CN103413139B - 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法 - Google Patents

基于电力巡线红外巡检视频数据的电力设备异常发热检测方法 Download PDF

Info

Publication number
CN103413139B
CN103413139B CN201310268035.9A CN201310268035A CN103413139B CN 103413139 B CN103413139 B CN 103413139B CN 201310268035 A CN201310268035 A CN 201310268035A CN 103413139 B CN103413139 B CN 103413139B
Authority
CN
China
Prior art keywords
image
transmission line
power
power transmission
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310268035.9A
Other languages
English (en)
Other versions
CN103413139A (zh
Inventor
彭向阳
陈驰
麦晓明
邓超怡
王柯
杨必胜
陈锐民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Wuhan University WHU
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU, Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Wuhan University WHU
Priority to CN201310268035.9A priority Critical patent/CN103413139B/zh
Publication of CN103413139A publication Critical patent/CN103413139A/zh
Application granted granted Critical
Publication of CN103413139B publication Critical patent/CN103413139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,该方法包括如下步骤:用红外视频拍摄电力设备,获得电力设备的红外序列影像帧;图像预处理;预处理后的图像的分类;对电塔序列影像进行图像分割,从电塔序列影像中分割出电塔的塔身、绝缘子、地线和电塔金具的图像;提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具;诊断得出电塔的塔身、绝缘子、地线和电塔金具故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断。该方法不需要过多的阈值设置,自动化程度高、执行效率高。

Description

基于电力巡线红外巡检视频数据的电力设备异常发热检测方法
技术领域
本发明属于应用于电力巡线的红外视频图像处理技术领域,具体是指基于电力巡线红外巡检视频数据的电力设备异常发热检测方法。
背景技术
自动化的电力设备目标探测技术是电力巡线红外视频异常发热诊断过程中的关键技术。这在许多有关基于红外影像进行故障诊断的技术文档和研究论文中都有论述,Huangqiang.Research on HV-Power Equipment Diagnosis by Infrared ImageEdge Detection,Power and Energy Engineering Conference,[c],2009,.APPEEC2009.Asia-Pacific.APPEEC2009.Asia-Pacific;Mohd Shawal Jadin.Recent progressin diagnosing the reliability of electrical equipmentby using infraredthermography[J]Infrared Physics&Technology,2012Vol.55No.4.张越,基于红外热像技术的电力设备故障在线监测与诊断,2012,大连理工大学。
基于红外视频进行目标探测的方法主要分为两种。即:运用神经网络和运用图像处理的方法。大多数专家学者都把研究重点放在运用图像处理的方法进行运动目标榆测和跟踪,现有的比较有效的图像运动目标检测的主要是光流法和差分图像法。一般来说,光流法的时问开销很大,其实时性和实用性较差。相反,图像差分法比较简单,易于实时,因而成为目前应用最广泛、最成功的运动目标检测方法。图像差分法可分为两类:背景图像差分法和帧间差分法。由于帧间查分的方法简单、易于实现,且行之有效。因此,是一种红外视频目标探测的有效方法。
相关文献:林佳乙等.基于背景差分法和帧间差分法的视频运动检测,仪器仪表学报,2008Vol.29No.3.许静等,基于帧间差分和光流法的红外图像运动检测,计算机仿真,2012Vol.29No.6。
但是,帧间差分进行目标探测具有如下缺点:1.不适用与目标和背景都不动而探测器运动的情况,不能提取对象的完整区域。2.同时依赖于选择的帧间时间间隔。对快速运动的物体,需要选择较小的时间间隔,如果选择不合适,当物体在前后两帧中没有重叠时,会被检测为两个分开的物体;而对慢速运动的物体,应该选择较大的时问差,如果时间选择不适当,当物体在前后两帧中几乎完全重叠时,则检测不到物体。
因而,提出了一种基于图像拼接的帧间差分方法,考虑到在图像拼接的过程中,建立了统一的物方坐标系,因此,相邻两帧的背景信息(如树木)通过拼接后重合在了一起,而电力设备信息由于离物方较远所以并未完全重合。基于此,在拼接的基础上进行帧间差分,从拼接后的重叠区域中,用后一帧数据减去前一帧数据。并且由于采集到的红外视频数据,相邻两帧之间有较大的重叠区域,重叠区域面积和无人机飞行速率以及视频的采样频率相关,不过一般在70%~97%左右。这为图像拼接奠定了良好的基础。
但是,由于由于差分后的影像中电力设备具有不连续、噪声多等特征,传统的图像处理方式,如经典的Canny算子会受阈值参数影像,采用Hough变换检测出来的直线也受边缘检测性能的影响。因此,有关学者提出了一种基于输电线主方向来提取输电线的方法。从傅里叶频谱角度来看,对一个具有方向性的规则纹理而言,它在傅里叶频域的能量聚集在过原点的直线上。对帧间差分后的图像做实验,对其进行二维的傅里叶变换得到图像对应的功率谱矩阵。并将每个矩阵元素所对应的能量转换到其对应的极坐标上,将相同角度的极坐标所对应的能量进行叠加,得到一个角度-能量直方图,其中,能量所对应的最大值即为求得的主方向。
参考文献:张道兵等,一种稳健的道路主方向提取算法,光子学报,2007Vol.36No.6。张红英等,利用图像边缘信息估算图像纹理主方向,西南科技大学学报,2007Vol.22No.2.
为最终识别在图像中的目标,需要使用相应的目标识别算法对其进行识别,常用的目标识别算法有两种包括:一种是自下而上的数据驱动(data-driven)算法;另一种是自上而下的模型驱动算法(model-driven)算法。由于输电线本身具有相互平行且连续不间断的特性,利用主方向所给出的先验知识,可以采用模型驱动的方法,得到连续的完整的电力设备目标。
参考文献:吴秀芸等,基于航空影像的建筑物边缘直线特征提取方法,山东师范大学学报,2010,No.2;Eunju Kwak,etc.Automatic3D Building Model GenerationUsing A Hybrid Approach[c],2012,ASPRS.
结合相关的电力行业的故障诊断标准,沿着定位出来的输电线,采用直接判别法、温差判别法等方法,自动化进行诊断,得出诊断结果,并且,对温度异常点采用特别的红色标注标志出来,并生成诊断结果报表,供人工辅助判断。
参考文献:李德刚,红外诊断技术在电气设备状态检测中的研究与应用,2010,山东大学;杨振勃等,基于红外图像识别的输电线路故障诊断,现代电力,2012,Vol.29,No.2。
发明内容
本发明的目的是提供基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,该检测方法无需使用高压试验设备,避免了对故障部位造成新的损伤,而且拆卸工作量小、检测过程简单,能够快速确定故障部位。
本发明的上述目的通过如下技术方案来实现的:基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,该方法包括如下步骤:
基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,该方法包括如下步骤:
(1)用红外视频拍摄电力设备,获得电力设备的红外视频影像,将电力设备的红外视频影像转换为红外序列影像帧;所述的电力设备包括电塔和输电线,其中,电塔包括塔身、绝缘子、地线和电塔金具,输电线包括输电导线、避雷线和输电线金具;
(2)对步骤(1)获得的红外序列影像进行图像预处理,通过图像预处理削弱红外图像中的随机噪声,从而提高红外图像的对比度;
(3)将步骤(2)预处理后的图像分成两类:一类为电塔的电塔序列影像,另一类为驾临于地形上空的输电线的输电线序列影像;
(4)对电塔序列影像进行图像分割,从电塔序列影像中分割出电塔的塔身、绝缘子、地线和电塔金具的图像;
(5)提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具;
(6)结合现有电力行业的故障诊断标准,沿着步骤(5)定位出来电塔的塔身、绝缘子、地线和电塔金具各自的直线,诊断得出电塔的塔身、绝缘子、地线和电塔金具故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断。
本发明中,所述步骤(1)中将红外视频影像转换为红外序列影像帧采用的是Opencv函数。
本发明中,所述步骤(2)中图像预处理的方法包括双边滤波去噪和直方图均衡。
本发明中,所述步骤(4)中采用自适应分割算法对电塔序列影像进行图像分割。
本发明中,所述步骤(5)中采用CANNY算子从分割后的图像中提取直线特征,并利用Hough变换,提取分割后的图像中的直线,从而提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具。
为了能够进一步对输电线故障进行诊断,本发明还可以做如下进一步改进:本发明还包括如下步骤:
(7)对于驾临于地形上空的输电线序列影像,相邻两帧图像之间有较高的重叠度,采用基于SURF描述子对输电线序列影像的影像尺度不变特征进行提取,使用人工神经网络的匹配算法,完成提取特征点的匹配,形成匹配点对;
(8)对步骤(7)获得的匹配点对中存在的错误匹配点对,对错误匹配点进行滤除,提高匹配精度;
(9)匹配得到的相邻两帧图像之间的重叠区域,通过帧间差分的方式,能够消除背景信息和噪声,将两帧图像数据的输电线信息保留下来;
(10)对步骤(9)获得的帧间差分图像结果,将输电线信息从图像中分割出来;
(11)通过图像傅里叶频谱分析,对步骤(10)分割出来的输电线信息图像进行分析,求取输电线信息主方向;
(12)利用步骤(11)中获得的输电线信息的主方向,采用模型驱动的方法,得到连续的完整的输电线;
(13)结合现有电力行业的故障诊断标准,沿着步骤(12)定位出来的输电线直线,采用直接判别法、温差判别法诊断得出输电线故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断,其中,输电线故障包括输电导线、避雷线和输电线金具的故障,输电导线、避雷线和输电线金具故障的诊断方法均通过与步骤(7)~步骤(13)中诊断输电线故障相同的步骤进行诊断。
本发明中,所述步骤(8)中,使用RANSAC方法对错误匹配点进行滤除。
本发明中,所述步骤(10)中,对步骤(9)获得的帧间差分图像结果进行双边滤波去噪,然后对图像进行ostu法图像分割,将输电线信息从图像中分割出来。
本发明中,所述步骤(11)中求取输电线信息主方向的具体步骤为:对步骤(10)分割出来的输电线信息图像进行二维傅里叶变换,得到FM(u,v),并求其功率谱:PM(u,v)=|FM(u,v)|2;将直角坐标系下的功率谱转换到极坐标系(θ,r)下,固定极坐标下的某一角度,对所有同一角度的功率谱求和,功率谱最大所对应的角度,即为求得的输电线信息的主方向。
本发明中,所述步骤(12)得到连续的完整的输电线的具体实现方式为:对步骤(11)获得的图像,设置一个和输电线信息的主方向平行的平行四边形窗口,四边形的高等于图像的高,四边形的底边和帧间差分图像的底边在同一直线上,沿着图像所在的底边平移四边形窗口,计算落在该区域内的前景信息的填充度,当填充度大于设定阈值的80%时保留该窗口信息,根据该窗口信息绘制相应的输电线直线,从而提取和定位影像中输电线。
本发明的电力设备异常发热检测方法通过基于拼接的方法进行帧间差分,能够克服传统的帧间差分方法进行目标探测时探测器移动时难以将前景从背景中区分出来的特点;基于图像能量进行主方向提取的方法,能自动提取图像主方向,用于进一步的目标探测;利用图像主方向的先验知识,采用模型驱动的思想,基于模型来提取图像中的电力设备,提取的完整度高、连续性好;基于红外图像目标探测结果来进行故障诊断,能够有效的规避图像中其他辐射因素对红外图像的可能影响,有更好的诊断结果。并且,在处理过程中,与传统的红外图像处理的方法相比,不需要过多的阈值设置,自动化程度高、执行效率高。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明获得的红外视频单帧原始影像;
图2对图1进行预处理前后对比图;
图3a为本发明拼接前的相邻的一帧图像;
图3b为本发明拼接前的相邻的另一帧图像;
图4为本发明拼接后的图像;
图5为本发明帧间差分结果;
图6为本发明主方向求取结果;
图7为本发明输电线定位结果;
图8a为本发明输电线预处理后的红外影像;
图8b为本发明输电线的定位结果。
具体实施方式
本发明基于电力巡线红外巡检视频数据的电力设备异常发热检测方法的理论基础如下:
在图像拼接的过程中,建立了统一的物方坐标系,因此,相邻两帧的背景信息通过拼接后重合在了一起,而电力设备信息由于离物方较远所以并未完全重合。基于此,在拼接的基础上进行帧间差分,从拼接后的重叠区域中,用后一帧数据减去前一帧数据,从而大部分的背景信息会被消除,但是输电线信息仍然保留了下来。所采用的拼接方法如下:通过基于SURF描述子对影像尺度不变特征进行提取,使用人工神经网络的匹配算法,完成提取特征的匹配,能实现大旋角像对的特征匹配。对于存在的错误匹配点对,使用RANSAC方法对其进行滤除,提高匹配精度。
在消除了噪声和背景对红外图像的影响后,在红外影像中的电力设备往往是不连续和不完整了,为了提取出完整连续的目标,可以通过图像能量求取主方向,然后基于主方向的先验知识,采用模型驱动的方式从原始图像中进行目标探测。
相应的基于图像能量信息求取输电线主方向的方法是通过对其进行二维的傅里叶变换得到图像对应的功率谱矩阵。并将每个矩阵元素所对应的能量转换到其对应的极坐标上,将相同角度的极坐标所对应的能量进行叠加,得到一个角度-能量直方图,其中,能量所对应的最大值即为求得的主方向。
具体步骤如下:对图像进行二维傅里叶变换得到FM(u,v),并求其功率谱:PM(u,v)=|FM(u,v)|2;将直角坐标系下的功率谱转换到极坐标系(θ,r)下,固定极坐标下的某一角度,对所有同一角度的功率谱求和,功率谱最大所对应的角度,即为求得的主方向。再采用基于模型驱动的方式来求直线,由于输电线本身具有相互平行且连续不间断的特性,利用主方向所给出的先验知识,可以采用模型驱动的方法,得到连续的完整的输电线。对红外图像,设置了一个和主方向平行的平行四边形窗口,四边形的高等于图像的高,四边形的底边和图像的底边在同一直线上,沿着图像所在的底边平移四边形窗口,将落在图像图幅和窗口重叠区域内的像素,计算落在该区域内的前景信息的填充度,当填充度大于某一阈值时保留该窗口信息,绘制相应的直线。
本发明基于电力巡线红外巡检视频数据的电力设备异常发热检测方法的具体实现过程如下:
(1)用红外视频拍摄电力设备,获得电力设备的红外视频影像,将电力设备的红外视频影像转换为红外序列影像帧;其中,将红外视频影像转换为红外序列影像帧采用的是Opencv函数;本发明中的电力设备包括电塔和输电线,其中,电塔包括塔身、绝缘子、地线和电塔金具,输电线包括输电导线、避雷线和输电线金具;图1给出了由红外视频影像得到的单帧影像。
(2)对步骤(1)获得的红外序列影像进行图像预处理;图像预处理的方法包括双边滤波去噪和直方图均衡,通过图像预处理削弱红外图像中的随机噪声,从而提高红外图像的对比度;图2为对图1进行预处理后的前后对比图。
(3)将步骤(2)预处理后的图像分成两类:一类为电塔的电塔序列影像,另一类为驾临于地形上空的输电线的输电线序列影像;
(4)采用自适应分割算法对电塔序列影像进行图像分割,从电塔序列影像中分割出电塔的塔身、绝缘子、地线和电塔金具的图像;
(5)采用CANNY算子从分割后的图像中提取直线特征,并利用Hough变换,提取分割后的图像中的直线,从而提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具;
(6)结合现有电力行业的故障诊断标准,沿着步骤(5)定位出来电塔的塔身、绝缘子、地线和电塔金具各自的直线,采用直接判别法或温差判别法,诊断得出电塔的塔身、绝缘子、地线和电塔金具故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断;
(7)对于驾临于复杂地形上空的输电线序列影像,输电线信息往往淹没在大量的背景和噪声中,考虑到采集到的红外视频数据,相邻两帧图像之间有较高的重叠度,重叠区域面积和无人机飞行速率以及视频的采样频率相关,不过一般在70%~97%左右。这为图像拼接奠定了良好的基础,本发明采用基于SURF描述子对输电线序列影像的影像尺度不变特征进行提取,使用人工神经网络的匹配算法,完成提取特征点的匹配,形成匹配点对;
(8)对步骤(7)获得的匹配点对中存在的错误匹配点对,使用RANSAC方法对其进行滤除,提高匹配精度;
使用RANSAC方法对其进行滤除的具体流程为:
首先是基于Ransac的变换参数估计。
获得图像间的匹配对后,要估算图像间的变换关系,图像间存在仿射变换关系:
M = m 1 m 2 m 3 m 4 m 5 m 6 0 0 1
设p=(x1,y1),q=(x2,y2)是匹配的特征点对,则有:
x 1 y 1 1 = m 1 m 2 m 3 m 4 m 5 m 6 0 0 1 × x 2 y 2 1 式\
上述最近邻匹配法得到的匹配对中,还可能有错误的匹配对,要结合Ransac和最小二乘来计算图像间的变换关系。在图像与图像的匹配过程中,目的是为了计算两个平面之间的转换关系H,其变换关系为:
s i x i ′ y i ′ 1 ≈ H x i y i 1
H为单应矩阵,要使下式中的反投影误差最小:
Σ i [ ( x i ′ - h 11 x i + h 12 y i + h 13 h 31 x i + h 32 y i + h 33 ) 2 + ( y i ′ - h 21 x i + h 22 y i + h 23 h 31 x i + h 32 y i + h 33 ) 2 ]
H矩阵可以变换尺度,所以被归一化使得h33=1。即H是一个包含8个自由度的3*3的矩阵,它最少可以由2个平面中4对匹配点计算得到,但是同一平面任意3点不能共线。
基于Ransac算法,采用如下的基本思路:
1)重复采样n次(n由采样自适应确定)随即取出3组对应点对组成一个样本并计算矩阵M;据算每组假设对应的距离d;通过门限值比较,将与M一致的点作为内点。
2)选取包含内点树木最多的一个点集(内点数据相等时,选择标准方差最小的点集)。
用所选取的点集中的匹配对重新计算M,用最小二乘法来最小化误差,这样在求取最终解之前,先去除掉了不符合大多数点对所满足关系的“外点”去除了误匹配的影响,得到多数匹配点对所满足的最终解。图3a、图3b为拼接前的相邻的两帧图像,图4为经过本发明进行拼接后的图像。
(9)由于在图像拼接的过程中,建立了统一的物方坐标系,因此,相邻两帧的背景信息(如树木)通过拼接后重合在了一起,而输电线信息由于离物方较远所以并未完全重合。基于此,匹配得到的相邻两帧图像之间的重叠区域,通过帧间差分的方式,能够消除背景信息和噪声,将两帧图像数据的输电线信息保留下来,图5为帧间差分结果;
拼接后的帧间差分,实现步骤如下:
帧间差分法它是利用基于时间序列图像中相邻两帧或几帧图像逐个像素进行对比得到的差值图像,然后通过事先确定的阈值对差值图像进行二值化。两幅图像在时间ti和tj时的绝对值图像可以定义为:
d ij ( x , y ) = 1 | f ( x , y , t i ) - f ( x , y , t j ) | > T 0 | f ( x , y , t i ) - f ( x , y , t j ) | ≤ T
其中T为阈值。两幅图像间坐标的像素差大于T,则在差值图像中该点像素设置为1,否则为0。在实际对经过拼接后的红外序列影像进行处理时,由于帧间差分是逐像素计算的过程,在经过拼接处理后位于同一图像坐标系的两帧影像,其物理像素并不是完全重合的,只有在公共重叠区域才重合。选取其重叠区域的最大内接矩形为兴趣区域进行帧间差分。
从拼接后的重叠区域中,用后一帧数据减去前一帧数据可知,其中大部分的背景信息将被消除,但是输电线信息仍然保留了下来。图5为帧间差分结果。
(10)对步骤(9)获得的帧间差分图像结果进行双边滤波去噪,然后对图像进行ostu法图像分割,将输电线信息从图像中分割出来;图6为帧间差分图像分割后的结果。
(11)在消除了噪声和背景对红外图像的影响后,在红外影像中的电力设备往往是不连续和不完整了,为了提取出完整连续的目标,通过图像傅里叶频谱分析,对步骤(10)分割出来的输电线信息图像进行分析,求取输电线信息主方向;求取输电线信息主方向的具体步骤为:对步骤(10)分割出来的输电线信息图像进行二维傅里叶变换,得到FM(u,v),并求其功率谱:PM(u,v)=|FM(u,v)|2;将直角坐标系下的功率谱转换到极坐标系(θ,r)下,固定极坐标下的某一角度,对所有同一角度的功率谱求和,功率谱最大所对应的角度,即为求得的输电线信息的主方向;图7为输电线信息主方向求取结果。
(12)利用步骤(11)中获得的输电线信息的主方向,采用模型驱动的方法,得到连续的完整的输电线;具体实现方式为:对步骤(11)获得的图像,设置一个和输电线信息的主方向平行的平行四边形窗口,四边形的高等于图像的高,四边形的底边和帧间差分图像的底边在同一直线上,沿着图像所在的底边平移四边形窗口,计算落在该区域内的前景信息的填充度,当填充度大于设定阈值的80%时保留该窗口信息,根据该窗口信息绘制相应的输电线直线,从而提取和定位影像中输电线;图8a为本发明输电线预处理后的红外影像;图8b为本发明输电线的定位结果。
(13)结合现有电力行业的故障诊断标准,沿着步骤(12)定位出来的输电线直线,采用直接判别法、温差判别法诊断得出输电线故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断,其中,输电线故障包括输电导线、避雷线和输电线金具的故障,输电导线、避雷线和输电线金具故障的诊断方法均通过与步骤(7)~步骤(13)中诊断输电线故障相同的步骤进行诊断。
本发明的上述实施例并不是对本发明保护范围的限定,本发明的实施方式不限于此,凡此种种根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,对本发明上述结构做出的其它多种形式的修改、替换或变更,均应落在本发明的保护范围之内。

Claims (9)

1.基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,该方法包括如下步骤:
(1)用红外视频拍摄电力设备,获得电力设备的红外视频影像,将电力设备的红外视频影像转换为红外序列影像帧;所述的电力设备包括电塔和输电线,其中,电塔包括塔身、绝缘子、地线和电塔金具,输电线包括输电导线、避雷线和输电线金具;
(2)对步骤(1)获得的红外序列影像进行图像预处理,通过图像预处理削弱红外图像中的随机噪声,从而提高红外图像的对比度;
(3)将步骤(2)预处理后的图像分成两类:一类为电塔的电塔序列影像,另一类为驾临于地形上空的输电线的输电线序列影像;
(4)对电塔序列影像进行图像分割,从电塔序列影像中分割出电塔的塔身、绝缘子、地线和电塔金具的图像;
(5)提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具;
(6)结合现有电力行业的故障诊断标准,沿着步骤(5)定位出来电塔的塔身、绝缘子、地线和电塔金具各自的直线,诊断得出电塔的塔身、绝缘子、地线和电塔金具故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断;
(7)对于驾临于地形上空的输电线序列影像,相邻两帧图像之间有较高的重叠度,采用基于SURF描述子对输电线序列影像的影像尺度不变特征进行提取,使用人工神经网络的匹配算法,完成提取特征点的匹配,形成匹配点对;
(8)对步骤(7)获得的匹配点对中存在的错误匹配点对,对错误匹配点进行滤除,提高匹配精度;
(9)匹配得到的相邻两帧图像之间的重叠区域,通过帧间差分的方式,能够消除背景信息和噪声,将两帧图像数据的输电线信息保留下来;
(10)对步骤(9)获得的帧间差分图像结果,将输电线信息从图像中分割出来;
(11)通过图像傅里叶频谱分析,对步骤(10)分割出来的输电线信息图像进行分析,求取输电线信息主方向;
(12)利用步骤(11)中获得的输电线信息的主方向,采用模型驱动的方法,得到连续的完整的输电线;
(13)结合现有电力行业的故障诊断标准,沿着步骤(12)定位出来的输电线直线,采用直接判别法、温差判别法诊断得出输电线故障的故障诊断结果,将温度异常点标志出来,并且根据故障诊断结果生成故障诊断结果报表,供人工辅助判断,其中,输电线故障包括输电导线、避雷线和输电线金具的故障,输电导线、避雷线和输电线金具故障的诊断方法均通过与步骤(7)~步骤(13)中诊断输电线故障相同的步骤进行诊断。
2.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(1)中将红外视频影像转换为红外序列影像帧采用的是Opencv函数。
3.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(2)中图像预处理的方法包括双边滤波去噪和直方图均衡。
4.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(4)中采用自适应分割算法对电塔序列影像进行图像分割。
5.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(5)中采用CANNY算子从分割后的图像中提取直线特征,并利用Hough变换,提取分割后的图像中的直线,从而提取和定位影像中电塔的塔身、绝缘子、地线和电塔金具。
6.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(8)中,使用RANSAC方法对错误匹配点进行滤除。
7.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(10)中,对步骤(9)获得的帧间差分图像结果进行双边滤波去噪,然后对图像进行ostu法图像分割,将输电线信息从图像中分割出来。
8.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(11)中求取输电线信息主方向的具体步骤为:对步骤(10)分割出来的输电线信息图像进行二维傅里叶变换,得到FM(u,v),并求其功率谱:PM(u,v)=|FM(u,v)|2;将直角坐标系下的功率谱转换到极坐标系(θ,r)下,固定极坐标下的某一角度,对所有同一角度的功率谱求和,功率谱最大所对应的角度,即为求得的输电线信息的主方向。
9.根据权利要求1所述的基于电力巡线红外巡检视频数据的电力设备异常发热检测方法,其特征在于:所述步骤(12)得到连续的完整的输电线的具体实现方式为:对步骤(11)获得的图像,设置一个和输电线信息的主方向平行的平行四边形窗口,四边形的高等于图像的高,四边形的底边和帧间差分图像的底边在同一直线上,沿着图像所在的底边平移四边形窗口,计算落在该区域内的前景信息的填充度,当填充度大于设定阈值的80%时保留该窗口信息,根据该窗口信息绘制相应的输电线直线,从而提取和定位影像中输电线。
CN201310268035.9A 2013-06-28 2013-06-28 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法 Active CN103413139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310268035.9A CN103413139B (zh) 2013-06-28 2013-06-28 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310268035.9A CN103413139B (zh) 2013-06-28 2013-06-28 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法

Publications (2)

Publication Number Publication Date
CN103413139A CN103413139A (zh) 2013-11-27
CN103413139B true CN103413139B (zh) 2015-05-20

Family

ID=49606146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310268035.9A Active CN103413139B (zh) 2013-06-28 2013-06-28 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法

Country Status (1)

Country Link
CN (1) CN103413139B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103617469B (zh) * 2013-12-18 2016-09-14 重庆大学 电力系统设备故障预测方法及系统
CN104748863A (zh) * 2013-12-29 2015-07-01 杭州美盛红外光电技术有限公司 红外分析区域设置装置和红外分析区域设置方法
CN106022302A (zh) * 2016-06-03 2016-10-12 北京理工大学 一种通过usfpf特征识别故障跳线联板的方法
CN106204612B (zh) * 2016-07-20 2018-11-13 北京理工大学 一种基于自适应特征的故障引流管智能识别的方法
CN106529554B (zh) * 2016-10-28 2019-05-10 广东电网有限责任公司电力科学研究院 一种基于红外影像的绝缘子半自动提取方法及装置
CN106920240A (zh) * 2017-03-09 2017-07-04 国家电网公司 一种基于红外图像的绝缘子识别和故障诊断方法
CN106919929A (zh) * 2017-03-09 2017-07-04 国家电网公司 一种基于模板匹配的红外图像中绝缘子自动识别方法
CN106872523A (zh) * 2017-03-29 2017-06-20 国网上海市电力公司 一种基于无人机的电力设备缺陷智能诊断系统及方法
US10755555B2 (en) 2017-09-18 2020-08-25 Johnson Controls Fire Protection LP Method and apparatus for verifying service of installed devices using RFID
CN107798336A (zh) * 2017-09-18 2018-03-13 广东电网有限责任公司东莞供电局 一种红外测温图像部件识别方法
US11687048B2 (en) * 2017-09-18 2023-06-27 Johnson Controls Tyco IP Holdings LLP Method and apparatus for evaluation of temperature sensors
CN107766801B (zh) * 2017-09-28 2021-02-05 中国南方电网有限责任公司超高压输电公司检修试验中心 一种基于红外热点追踪的绝缘子识别方法及装置
CN108038846A (zh) * 2017-12-04 2018-05-15 国网山东省电力公司电力科学研究院 基于多层卷积神经网络的输电线路设备图像缺陷检测方法及系统
CN108961202A (zh) * 2017-12-12 2018-12-07 北京视联动力国际信息技术有限公司 一种视联网设备的检测方法及装置
CN108492292B (zh) * 2018-03-20 2022-03-25 西安工程大学 基于红外图像处理的导线散股检测方法
CN109034272A (zh) * 2018-08-24 2018-12-18 中国南方电网有限责任公司超高压输电公司检修试验中心 一种输电线路发热部件自动识别方法
CN111179211A (zh) * 2018-10-23 2020-05-19 中国石油化工股份有限公司 原油管道巡检用无人机红外视频的管线发热诊断方法
CN110443182B (zh) * 2019-07-30 2021-11-09 深圳市博铭维智能科技有限公司 一种基于多实例学习的城市排水管道视频异常检测方法
CN110780164B (zh) * 2019-11-04 2022-03-25 华北电力大学(保定) 基于yolo的绝缘子红外故障定位诊断方法及装置
CN111310309B (zh) * 2020-01-20 2024-06-28 中国矿业大学 一种基于无人机热红外影像温度反演校正方法
CN111738188A (zh) * 2020-06-29 2020-10-02 广东电网有限责任公司 一种输电线路压接金具识别方法、装置、终端及存储介质
CN112444317B (zh) * 2020-09-23 2022-04-15 国网江苏省电力有限公司电力科学研究院 一种高压套管的红外在线监测方法
CN114548446B (zh) * 2022-04-25 2022-08-02 国网山东省电力公司潍坊市寒亭区供电公司 一种基于人工智能的电力设备检测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565625A (zh) * 2011-05-25 2012-07-11 上海大学 基于红外图像智能诊断高压输电线路热缺陷的方法
CN102324033B (zh) * 2011-09-20 2013-05-22 吴建华 风电安全智能预警应急系统图像处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565625A (zh) * 2011-05-25 2012-07-11 上海大学 基于红外图像智能诊断高压输电线路热缺陷的方法
CN102324033B (zh) * 2011-09-20 2013-05-22 吴建华 风电安全智能预警应急系统图像处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王强.基于BP神经网络的柴油机热红外故障诊断方法研究.《中国优秀硕士学位论文全文数据库(电子期刊)》.2012,第16页-第34页. *
电力线路巡检系统信息分析软件的设计与实现;邵志一等;《电网技术》;20080630;第32卷(第12期);第100页-第103页 *
输变电设备红外热成像自动识别及故障分析系统;余长国等;《四川兵工学报》;20121231;第33卷(第12期);第108页-第110页 *

Also Published As

Publication number Publication date
CN103413139A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
CN103413139B (zh) 基于电力巡线红外巡检视频数据的电力设备异常发热检测方法
CN103487729B (zh) 基于紫外视频与红外视频融合的电力设备缺陷检测方法
WO2018028103A1 (zh) 一种基于人眼视觉特性的电力线路无人机巡检方法
CN101957325B (zh) 基于变电站巡检机器人变电站设备外观异常识别方法
CN104361314B (zh) 基于红外与可见光图像融合的变电设备定位方法及装置
CN103761524B (zh) 一种基于图像的线性目标识别与提取方法
Liu et al. Insulator detection in aerial images based on faster regions with convolutional neural network
Tian et al. Power line recognition and tracking method for UAVs inspection
CN109118479A (zh) 基于胶囊网络的绝缘子缺陷识别定位装置及方法
CN105203210A (zh) 基于360°红外全景视图与支持向量机的特高压变电站变压器故障检测装置及检测方法
US9117138B2 (en) Method and apparatus for object positioning by using depth images
CN110458895A (zh) 图像坐标系的转换方法、装置、设备及存储介质
CN106570863A (zh) 一种输电线路的检测方法及装置
CN103413150A (zh) 基于可见光影像对电力线路缺陷进行诊断的方法
CN103714321B (zh) 基于距离图像和强度图像的驾驶员人脸定位系统
CN103903237B (zh) 一种前扫声纳图像序列拼接方法
CN109886918A (zh) 锂电池极片的拉丝毛刺检测方法、电子设备及存储介质
CN105096305A (zh) 绝缘子状态分析的方法及装置
CN105718964A (zh) 一种输电线防振锤的视觉检测方法
CN106920240A (zh) 一种基于红外图像的绝缘子识别和故障诊断方法
CN114463257A (zh) 一种基于深度学习的电力设备红外图像检测方法及系统
CN102155933B (zh) 一种基于视频差异分析的输电线路导线舞动测量方法
CN106650735B (zh) 一种led字符自动定位识别方法
CN107547867A (zh) 一种变电站室外视频监控系统和监控方法
CN111399634A (zh) 一种手势引导物体识别的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 510080 Dongfeng East Road, Dongfeng, Guangdong, Guangzhou, Zhejiang Province, No. 8

Patentee after: ELECTRIC POWER RESEARCH INSTITUTE, GUANGDONG POWER GRID CO., LTD.

Patentee after: Wuhan University

Address before: 510080 Dongfeng East Road, Guangdong, Guangzhou, water, Kong Kong, No. 8

Patentee before: Electrical Power Research Institute of Guangdong Power Grid Corporation

Patentee before: Wuhan University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210420

Address after: 510080 Dongfeng East Road, Dongfeng, Guangdong, Guangzhou, Zhejiang Province, No. 8

Patentee after: Electric Power Research Institute of Guangdong Power Grid Co.,Ltd.

Address before: 510080 Dongfeng East Road, Dongfeng, Guangdong, Guangzhou, Zhejiang Province, No. 8

Patentee before: Electric Power Research Institute of Guangdong Power Grid Co.,Ltd.

Patentee before: WUHAN University