CN103425130A - Storage conveying method with automatic tracking and obstacles avoiding functions - Google Patents
Storage conveying method with automatic tracking and obstacles avoiding functions Download PDFInfo
- Publication number
- CN103425130A CN103425130A CN2013103354215A CN201310335421A CN103425130A CN 103425130 A CN103425130 A CN 103425130A CN 2013103354215 A CN2013103354215 A CN 2013103354215A CN 201310335421 A CN201310335421 A CN 201310335421A CN 103425130 A CN103425130 A CN 103425130A
- Authority
- CN
- China
- Prior art keywords
- dolly
- value
- infrared ray
- driver module
- chip controlling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003860 storage Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title abstract description 12
- 230000011218 segmentation Effects 0.000 claims description 6
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 10
- 206010049669 Dyscalculia Diseases 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开一种自动循迹避障的仓储运输方法,在仓库地面上设置黑线,并将其余地面刷成白色,车头下方的红外线传感器向下发出光线并接收反射光线,根据黑线和白色地面反射光线的不同来判断仓库货物运输小车是否偏离黑线,并控制小车回到设定黑线上,实现循迹功能;通过车头上方的摄像头和超声波传感器来测量小车距离障碍物位置和距离,以此计算出最优避障路线,并结合小车左右两边红外线传感器和光电编码器,绕过障碍物回到黑线上,实现避障功能。本发明简单方便,可靠性高,成本低廉,实用性强,能够满足仓库货物自动运输的需要。
The invention discloses a warehousing and transportation method for automatically tracking and avoiding obstacles. Black lines are set on the warehouse floor, and the rest of the ground is painted white. The difference in the reflected light on the ground is used to judge whether the warehouse cargo transport trolley deviates from the black line, and control the trolley to return to the set black line to realize the tracking function; use the camera and ultrasonic sensor above the front of the trolley to measure the position and distance of the trolley from the obstacle, Calculate the optimal obstacle avoidance route based on this, and combine the infrared sensors and photoelectric encoders on the left and right sides of the car to bypass obstacles and return to the black line to realize the obstacle avoidance function. The invention is simple and convenient, high in reliability, low in cost and strong in practicability, and can meet the needs of automatic transportation of warehouse goods.
Description
技术领域technical field
本发明涉及机器人自动引导技术领域,尤其涉及一种自动循迹避障的仓储运输方法。The invention relates to the technical field of robot automatic guidance, in particular to a storage and transportation method for automatic tracking and obstacle avoidance.
背景技术Background technique
传统仓库货物运输方法主要有以下两种:使用人工驾驶运输和使用智能小车在固定轨道运输,前者对驾驶者自身的驾驶技术要求较高,需要投入较大的人力资源;后者虽然可以实现循迹功能,但轨道固定,成本较高,且遇到障碍物却不能自动避障,具有较大的局限性。There are two main methods of transporting goods in traditional warehouses: the use of manual driving and the use of smart cars on fixed tracks. Tracking function, but the track is fixed, the cost is high, and it cannot automatically avoid obstacles when encountering obstacles, which has great limitations.
发明内容Contents of the invention
本发明所要解决的技术问题是针对背景技术的缺陷,提供一种自动循迹避障的仓储运输方法。The technical problem to be solved by the present invention is to provide a storage and transportation method for automatic tracking and obstacle avoidance in view of the defects of the background technology.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the problems of the technologies described above:
一种自动循迹避障的仓储运输方法,在仓库地面上设置黑线,并将其余地面刷成白色,仓储运输小车上设有摄像头、单片机、12对红外线传感器、超声波传感器、驱动模块和车载电源,其中摄像头和超声波传感器安装在小车车头,发射方向为小车的正前方,8对红外线传感器等距离横向安装在小车车头下面,发射方向为小车正下方,4对红外线传感器分别安装在小车的车身四角的侧面,发射方向为小车的两侧;单片机分别与摄像头、12对红外线传感器、超声波传感器、驱动模块相连,车载电源分别与摄像头、单片机12对红外线传感器、超声波传感器、驱动模块相连,仓储运输小车沿黑线自动循迹到达目的地后原地转180度,中途遇到障碍物时自动避障,自动循迹的具体步骤如下:A warehousing and transportation method for automatic tracking and obstacle avoidance. Black lines are set on the floor of the warehouse, and the rest of the ground is painted white. The warehousing and transportation trolley is equipped with a camera, a single-chip microcomputer, 12 pairs of infrared sensors, an ultrasonic sensor, a drive module and a vehicle-mounted Power supply, in which the camera and ultrasonic sensor are installed on the front of the car, the emission direction is directly in front of the car, 8 pairs of infrared sensors are installed horizontally under the front of the car at equidistant distances, and the emission direction is directly below the car, and 4 pairs of infrared sensors are respectively installed on the body of the car The side of the four corners, the emission direction is the two sides of the car; the single-chip microcomputer is connected to the camera, 12 pairs of infrared sensors, ultrasonic sensors, and the driving module, and the vehicle power supply is connected to the camera, 12 pairs of single-chip infrared sensors, ultrasonic sensors, and the driving module. Storage and transportation The car automatically tracks along the black line to the destination and turns 180 degrees on the spot, and automatically avoids obstacles when encountering obstacles on the way. The specific steps of automatic tracking are as follows:
步骤a),车头下方的8对红外线传感器发生红外线并将接受到的反射光线转换成高低电平;Step a), 8 pairs of infrared sensors under the front of the car generate infrared rays and convert the received reflected light into high and low levels;
步骤b),将转换得到的电平电压二值化,当电压大于等于3时,取1,当电压小于3时,取0;Step b), binarize the converted level voltage, when the voltage is greater than or equal to 3, take 1, and when the voltage is less than 3, take 0;
步骤c),将车头下面左侧的4对红外线传感器二值化的电压值作为逻辑值作与计算后得到Y1,将车头下面右侧的4对红外线传感器二值化的电压值作与计算得到Y2;Step c), take the binary voltage values of the 4 pairs of infrared sensors on the left side under the front of the car as logic values and calculate to obtain Y 1 , and calculate the binary voltage values of the 4 pairs of infrared sensors on the right side under the front of the car get Y2 ;
步骤d),若Y1=0且Y2=0,单片机控制驱动模块使小车沿迹线直线行驶;Step d), if Y 1 =0 and Y 2 =0, the single-chip microcomputer controls the drive module to make the car drive straight along the track;
步骤e),若Y1=1且Y2=0,单片机控制驱动模块使小车向左偏转;Step e), if Y 1 =1 and Y 2 =0, the single-chip microcomputer controls the drive module to deflect the car to the left;
步骤f),若Y1=0且Y2=1,单片机控制驱动模块向右偏转;Step f), if Y 1 =0 and Y 2 =1, the microcontroller controls the drive module to deflect to the right;
步骤g),若Y1=1且Y2=1,单片机控制驱动模块使小车原地转180度。Step g), if Y 1 =1 and Y 2 =1, the single-chip microcomputer controls the drive module to turn the car 180 degrees on the spot.
作为本发明进一步的优化方案,自动避障的具体步骤如下:As a further optimization scheme of the present invention, the specific steps of automatic obstacle avoidance are as follows:
步骤1),超声波传感器测量小车距障碍物的距离大于1米小于1.5米时,单片机控制摄像头拍摄图像;Step 1), when the ultrasonic sensor measures the distance between the car and the obstacle is greater than 1 meter and less than 1.5 meters, the single-chip microcomputer controls the camera to capture images;
步骤2),以摄像头拍摄的图像左下点为原点建立直角坐标系,计算出所拍图像中心点横坐标值Q,并计算出所拍图像中障碍物中心横坐标值W;Step 2), establish a rectangular coordinate system with the lower left point of the image captured by the camera as the origin, calculate the abscissa value Q of the center point of the captured image, and calculate the abscissa value W of the obstacle center in the captured image;
步骤3),比较计算出的障碍物中心横坐标值W和图像中心点横坐标值Q;Step 3), compare the calculated obstacle center abscissa value W with the image center point abscissa value Q;
步骤4),若Q≥W,单片机控制驱动模块使小车向右转90度弯,记录此时车身左侧两个红外线传感器发射信号与接收反射信号之间的时间差,然后控制小车前进,当车身左侧两个红外线传感器发射信号与接收反射信号之间的时间差与所记录的时间差的差值的绝对值都大于3×10-7秒时,单片机控制驱动模块使小车向左转90度弯后前进,当车身左侧两个红外线传感器发射信号与接收反射信号之间的时间差与所记录的时间差的差值的绝对值都大于3×10-7秒时,单片机控制驱动模块使小车向左转90度弯后前进,当Y1=0且Y2=0时,单片机控制驱动模块使小车向右转90度弯后前进;Step 4), if Q≥W, the single-chip microcomputer controls the drive module to make the car turn right 90 degrees, record the time difference between the two infrared sensors on the left side of the car body and receive the reflected signal at this time, and then control the car to move forward, when the car body When the absolute value of the difference between the time difference between the transmitted signal of the two infrared sensors on the left and the received reflected signal and the recorded time difference is greater than 3×10 -7 seconds, the single-chip microcomputer controls the drive module to make the car turn left 90 degrees Moving forward, when the absolute value of the difference between the time difference between the two infrared sensors on the left side of the vehicle body transmitting signals and receiving the reflected signals and the recorded time difference is greater than 3×10 -7 seconds, the single-chip microcomputer controls the driving module to make the car turn left Move forward after a 90-degree turn, when Y 1 =0 and Y 2 =0, the single-chip microcomputer controls the drive module to make the car turn right and move forward after a 90-degree turn;
步骤5),若Q<W,单片机控制驱动模块使小车向左转90度弯,记录此时车身右侧两个红外线传感器发射信号与接收反射信号之间的时间差,然后控制小车前进,当车身右侧两个红外线传感器发射信号与接收反射信号之间的时间差与所记录的时间差的差值的绝对值都大于3×10-7秒时,单片机控制驱动模块使小车向右转90度弯后前进,当车身右侧两个红外线传感器发射信号与接收反射信号之间的时间差与所记录的时间差的差值的绝对值都大于3×10-7秒时,单片机控制驱动模块使小车向右转90度弯后前进,当Y1=0且Y2=0时,单片机控制驱动模块使小车向左转90度弯后前进。Step 5), if Q<W, the single-chip microcomputer controls the driving module to make the car turn 90 degrees to the left, record the time difference between the two infrared sensors on the right side of the body and receive the reflected signal, and then control the car to move forward. When the absolute value of the difference between the time difference between the transmitted signal of the two infrared sensors on the right and the received reflected signal and the recorded time difference is greater than 3×10 -7 seconds, the single-chip microcomputer controls the drive module to make the car turn right 90 degrees after turning Forward, when the absolute value of the difference between the time difference between the two infrared sensors on the right side of the vehicle body transmitting signals and receiving reflected signals and the recorded time difference is greater than 3×10 -7 seconds, the single-chip microcomputer controls the drive module to make the car turn right Move forward after a 90-degree turn. When Y 1 =0 and Y 2 =0, the single-chip microcomputer controls the drive module to make the car turn left and move forward after a 90-degree turn.
作为本发明进一步的优化方案,所述计算所拍图像中障碍物中心横坐标值的步骤如下:As a further optimization scheme of the present invention, the steps of calculating the abscissa value of the obstacle center in the captured image are as follows:
步骤2.1),以CCD摄像头的拍摄图像左下点为原点建立直角坐标系,按以下公式对建立坐标系的图像进行阈值分割并二值化处理,得到二值化图像的灰度值B(m,n):Step 2.1), establish a Cartesian coordinate system with the lower left point of the image captured by the CCD camera as the origin, perform threshold segmentation and binarization on the image of the established coordinate system according to the following formula, and obtain the gray value of the binarized image B(m, n):
其中I(m,n)为采集的图像数据的灰度值,T为障碍物和背景的二值化分割阈值,T=210,m、n分别为当前位置像素的横、纵坐标值,且m,n为不小于0的整数,m=0,1,2,……,98,99,n=0,1,2,…,78,79;Among them, I(m, n) is the gray value of the collected image data, T is the binarization segmentation threshold of obstacles and background, T=210, m and n are the horizontal and vertical coordinate values of the current position pixel respectively, and m, n are integers not less than 0, m=0, 1, 2,..., 98, 99, n=0, 1, 2,..., 78, 79;
步骤2.2),将图像二值化后每一列上的像素的灰度值进行相加,并将计算结果分别存储在数组A[g]中,其中g为不小于0的整数,g=0,1,2,…,98,99;Step 2.2), add the gray values of the pixels on each column after image binarization, and store the calculation results in the array A[g] respectively, Where g is an integer not less than 0, g=0, 1, 2, ..., 98, 99;
步骤2.3),对数组中灰值度进行筛选,确定障碍物的左右边界,并将结果存储在数组A[j]和F[h]中:Step 2.3), filter the gray value in the array, determine the left and right boundaries of the obstacle, and store the results in the arrays A[j] and F[h]:
首先,g按照0,1,2,…,49,50依次取值并且当满足条件A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5时,将g′的值依次存储在数组E[j]中,其中,g′=g+2,j为不小于0整数,且j=0,1,2,…,49,50;First, g takes values according to 0, 1, 2, ..., 49, 50 and when the condition A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5 is satisfied, the The value of g' is sequentially stored in the array E[j], where g'=g+2, j is an integer not less than 0, and j=0, 1, 2,..., 49, 50;
当g所有值均不满足条件A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5时,将图像中心点横坐标值Q存储E[0]中,即E[0]=Q,且Q=50;When all values of g do not satisfy the condition A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5, store the abscissa value Q of the image center point in E[0], That is, E[0]=Q, and Q=50;
其次,g按照0,1,2,…,49,50依次取值并且当满足条件A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5时,将g′′的值依次存储在数组F[h]中,其中g′′=100-g-2,h为不小于0的整数,且h=0,1,2,…,49,50;Secondly, g takes values according to 0, 1, 2, ..., 49, 50 and when the condition A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100 When -g]≤5, store the value of g'' in the array F[h] in sequence, where g''=100-g-2, h is an integer not less than 0, and h=0, 1, 2 ,...,49,50;
当g所有值均不满足条件A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5时,将图像中心点横坐标值Q存储F[0]中,即F[0]=Q,且Q=50。When all values of g do not meet the condition A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5, the abscissa value of the image center point Q is stored in F[0], that is, F[0]=Q, and Q=50.
步骤2.4),计算障碍物中心点横坐标值W=(E[0]+F[0])/2。Step 2.4), calculate the abscissa value of the center point of the obstacle W=(E[0]+F[0])/2.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects:
1.构造简单,成本低廉;1. Simple structure and low cost;
2.能够自动循迹;2. Can automatically track;
3.具备自动避障功能。3. With automatic obstacle avoidance function.
附图说明Description of drawings
图1是小车运输的示意图;Fig. 1 is the schematic diagram of trolley transportation;
图2是小车的系统电路示意图;Figure 2 is a schematic diagram of the system circuit of the trolley;
图3是小车的结构示意图;Fig. 3 is the structural representation of dolly;
图4是实施例的向右避障示意图;Fig. 4 is a schematic diagram of obstacle avoidance to the right of the embodiment;
图5是实施例的向左避障示意图。Fig. 5 is a schematic diagram of leftward obstacle avoidance of the embodiment.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案做进一步的详细说明:Below in conjunction with accompanying drawing, technical scheme of the present invention is described in further detail:
如图1所示,在仓库地面上设置0.15米的黑线2,并将其余地面刷成白色,仓储运输小车1沿黑线2自动循迹到达目的地后原地转180度,中途遇到障碍物3时自动避障。As shown in Figure 1, a 0.15-meter
如图2所示,本实施例公开了一种自动循迹避障的仓储运输方法,包含小车本体,小车本体上设有摄像头101、单片机、超声波传感器102、驱动模块、车载电源和12对红外线传感器A、B、C、D、E、F、G、H、I、J、K、L,其中摄像头101和超声波传感器102安装在小车车头,发射方向为小车的正前方,8对红外线传感器A、B、C、D、E、F、G、H间隔0.1米横向安装在小车车头下面,发射方向为小车正下方,4对红外线传感器I、J、K、L分别安装在小车的车身四角的侧面,发射方向为小车的两侧。As shown in Figure 2, this embodiment discloses a storage and transportation method for automatic tracking and obstacle avoidance, which includes a car body on which a camera 101, a single-chip microcomputer, an
小车本体包含左驱动轮103,、右驱动轮104、从动轮105,驱动模块包含驱动电机和两个光电编码器M、N,其中光电编码器M安装在左驱动轮103上,光电编码器N安装在右驱动轮104上。The trolley body includes a left
如图3所示,摄像头采用CCD摄像头OV6620,单片机采用MC9S12DG128单片机,红外线传感器采用RPR220红外线传感器,单片机分别与摄像头、12对红外线传感器、超声波传感器、驱动模块相连,车载电源分别与摄像头、单片机12对红外线传感器、超声波传感器、驱动模块相连。As shown in Figure 3, the camera adopts CCD camera OV6620, the single-chip microcomputer adopts MC9S12DG128 single-chip microcomputer, and the infrared sensor adopts RPR220 infrared sensor. The single-chip microcomputer is connected with the camera, 12 pairs of infrared sensors, ultrasonic sensors, and the driving module respectively. The infrared sensor, the ultrasonic sensor and the drive module are connected.
车头下方8对红外线传感器发射红外线照射到白色地面时会有较大的反射,接收到反射回的红外线强度较大,而照射到黑线上时,黑线会吸收大部分红外光,接收到红外线强度就很弱。The 8 pairs of infrared sensors under the front of the car will have a greater reflection when the infrared rays are irradiated on the white ground, and the intensity of the reflected infrared rays received is greater. When the infrared rays are irradiated on the black line, the black line will absorb most of the infrared light and receive the infrared light. The strength is very weak.
本实施例中小车的循迹方法如下:The tracking method of the trolley in this embodiment is as follows:
通过设定逻辑变量Y1和Y2,根据Y1和Y2的逻辑值判断小车是否偏离黑线,进而确定两个驱动轮的转动方向,当Y1=0,并且Y2=0时,未偏离黑线,此时,单片机通过驱动电机控制驱动轮使小车沿黑线直线行驶;当Y1=1,并且Y2=0时,小车往右偏,此时,单片机通过驱动电机控制驱动轮使小车向左偏转以回到黑线;当Y1=0,并且Y2=1时,小车往左偏,此时单片机通过驱动电机控制驱动轮使小车向右偏转以回到黑线;Y1=1并且Y2=1,单片机到达目的地,单片机通过光电编码器控制驱动电机使小车左右轮在原地转180度。By setting the logic variables Y 1 and Y 2 , judge whether the trolley deviates from the black line according to the logic values of Y 1 and Y 2 , and then determine the rotation direction of the two driving wheels. When Y 1 =0 and Y 2 =0, If it does not deviate from the black line, at this time, the single-chip microcomputer controls the driving wheel through the driving motor to make the trolley run straight along the black line; when Y 1 =1 and Y 2 =0, the trolley deviates to the right, at this time, the single-chip microcomputer controls the driving through the driving motor The wheel deflects the trolley to the left to return to the black line; when Y 1 =0 and Y 2 =1, the trolley deflects to the left, at this time the single-chip microcomputer controls the driving wheel through the drive motor to deflect the trolley to the right to return to the black line; Y 1 =1 and Y 2 =1, the single-chip microcomputer reaches the destination, and the single-chip microcomputer controls the drive motor through the photoelectric encoder to make the left and right wheels of the trolley turn 180 degrees in situ.
上述Y1和Y2定义为Y1=VA'&VB'&VC'&VD',Y2=VE'&VF'&VG'&VH',其中VA'、VB'、VC'、VD'、VE'、VF'、VG'、VH'为逻辑变量。正常情况下,小车在行驶时,红外线传感器D、E接收到低电平,其它六个红外线传感器A、B、C、F、G、H接收到高电平,所以设8个红外线传感器A、B、C、D、E、F、G、H接收到的电压值分别为V0、V1、V2、V3、V4、V5、V6、V7,并将接收到的电压值进行二值化处理
本实施例中小车自动避障的方法如下:In this embodiment, the method for automatic obstacle avoidance of the car is as follows:
(1)求解CCD摄像头所拍障碍物中心横坐标值。(1) Solve the abscissa value of the obstacle center captured by the CCD camera.
首先,在以CCD摄像头的拍摄图像左下点为原点建立直角坐标系,对建立坐标系的图像进行阈值分割并二值化处理,得到二值化图像的灰度值B(m,n):First, establish a Cartesian coordinate system with the lower left point of the image taken by the CCD camera as the origin, and perform threshold segmentation and binarization on the image of the established coordinate system to obtain the gray value B(m,n) of the binarized image:
其中I(m,n)为采集的图像数据的灰度值,T为障碍物和背景的二值化分割阈值,T=210,m、n分别为当前位置像素的横、纵坐标值,且m,n为不小于0的整数,m=0,1,2,……,98,99,n=0,1,2,…,78,79。Among them, I(m, n) is the gray value of the collected image data, T is the binarization segmentation threshold of obstacles and background, T=210, m and n are the horizontal and vertical coordinate values of the current position pixel respectively, and m and n are integers not less than 0, m=0, 1, 2,..., 98, 99, n=0, 1, 2,..., 78, 79.
然后,将图像进行水平投影,即,将图像二值化后每一列上的像素的灰度值进行相加,将计算结果分别存储在数组A[g]中,其中g为不小于0的整数,且g=0,1,2,…,98,99。Then, the image is horizontally projected, that is, the gray value of the pixels on each column after the image is binarized is added, and the calculation results are respectively stored in the array A[g], Where g is an integer not less than 0, and g=0, 1, 2, ..., 98, 99.
最后,计算障碍物中心点横坐标值。Finally, calculate the abscissa value of the center point of the obstacle.
对数组中灰值度按如下条件进行筛选,并将结果存储在数组E[j]和F[h]中,从而确定障碍物的左右边界:Filter the gray value in the array according to the following conditions, and store the results in the arrays E[j] and F[h], so as to determine the left and right boundaries of the obstacle:
g按照0,1,2,…,49,50依次取值并且当满足条件A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5时,将g′的值依次存储在数组E[j]中,其中,g′=g+2,j为不小于0整数,且j=0,1,2,…,49,50;g takes values according to 0, 1, 2, ..., 49, 50 and when the condition A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5 is met, set g' The values of are stored in the array E[j] in turn, where g′=g+2, j is an integer not less than 0, and j=0, 1, 2,..., 49, 50;
当g所有值均不满足条件A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5时,将图像中心点横坐标值Q存储E[0]中,即E[0]=Q,且Q=50;When all values of g do not satisfy the condition A[g+2]-A[g]≥15&&A[g+2]≥25&&A[g]≤5, store the abscissa value Q of the image center point in E[0], That is, E[0]=Q, and Q=50;
g按照0,1,2,…,49,50依次取值并且当满足条件A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5时,将g′′的值依次存储在数组F[h]中,其中g′′=100-g-2,h为不小于0的整数,且h=0,1,2,…,49,50;g takes values according to 0, 1, 2, ..., 49, 50 and when the condition A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g is satisfied ]≤5, store the value of g'' in the array F[h] sequentially, where g''=100-g-2, h is an integer not less than 0, and h=0, 1, 2,... , 49, 50;
当g所有值均不满足条件A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5时,将图像中心点横坐标值Q存储F[0]中,即F[0]=Q,且Q=50。When all values of g do not meet the condition A[100-g-2]-A[100-g]≥15&&A[100-g-2]≥25&&A[100-g]≤5, the abscissa value of the image center point Q is stored in F[0], that is, F[0]=Q, and Q=50.
计算障碍物中心点横坐标值W=(E[0]+F[0])/2。Calculate the abscissa value of the center point of the obstacle W=(E[0]+F[0])/2.
(2)结合超声波传感器、红外线传感器(I、K、J、L),绕开障碍物(2) Combining ultrasonic sensors and infrared sensors (I, K, J, L) to avoid obstacles
如图4所示,当超声波传感器检测到仓储运输小车1离障碍物3的距离x0满足:x0>1.0米,且x0<1.5米时,即,此时小车运动到位置P0时,将障碍物中心点横坐标值W与图像中心位置横坐标值Q进行比较,其中,v0为超声波传输速度,t0为发射器发射信号与接收器接收反射信号之间的时间差。As shown in Figure 4, when the ultrasonic sensor detects that the distance x 0 between the
若Q≥W,如图4所示,即小车在障碍物中心右边,单片机通过光电编码器控制驱动电机使小车左右轮向右转90度弯后继续前进;前进过程中红外线传感器K的发射探头发射红外线,初始时,发射探头发射信号与接收探头接收到反射信号之间的时间差为t1,当K的接收探头接收到反射信号的时间差变为tK,且|tK-t1|≥3×10-7秒,即小车后轮到达位置P1时,单片机通过光电编码器控制驱动电机使小车左右轮向左转90度后继续前进;小车左侧红外线传感器I、K的发射探头同时发射红外线,接收探头初始接收到反射信号的时间差分别为t2、t'2,直到I、K红外线接收探头接收到反射信号时间差为t'I、t'K,当满足下面条件即,前后障碍物之间存在长度小于车身长度的空隙时,则小车继续前进,直到满足条件则小车后轮到达位置P2,单片机通过光电编码器控制驱动电机使小车左右轮向左转90度,小车再次直线前进;当小车车头向下的8个红外线接收探头接收到的电压值经量化后均为低电平时,此时小车已回到黑线上,即小车到达位置P3,单片机通过光电编码器控制驱动电机使小车左右轮向右转90度后,继续直线行驶,这种情况下的避障路线如图4所示,最后,重复步骤一、步骤二的过程,直到仓储小车将货物运送到目的地,当逻辑变量Y1和Y2满足条件单片机通过光电编码器控制驱动电机使小车左右轮原地转180度后沿原来迹线返回出发地。If Q≥W, as shown in Figure 4, that is, the car is on the right side of the center of the obstacle, the single-chip microcomputer controls the drive motor through the photoelectric encoder to make the left and right wheels of the car turn 90 degrees to the right and then continue to move forward; Infrared rays are emitted. Initially, the time difference between the signal emitted by the transmitting probe and the reflected signal received by the receiving probe is t 1 . When K’s receiving probe receives the reflected signal, the time difference becomes t K , and |t K -t 1 |≥ 3×10 -7 seconds, that is, when the rear wheel of the trolley reaches position P 1 , the single-chip microcomputer controls the driving motor through the photoelectric encoder to make the left and right wheels of the trolley turn 90 degrees to the left and then continue to move forward; the emission probes of the infrared sensors I and K on the left side of the trolley simultaneously Infrared rays are emitted, and the time difference between the initial reception of the reflected signal by the receiving probe is t 2 , t' 2 , until the time difference between I and K infrared ray receiving probes receiving the reflected signal is t' I , t' K , when the following conditions are met That is, when there is a gap between the front and rear obstacles whose length is less than the length of the vehicle body, the car will continue to move forward until the condition is met Then the rear wheel of the trolley reaches the position P 2 , the single-chip microcomputer controls the drive motor through the photoelectric encoder to turn the left and right wheels of the trolley 90 degrees to the left, and the trolley moves forward again in a straight line; When both are low level, the car has returned to the black line at this time, that is, the car has reached the position P 3 , the single-chip microcomputer controls the drive motor through the photoelectric encoder to turn the left and right wheels of the car to the right 90 degrees, and then continue to drive straight. The following obstacle avoidance route is shown in Figure 4. Finally, repeat the process of
若Q<W,如图5所示,即小车在障碍物中心左边,单片机通过光电编码器控制驱动电机使小车左右轮向左转90度后继续前进;前进过程中红外线传感器L的发射探头发射红外线,初始时,发射探头发射信号与接收探头接收到反射信号之间的时间差为t3,当L的接收探头接收到反射信号的时间差变为tL,且|tL-t1|≥3×10-7秒,即小车后轮到达位置P5时,单片机通过光电编码器控制驱动电机使小车左右轮向右转90度后继续前进;小车右侧红外线传感器J、L的发射探头同时发射红外线,接收探头初始接收到发射信号的时间差分别为t4、t'4,直到J、L红外线接收探头接收到反射信号时间差为t'J、t'L,当满足下面条件即,前后障碍物之间存在长度小于车身长度的空隙时,则小车继续前进,直到满足条件则小车后轮到达位置P4,单片机通过光电编码器控制驱动电机使小车左右轮向右转90度,小车再次直线前进;当小车车头向下的8个红外线接收探头接收到的电压值经量化后均为低电平时,此时小车已回到黑线上,即小车到达位置P3,单片机通过光电编码器控制驱动电机使小车左右轮向左转90度,继续直线行驶,这种情况下的避障路线如图5所示,重复步骤一、步骤二的过程,直到小车将货物运送到目的地,最后,当逻辑变量Y1和Y2满足条件单片机通过光电编码器控制驱动电机使小车左右轮原地转180度后沿原来迹线返回出发地。If Q<W, as shown in Figure 5, that is, the car is on the left side of the center of the obstacle, the single-chip computer controls the drive motor through the photoelectric encoder to make the left and right wheels of the car turn 90 degrees to the left and then continue to move forward; during the forward process, the emission probe of the infrared sensor L emits Infrared rays, initially, the time difference between the signal emitted by the transmitting probe and the reflected signal received by the receiving probe is t 3 , when the receiving probe of L receives the reflected signal, the time difference becomes t L , and |t L -t 1 |≥3 ×10 -7 seconds, that is, when the rear wheel of the trolley reaches the position P 5 , the single-chip microcomputer controls the drive motor through the photoelectric encoder to make the left and right wheels of the trolley turn 90 degrees to the right and then continue to move forward; the emission probes of the infrared sensors J and L on the right side of the trolley emit simultaneously Infrared rays, the time difference between the initial reception of the transmitting signal by the receiving probe is t 4 , t' 4 , until the time difference between J and L infrared receiving probes receiving the reflected signal is t' J , t' L , when the following conditions are met That is, when there is a gap between the front and rear obstacles whose length is less than the length of the vehicle body, the car will continue to move forward until the condition is met Then the rear wheel of the trolley reaches the position P 4 , the single-chip microcomputer controls the driving motor through the photoelectric encoder to turn the left and right wheels of the trolley to the right 90 degrees, and the trolley moves straight again; When both are low, the trolley has returned to the black line at this time, that is, the trolley has reached the position P 3 , the single-chip microcomputer controls the drive motor through the photoelectric encoder to turn the left and right wheels of the trolley 90 degrees to the left, and continue to drive straight. The obstacle avoidance route is shown in Figure 5. Repeat steps 1 and 2 until the car delivers the goods to the destination. Finally, when the logic variables Y 1 and Y 2 meet the conditions The single-chip microcomputer controls the driving motor through the photoelectric encoder to make the left and right wheels of the trolley turn 180 degrees in situ and then return to the starting point along the original track.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310335421.5A CN103425130B (en) | 2013-08-02 | 2013-08-02 | The storage transporting method of a kind of automatic tracking avoidance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310335421.5A CN103425130B (en) | 2013-08-02 | 2013-08-02 | The storage transporting method of a kind of automatic tracking avoidance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103425130A true CN103425130A (en) | 2013-12-04 |
CN103425130B CN103425130B (en) | 2016-06-01 |
Family
ID=49650031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310335421.5A Active CN103425130B (en) | 2013-08-02 | 2013-08-02 | The storage transporting method of a kind of automatic tracking avoidance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103425130B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103760903A (en) * | 2014-01-20 | 2014-04-30 | 昆山鑫盛盟创科技有限公司 | Intelligent tracking conveying management system for warehouses |
CN104751679A (en) * | 2013-12-27 | 2015-07-01 | 张懿 | Automatic system for unmanned delivery car in crossroad |
CN105302128A (en) * | 2014-06-10 | 2016-02-03 | 广西大学 | Tracking implementation method of tracking trolley provided with infrared sensors in a rectangular layout mode |
CN108345041A (en) * | 2017-01-25 | 2018-07-31 | 吴正斌 | It is a kind of to be used to differentiate sensor assembly of the black and white without three kinds of situations of ball |
CN108398951A (en) * | 2018-03-20 | 2018-08-14 | 广州番禺职业技术学院 | A robot attitude measurement method and device based on multi-sensor information fusion |
CN109508020A (en) * | 2018-12-28 | 2019-03-22 | 南京香宁国际人工智能和智能制造研究院有限公司 | Robot ambulation route automatic obstacle-avoiding method, system and robot |
CN110134123A (en) * | 2019-04-25 | 2019-08-16 | 滨州学院 | A control method of a smart grid line inspection robot |
CN112256009A (en) * | 2019-07-04 | 2021-01-22 | 深圳市越疆科技有限公司 | Line seeking method, device, equipment and readable storage medium |
CN114754774A (en) * | 2022-04-06 | 2022-07-15 | 南通大学 | Moving device capable of moving along target track |
CN116000913A (en) * | 2022-08-24 | 2023-04-25 | 广州大学 | Obstacle avoidance control method and system for library transfer robot |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005119290A1 (en) * | 2004-05-17 | 2005-12-15 | Csi Wireless Inc. | Satellite position and heading sensor for vehicle steering control |
CN201218917Y (en) * | 2008-04-14 | 2009-04-08 | 游钊 | Simple intelligent electric luggage car system in hotel |
US20120101662A1 (en) * | 2008-02-29 | 2012-04-26 | Caterpillar Inc. | System for controlling a multimachine caravan |
CN202331205U (en) * | 2011-11-15 | 2012-07-11 | 陕西理工学院 | Automatic conveying trolley for laboratories |
CN102692925A (en) * | 2012-05-16 | 2012-09-26 | 黑龙江大学 | Real-time tracking state display method for electric modal car running in infrared tracking manner and display device implementing method |
CN202720517U (en) * | 2012-08-20 | 2013-02-06 | 南京工程学院 | Omni-directional video transmission obstacle avoidance car |
-
2013
- 2013-08-02 CN CN201310335421.5A patent/CN103425130B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005119290A1 (en) * | 2004-05-17 | 2005-12-15 | Csi Wireless Inc. | Satellite position and heading sensor for vehicle steering control |
US20120101662A1 (en) * | 2008-02-29 | 2012-04-26 | Caterpillar Inc. | System for controlling a multimachine caravan |
CN201218917Y (en) * | 2008-04-14 | 2009-04-08 | 游钊 | Simple intelligent electric luggage car system in hotel |
CN202331205U (en) * | 2011-11-15 | 2012-07-11 | 陕西理工学院 | Automatic conveying trolley for laboratories |
CN102692925A (en) * | 2012-05-16 | 2012-09-26 | 黑龙江大学 | Real-time tracking state display method for electric modal car running in infrared tracking manner and display device implementing method |
CN202720517U (en) * | 2012-08-20 | 2013-02-06 | 南京工程学院 | Omni-directional video transmission obstacle avoidance car |
Non-Patent Citations (2)
Title |
---|
王洪涛,王永亮等: "基于89S51单片机的智能运载车设计", 《滨州学院学报》, vol. 27, no. 6, 31 December 2011 (2011-12-31), pages 98 - 100 * |
胡媛媛等: "基于红外光电传感器的智能寻迹小车设计", 《电子设计工程》, vol. 19, no. 7, 30 April 2011 (2011-04-30), pages 142 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104751679A (en) * | 2013-12-27 | 2015-07-01 | 张懿 | Automatic system for unmanned delivery car in crossroad |
CN103760903A (en) * | 2014-01-20 | 2014-04-30 | 昆山鑫盛盟创科技有限公司 | Intelligent tracking conveying management system for warehouses |
CN105302128A (en) * | 2014-06-10 | 2016-02-03 | 广西大学 | Tracking implementation method of tracking trolley provided with infrared sensors in a rectangular layout mode |
CN108345041A (en) * | 2017-01-25 | 2018-07-31 | 吴正斌 | It is a kind of to be used to differentiate sensor assembly of the black and white without three kinds of situations of ball |
CN108398951A (en) * | 2018-03-20 | 2018-08-14 | 广州番禺职业技术学院 | A robot attitude measurement method and device based on multi-sensor information fusion |
CN109508020A (en) * | 2018-12-28 | 2019-03-22 | 南京香宁国际人工智能和智能制造研究院有限公司 | Robot ambulation route automatic obstacle-avoiding method, system and robot |
CN110134123A (en) * | 2019-04-25 | 2019-08-16 | 滨州学院 | A control method of a smart grid line inspection robot |
CN112256009A (en) * | 2019-07-04 | 2021-01-22 | 深圳市越疆科技有限公司 | Line seeking method, device, equipment and readable storage medium |
CN114754774A (en) * | 2022-04-06 | 2022-07-15 | 南通大学 | Moving device capable of moving along target track |
CN114754774B (en) * | 2022-04-06 | 2025-03-11 | 南通大学 | A motion device capable of moving along a target trajectory |
CN116000913A (en) * | 2022-08-24 | 2023-04-25 | 广州大学 | Obstacle avoidance control method and system for library transfer robot |
Also Published As
Publication number | Publication date |
---|---|
CN103425130B (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103425130B (en) | The storage transporting method of a kind of automatic tracking avoidance | |
CN103425129A (en) | Storage conveyer car with automatic tracking and obstacle avoiding functions | |
CN105946853B (en) | The system and method for long range automatic parking based on Multi-sensor Fusion | |
Taraba et al. | Utilization of modern sensors in autonomous vehicles | |
US20210195112A1 (en) | Adjusting Vehicle Sensor Field Of View Volume | |
US20240182065A1 (en) | Identification of Proxy Calibration Targets for a Fleet of Vehicles | |
WO2021218310A1 (en) | Parking method and apparatus, and vehicle | |
CN103879404B (en) | Anti-collision warning method and device capable of tracking moving objects | |
CN104089623A (en) | System and method for generating driving state and path of transportation vehicle | |
CN113085896A (en) | Auxiliary automatic driving system and method for modern rail cleaning vehicle | |
WO2022146703A1 (en) | Systems, apparatus, and methods for generating enhanced images | |
CN106114357A (en) | Anti-scratch device and method for vehicle turning | |
CN205981118U (en) | Formula motor vehicle gabarit dimension measurement instrument is trailed to wheel based on light curtain | |
CN108132032A (en) | The carbody inspection system and its detection method of a kind of vertical circulating garage | |
EP3914929A1 (en) | Methods and systems for detecting degraded lidar range measurement accuracy | |
CN104369742A (en) | Image-processing-based fast intelligent detection vehicle for tunnel surface cracks | |
US12158524B2 (en) | Generating scan patterns using cognitive lidar | |
CN117471463A (en) | Obstacle detection method based on 4D radar and image recognition fusion | |
Shah et al. | Literature review on parking system | |
CN109489562A (en) | A tunnel geometry parameter measurement system based on non-scanning single-line lidar | |
CN117538895A (en) | Automatic commodity vehicle docking method based on line laser radar | |
CN204196909U (en) | A kind of quick, intelligent inspection vehicle in tunnel surface crack based on image procossing | |
CN216561004U (en) | Guide detection system of bidirectional positioning hub | |
CN117360493A (en) | Parking method and device of vehicle and vehicle | |
CN207233218U (en) | Parking lot empty parking space inspection device based on 2D laser radars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211117 Address after: 210000 Building 1, 116 Shiyang Road, Qinhuai District, Nanjing City, Jiangsu Province Patentee after: NANJING LOONG SHIELD INTELLIGENT TECHNOLOGY CO.,LTD. Address before: 210044, No. 219, Ning six road, Pukou District, Jiangsu, Nanjing Patentee before: NANJING University OF INFORMATION SCIENCE & TECHNOLOGY |
|
TR01 | Transfer of patent right |