结束,最终得到驯化后的活性污泥备用;
本实施例中x为0.5、0.75、1.0时混合液的BOD5分别为650、710、760mg/L,含有元素C、N、P的营养物葡萄糖、谷氨酸钠、磷酸二氢钠投加的总质量:x=0.5时,首次分别添加1630、390、25mg/L;x=0.75时,在x=0.5的营养物数量基础上,分别补充添加至1780、430、28mg/L;x=1.0时,在x=0.75的营养物数量基础上,分别再次补充添加至1900、460、30mg/L;
(2)混凝沉降处理:将需要处理的陶瓷印花废水和生活污水以体积比1∶1的比例混和成废水,经过格栅输入到调节池;再由调节池进行调节后,输入到中和混凝池;首先采用氢氧化钠溶液调节废水的pH值至8.5,中和反应时间控制在30min,其次向pH调整后的废水中以300mg/L的量加入PAC进行混凝反应,混凝反应时间控制在30min,然后静态沉降澄清2h,最后将中和混凝后的废水排放到SBR生化池(此时废水的CODCr降为1600mg/L,色度降为300倍),中和混凝池底部的污泥通过重力排放至污泥干化池;
(3)SBR法处理:所述SBR生化池中由驯化后的活性污泥和悬挂的惰性填料(为SDF型阿科蔓生态基)组成固定和悬浮态双组合微生物生态体系,废水在SBR生化池中完成以下“厌氧生化——缺氧生化——好氧生化——沉淀”的一系列生化反应过程:
①废水首先在搅拌无曝气状态下由厌氧细菌进行污染物厌氧水解反应,反应时间3天;②继而在停搅拌间歇曝气状态下进行12h缺氧生化反应;③再次在持续曝气下通过好氧菌群完成污染物的充分好氧分解,反应时间3天;④最后停止曝气,静态沉淀2h,废水排放至后混凝/氧化反应池(此时废水的CODCr降为500mg/L,色度降为120倍),SBR生化池活性污泥清除75%至污泥干化池;
本实施例为SBR生化池的初次使用,按照“陶瓷印花废水∶生活污水∶驯化后的活性污泥”=1∶1∶1的体积比,添加步骤(1)中驯化后的活性污泥;
上述污泥干化池用于承接中和混凝池和SBR生化池产生的污泥,污泥干化池分设三格,分别间歇进泥、轮换阴干、池底设垫层过滤,处理后的滤液再流回调节池;
(4)后混凝/氧化反应处理:将排放至后混凝/氧化反应池的废水(此时废水的CODCr为500mg/L>150mg/L),采用第一种情况的处理方式,使用芬顿试剂,按照每立方米废水加入300mLH2O2和100gFeSO4的量加入H2O2和FeSO4,反应时间为30min,然后废水中再加入PAC进行后混凝反应,PAC用量为200mg/L,反应时间30min;最后静态沉降澄清2h,废水处理完毕。
处理完毕后的废水的CODCr为80mg/L,色度为40倍,pH值8.2,重金属Cu含量:0.4mg/L,达到《污水综合排放标准》(GB8978-1996)的一级标准。

Claims (2)

1.高浓度陶瓷印花废水处理的组合工艺,包括以下步骤:
(1)活性污泥的驯化培养:采用接种培养法,选用污水处理厂的装置二沉池出口处所取的浓缩活性污泥作为活性污泥微生物培养用的菌种,将“陶瓷印花废水∶生活污水∶浓缩活性污泥”按体积比x∶1∶1混合培养6天,x由0.5增加到0.75再增加到1.0;其中第1至第2天的x为0.5,第3至第4天的x为0.75,第5至第6天的x为1.0;在混和培养的过程中,添加营养物葡萄糖为碳(C)源、谷氨酸钠为氮(N)源、磷酸二氢钠为磷(P)源,其中C元素的需要量以BOD5表示,BOD5指的是“陶瓷印花废水、生活污水、浓缩活性污泥”所形成混合液的BOD5,营养元素C、N、P投加的质量比即为BOD5∶N∶P=100∶5∶1,每当陶瓷印花废水的加入量(x)变化时,就根据新的混合液的BOD5数值添加营养物以提供营养元素C、N、P;培养过程中通过鼓风机,采用间歇曝气方式,曝气和间歇的时间分别为0.5h且互为轮换直至培养结束,最终得到驯化后的活性污泥备用;
(2)混凝沉降处理:将需要处理的陶瓷印花废水和生活污水以体积比1∶1的比例混和,经过格栅输入到调节池;再由调节池进行调节后,输入到中和混凝池;首先采用氢氧化钠溶液调节废水的pH值至8.5,中和反应时间控制在25~35min,其次向pH调整后的废水中以300mg/L的量加入PAC(聚合氯化铝)进行混凝反应,混凝反应时间控制在25~35min,然后静态沉降澄清2h,最后将中和混凝后的废水排放到SBR生化池,中和混凝池底部的污泥通过重力排放至污泥干化池;
(3)SBR法处理:所述SBR生化池中由驯化后的活性污泥和悬挂的惰性填料组成固定和悬浮态双组合微生物生态体系,废水在SBR生化池中完成以下“厌氧生化——缺氧生化——好氧生化——沉淀”的一系列生化反应过程:
①废水首先在搅拌无曝气状态下由厌氧细菌进行污染物厌氧水解反应,反应时间2-4天;②继而在停搅拌间歇曝气状态下进行12h缺氧生化反应;③再次在持续曝气下通过好氧菌群完成污染物的充分好氧分解,反应时间2-4天;④最后停止曝气,静态沉淀2h,废水排放至后混凝/氧化反应池,SBR生化池活性污泥清除75%至污泥干化池;
在SBR生化池的初次使用中,按照“陶瓷印花废水∶生活污水∶驯化后的活性污泥”=1∶1∶1的体积比,添加步骤(1)中驯化后的活性污泥;初次运行后在每一个运行周期的SBR生化池污泥清除至污泥干化池阶段,保留25%的活性污泥以备下一个运行周期的使用,不再另外添加驯化后的活性污泥;
上述污泥干化池用于承接中和混凝池和SBR生化池产生的污泥,污泥干化池分设三格,分别间歇进泥、轮换阴干、池底设垫层过滤,处理后的滤液再流回调节池;
(4)后混凝/氧化反应处理:将排放至后混凝/氧化反应池的废水,分为两种情况处理:
一是当SBR生化池排出的废水的CODCr>150mg/L时采用芬顿试剂,按照每立方米废水加入30~300mL H2O2和10~100g FeSO4的量加入H2O2和FeSO4,反应时间为25~35min,然后废水中再加入PAC进行后混凝反应,PAC用量为50~300mg/L,反应时间25~35min;
二是当SBR生化池排出的废水的CODCr≤150mg/L时,直接加入PAC进行后混凝反应,PAC用量为50~300mg/L,反应时间25~35min;
最后静态沉降澄清2h,废水处理完毕。
2.根据权利要求1所述工艺,其特征在于,所述惰性填料为SDF型阿科蔓生态基。
CN201310355825.0A 2013-08-16 2013-08-16 高浓度陶瓷印花废水处理的组合工艺 Expired - Fee Related CN103435221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310355825.0A CN103435221B (zh) 2013-08-16 2013-08-16 高浓度陶瓷印花废水处理的组合工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310355825.0A CN103435221B (zh) 2013-08-16 2013-08-16 高浓度陶瓷印花废水处理的组合工艺

Publications (2)

Publication Number Publication Date
CN103435221A CN103435221A (zh) 2013-12-11
CN103435221B true CN103435221B (zh) 2015-01-14

Family

ID=49688972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310355825.0A Expired - Fee Related CN103435221B (zh) 2013-08-16 2013-08-16 高浓度陶瓷印花废水处理的组合工艺

Country Status (1)

Country Link
CN (1) CN103435221B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739064B (zh) * 2013-12-24 2016-03-23 广州中国科学院沈阳自动化研究所分所 一种好氧活性污泥在印染废水处理过程中的应用
CN104891740A (zh) * 2015-05-27 2015-09-09 东莞华成纸业有限公司 一种应用于瓦楞纸板生产线的污水处理方法
CN111875088A (zh) * 2020-06-16 2020-11-03 湖北鑫来利陶瓷发展有限公司 陶瓷生产废水的处理方法
CN112456739A (zh) * 2020-12-23 2021-03-09 晋江市维盛织造漂染有限公司 一种漂染清污水的再生系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314085A (ja) * 1998-05-07 1999-11-16 Kurita Water Ind Ltd 有機物含有水の処理装置
CN101205105A (zh) * 2007-12-18 2008-06-25 中国兵器工业第五二研究所 印染污水再生处理循环利用方法
CN102815843B (zh) * 2012-09-04 2014-07-02 浙江商达环保有限公司 印染污水脱色处理方法

Also Published As

Publication number Publication date
CN103435221A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
US11168012B2 (en) Method for realizing rapid startup of denitrification biofilter
CN101391851B (zh) 含对甲苯胺高浓度难降解有机废水的处理工艺
CN101831392B (zh) 一种自养异养共生氨氧化菌剂及用途
CN103435221B (zh) 高浓度陶瓷印花废水处理的组合工艺
CN100431982C (zh) 一种在膜生物反应器中抑制膜污染的方法
CN101659500A (zh) 一种染料废水处理系统
CN102976497A (zh) 一种利用芽孢杆菌处理高难度有机废水的方法
CN105417727A (zh) 一种通过土著微生物的原位富集、固定化与驯化深度处理微污染水源水的方法
CN203976586U (zh) 印染废水处理系统
CN105217911B (zh) 一种利用生物沥浸反应进行污泥脱水的工艺
Chen et al. Treatment of dairy wastewater by immobilized microbial technology using polyurethane foam as carrier
CN105198161B (zh) 一种适用于高浓度难降解废水的处理制剂
CN103708596B (zh) 一种白酒废水传统处理过程中强化去除并回收氮磷的方法
CN106282020B (zh) 一种定向富集不同比例的自养脱氮微生物群的方法
CN103435217B (zh) 一种硫化印染废水的处理工艺
CN105084557B (zh) 一种去除味精废水中工业cod以及氨氮的工艺
CN105923921A (zh) 味精发酵废水的处理工艺
CN107098452A (zh) 一种含有高孔硅藻的水处理剂
CN103466791A (zh) 一种改进的柠檬酸废水预酸化处理工艺
CN105132326B (zh) 一种浓缩等电点技术制备谷氨酸钠产生的工业废水的生物修复制剂
CN113735392A (zh) 一种凉果加工废水的处理方法
CN104944671B (zh) 一种分子筛催化剂废水的处理方法
CN208814849U (zh) 一种邻氨基苯甲酸的污水降解装置
CN109081452B (zh) 一种固定载体生物膜与活性污泥耦合的序批式污水处理装置及工艺
CN111762897A (zh) 一种狐尾藻–微生物污水净化系统和构建方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170612

Address after: 528000 Jiangwan Road, Guangdong, No. 18, No.

Patentee after: FOSHAN University

Address before: 528000, No. 6, block 133, 1608 Hua Hua Xi Road, Chancheng District, Guangdong, Foshan

Patentee before: FOSHAN SIKETE ENVIRONMENTAL PROTECTION ENGINEERING CO.,LTD.

Effective date of registration: 20170612

Address after: 528000, No. 6, block 133, 1608 Hua Hua Xi Road, Chancheng District, Guangdong, Foshan

Patentee after: FOSHAN SIKETE ENVIRONMENTAL PROTECTION ENGINEERING CO.,LTD.

Address before: 521041 Qiaodong District, Guangdong, Xiangqiao

Patentee before: Hanshan Normal University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150114

Termination date: 20180816